Properties

Label 425.2.p.a.16.2
Level $425$
Weight $2$
Character 425.16
Analytic conductor $3.394$
Analytic rank $0$
Dimension $168$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(16,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(42\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 16.2
Character \(\chi\) \(=\) 425.16
Dual form 425.2.p.a.186.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.13901 - 1.55408i) q^{2} +(0.355974 - 0.115663i) q^{3} +(1.54215 + 4.74625i) q^{4} +(-0.624287 + 2.14715i) q^{5} +(-0.941180 - 0.305808i) q^{6} -1.16016i q^{7} +(2.44332 - 7.51977i) q^{8} +(-2.31371 + 1.68101i) q^{9} +(4.67220 - 3.62258i) q^{10} +(0.0931875 - 0.128262i) q^{11} +(1.09793 + 1.51117i) q^{12} +(3.27739 - 2.38116i) q^{13} +(-1.80297 + 2.48158i) q^{14} +(0.0261163 + 0.836538i) q^{15} +(-8.83779 + 6.42103i) q^{16} +(-4.07653 - 0.617997i) q^{17} +7.56146 q^{18} +(-0.651885 + 2.00629i) q^{19} +(-11.1537 + 0.348212i) q^{20} +(-0.134187 - 0.412986i) q^{21} +(-0.398657 + 0.129532i) q^{22} +(-4.78500 + 6.58598i) q^{23} -2.95945i q^{24} +(-4.22053 - 2.68088i) q^{25} -10.7109 q^{26} +(-1.28920 + 1.77444i) q^{27} +(5.50640 - 1.78914i) q^{28} +(-5.36392 + 1.74284i) q^{29} +(1.24418 - 1.82995i) q^{30} +(-5.75381 - 1.86952i) q^{31} +13.0693 q^{32} +(0.0183372 - 0.0564362i) q^{33} +(7.75930 + 7.65714i) q^{34} +(2.49103 + 0.724271i) q^{35} +(-11.5466 - 8.38908i) q^{36} +(4.52969 + 6.23458i) q^{37} +(4.51232 - 3.27839i) q^{38} +(0.891254 - 1.22671i) q^{39} +(14.6208 + 9.94068i) q^{40} +(4.01143 + 5.52126i) q^{41} +(-0.354785 + 1.09192i) q^{42} -5.21309 q^{43} +(0.752471 + 0.244493i) q^{44} +(-2.16497 - 6.01732i) q^{45} +(20.4703 - 6.65119i) q^{46} +(0.382134 + 1.17609i) q^{47} +(-2.40335 + 3.30793i) q^{48} +5.65404 q^{49} +(4.86145 + 12.2934i) q^{50} +(-1.52262 + 0.251512i) q^{51} +(16.3558 + 11.8832i) q^{52} +(-3.30742 - 10.1792i) q^{53} +(5.51523 - 1.79201i) q^{54} +(0.217222 + 0.280160i) q^{55} +(-8.72412 - 2.83464i) q^{56} +0.789588i q^{57} +(14.1820 + 4.60800i) q^{58} +(-6.36212 + 4.62235i) q^{59} +(-3.93014 + 1.41402i) q^{60} +(-2.06036 + 2.83585i) q^{61} +(9.40203 + 12.9408i) q^{62} +(1.95024 + 2.68427i) q^{63} +(-10.2798 - 7.46873i) q^{64} +(3.06669 + 8.52359i) q^{65} +(-0.126930 + 0.0922198i) q^{66} +(0.286942 - 0.883117i) q^{67} +(-3.35345 - 20.3013i) q^{68} +(-0.941581 + 2.89789i) q^{69} +(-4.20276 - 5.42048i) q^{70} +(-8.23143 + 2.67455i) q^{71} +(6.98767 + 21.5058i) q^{72} +(0.554257 - 0.762870i) q^{73} -20.3753i q^{74} +(-1.81248 - 0.466164i) q^{75} -10.5277 q^{76} +(-0.148804 - 0.108112i) q^{77} +(-3.81280 + 1.23885i) q^{78} +(-11.8059 + 3.83596i) q^{79} +(-8.26962 - 22.9846i) q^{80} +(2.39759 - 7.37902i) q^{81} -18.0441i q^{82} +(1.54222 - 4.74647i) q^{83} +(1.75320 - 1.27377i) q^{84} +(3.87186 - 8.36712i) q^{85} +(11.1508 + 8.10154i) q^{86} +(-1.70783 + 1.24081i) q^{87} +(-0.736811 - 1.01413i) q^{88} +(-0.191227 - 0.138935i) q^{89} +(-4.72052 + 16.2356i) q^{90} +(-2.76252 - 3.80229i) q^{91} +(-38.6379 - 12.5542i) q^{92} -2.26444 q^{93} +(1.01035 - 3.10952i) q^{94} +(-3.90086 - 2.65220i) q^{95} +(4.65235 - 1.51164i) q^{96} +(-5.53280 + 1.79772i) q^{97} +(-12.0940 - 8.78681i) q^{98} +0.453409i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 8 q^{2} - 44 q^{4} - 4 q^{8} + 28 q^{9} - 18 q^{13} - 10 q^{15} - 28 q^{16} + 2 q^{17} - 60 q^{18} - 8 q^{19} + 32 q^{21} + 6 q^{25} + 52 q^{26} - 54 q^{30} + 44 q^{32} - 24 q^{33} + 26 q^{35} + 34 q^{36}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.13901 1.55408i −1.51251 1.09890i −0.965051 0.262064i \(-0.915597\pi\)
−0.547454 0.836835i \(-0.684403\pi\)
\(3\) 0.355974 0.115663i 0.205522 0.0667781i −0.204447 0.978878i \(-0.565540\pi\)
0.409969 + 0.912100i \(0.365540\pi\)
\(4\) 1.54215 + 4.74625i 0.771075 + 2.37312i
\(5\) −0.624287 + 2.14715i −0.279189 + 0.960236i
\(6\) −0.941180 0.305808i −0.384235 0.124846i
\(7\) 1.16016i 0.438498i −0.975669 0.219249i \(-0.929639\pi\)
0.975669 0.219249i \(-0.0703607\pi\)
\(8\) 2.44332 7.51977i 0.863845 2.65864i
\(9\) −2.31371 + 1.68101i −0.771237 + 0.560337i
\(10\) 4.67220 3.62258i 1.47748 1.14556i
\(11\) 0.0931875 0.128262i 0.0280971 0.0386723i −0.794737 0.606954i \(-0.792391\pi\)
0.822834 + 0.568281i \(0.192391\pi\)
\(12\) 1.09793 + 1.51117i 0.316946 + 0.436238i
\(13\) 3.27739 2.38116i 0.908985 0.660416i −0.0317732 0.999495i \(-0.510115\pi\)
0.940758 + 0.339079i \(0.110115\pi\)
\(14\) −1.80297 + 2.48158i −0.481865 + 0.663231i
\(15\) 0.0261163 + 0.836538i 0.00674320 + 0.215993i
\(16\) −8.83779 + 6.42103i −2.20945 + 1.60526i
\(17\) −4.07653 0.617997i −0.988703 0.149886i
\(18\) 7.56146 1.78225
\(19\) −0.651885 + 2.00629i −0.149553 + 0.460275i −0.997568 0.0696956i \(-0.977797\pi\)
0.848016 + 0.529971i \(0.177797\pi\)
\(20\) −11.1537 + 0.348212i −2.49404 + 0.0778626i
\(21\) −0.134187 0.412986i −0.0292821 0.0901210i
\(22\) −0.398657 + 0.129532i −0.0849940 + 0.0276162i
\(23\) −4.78500 + 6.58598i −0.997741 + 1.37327i −0.0710393 + 0.997474i \(0.522632\pi\)
−0.926701 + 0.375799i \(0.877368\pi\)
\(24\) 2.95945i 0.604095i
\(25\) −4.22053 2.68088i −0.844106 0.536176i
\(26\) −10.7109 −2.10057
\(27\) −1.28920 + 1.77444i −0.248107 + 0.341491i
\(28\) 5.50640 1.78914i 1.04061 0.338115i
\(29\) −5.36392 + 1.74284i −0.996055 + 0.323638i −0.761288 0.648414i \(-0.775433\pi\)
−0.234767 + 0.972052i \(0.575433\pi\)
\(30\) 1.24418 1.82995i 0.227156 0.334101i
\(31\) −5.75381 1.86952i −1.03341 0.335777i −0.257275 0.966338i \(-0.582825\pi\)
−0.776139 + 0.630562i \(0.782825\pi\)
\(32\) 13.0693 2.31036
\(33\) 0.0183372 0.0564362i 0.00319210 0.00982428i
\(34\) 7.75930 + 7.65714i 1.33071 + 1.31319i
\(35\) 2.49103 + 0.724271i 0.421062 + 0.122424i
\(36\) −11.5466 8.38908i −1.92443 1.39818i
\(37\) 4.52969 + 6.23458i 0.744676 + 1.02496i 0.998336 + 0.0576651i \(0.0183656\pi\)
−0.253660 + 0.967293i \(0.581634\pi\)
\(38\) 4.51232 3.27839i 0.731995 0.531826i
\(39\) 0.891254 1.22671i 0.142715 0.196430i
\(40\) 14.6208 + 9.94068i 2.31175 + 1.57176i
\(41\) 4.01143 + 5.52126i 0.626480 + 0.862276i 0.997805 0.0662271i \(-0.0210962\pi\)
−0.371324 + 0.928503i \(0.621096\pi\)
\(42\) −0.354785 + 1.09192i −0.0547446 + 0.168486i
\(43\) −5.21309 −0.794988 −0.397494 0.917605i \(-0.630120\pi\)
−0.397494 + 0.917605i \(0.630120\pi\)
\(44\) 0.752471 + 0.244493i 0.113439 + 0.0368586i
\(45\) −2.16497 6.01732i −0.322734 0.897010i
\(46\) 20.4703 6.65119i 3.01818 0.980665i
\(47\) 0.382134 + 1.17609i 0.0557400 + 0.171550i 0.975051 0.221983i \(-0.0712528\pi\)
−0.919311 + 0.393533i \(0.871253\pi\)
\(48\) −2.40335 + 3.30793i −0.346894 + 0.477458i
\(49\) 5.65404 0.807719
\(50\) 4.86145 + 12.2934i 0.687512 + 1.73856i
\(51\) −1.52262 + 0.251512i −0.213209 + 0.0352188i
\(52\) 16.3558 + 11.8832i 2.26815 + 1.64790i
\(53\) −3.30742 10.1792i −0.454310 1.39822i −0.871944 0.489606i \(-0.837141\pi\)
0.417634 0.908615i \(-0.362859\pi\)
\(54\) 5.51523 1.79201i 0.750527 0.243861i
\(55\) 0.217222 + 0.280160i 0.0292902 + 0.0377768i
\(56\) −8.72412 2.83464i −1.16581 0.378794i
\(57\) 0.789588i 0.104584i
\(58\) 14.1820 + 4.60800i 1.86218 + 0.605060i
\(59\) −6.36212 + 4.62235i −0.828278 + 0.601779i −0.919072 0.394091i \(-0.871060\pi\)
0.0907936 + 0.995870i \(0.471060\pi\)
\(60\) −3.93014 + 1.41402i −0.507379 + 0.182549i
\(61\) −2.06036 + 2.83585i −0.263802 + 0.363093i −0.920285 0.391248i \(-0.872043\pi\)
0.656483 + 0.754341i \(0.272043\pi\)
\(62\) 9.40203 + 12.9408i 1.19406 + 1.64348i
\(63\) 1.95024 + 2.68427i 0.245707 + 0.338186i
\(64\) −10.2798 7.46873i −1.28498 0.933591i
\(65\) 3.06669 + 8.52359i 0.380376 + 1.05722i
\(66\) −0.126930 + 0.0922198i −0.0156240 + 0.0113515i
\(67\) 0.286942 0.883117i 0.0350555 0.107890i −0.931998 0.362464i \(-0.881935\pi\)
0.967053 + 0.254575i \(0.0819354\pi\)
\(68\) −3.35345 20.3013i −0.406665 2.46189i
\(69\) −0.941581 + 2.89789i −0.113353 + 0.348865i
\(70\) −4.20276 5.42048i −0.502326 0.647871i
\(71\) −8.23143 + 2.67455i −0.976891 + 0.317411i −0.753595 0.657339i \(-0.771682\pi\)
−0.223297 + 0.974751i \(0.571682\pi\)
\(72\) 6.98767 + 21.5058i 0.823504 + 2.53449i
\(73\) 0.554257 0.762870i 0.0648709 0.0892872i −0.775349 0.631533i \(-0.782426\pi\)
0.840220 + 0.542246i \(0.182426\pi\)
\(74\) 20.3753i 2.36858i
\(75\) −1.81248 0.466164i −0.209287 0.0538280i
\(76\) −10.5277 −1.20761
\(77\) −0.148804 0.108112i −0.0169577 0.0123205i
\(78\) −3.81280 + 1.23885i −0.431714 + 0.140272i
\(79\) −11.8059 + 3.83596i −1.32827 + 0.431580i −0.885326 0.464972i \(-0.846064\pi\)
−0.442940 + 0.896551i \(0.646064\pi\)
\(80\) −8.26962 22.9846i −0.924572 2.56976i
\(81\) 2.39759 7.37902i 0.266399 0.819892i
\(82\) 18.0441i 1.99264i
\(83\) 1.54222 4.74647i 0.169281 0.520993i −0.830045 0.557696i \(-0.811686\pi\)
0.999326 + 0.0367031i \(0.0116856\pi\)
\(84\) 1.75320 1.27377i 0.191290 0.138980i
\(85\) 3.87186 8.36712i 0.419962 0.907542i
\(86\) 11.1508 + 8.10154i 1.20242 + 0.873612i
\(87\) −1.70783 + 1.24081i −0.183099 + 0.133029i
\(88\) −0.736811 1.01413i −0.0785443 0.108107i
\(89\) −0.191227 0.138935i −0.0202701 0.0147271i 0.577604 0.816317i \(-0.303988\pi\)
−0.597874 + 0.801590i \(0.703988\pi\)
\(90\) −4.72052 + 16.2356i −0.497586 + 1.71138i
\(91\) −2.76252 3.80229i −0.289591 0.398588i
\(92\) −38.6379 12.5542i −4.02828 1.30887i
\(93\) −2.26444 −0.234812
\(94\) 1.01035 3.10952i 0.104209 0.320723i
\(95\) −3.90086 2.65220i −0.400220 0.272110i
\(96\) 4.65235 1.51164i 0.474829 0.154281i
\(97\) −5.53280 + 1.79772i −0.561771 + 0.182530i −0.576118 0.817367i \(-0.695433\pi\)
0.0143469 + 0.999897i \(0.495433\pi\)
\(98\) −12.0940 8.78681i −1.22168 0.887602i
\(99\) 0.453409i 0.0455694i
\(100\) 6.21542 24.1660i 0.621542 2.41660i
\(101\) 16.8443 1.67607 0.838033 0.545619i \(-0.183705\pi\)
0.838033 + 0.545619i \(0.183705\pi\)
\(102\) 3.64776 + 1.82828i 0.361182 + 0.181027i
\(103\) 3.99627 + 12.2993i 0.393764 + 1.21188i 0.929920 + 0.367763i \(0.119876\pi\)
−0.536155 + 0.844119i \(0.680124\pi\)
\(104\) −9.89809 30.4632i −0.970587 2.98716i
\(105\) 0.970516 0.0302990i 0.0947126 0.00295688i
\(106\) −8.74468 + 26.9134i −0.849358 + 2.61406i
\(107\) 9.71197i 0.938892i −0.882961 0.469446i \(-0.844454\pi\)
0.882961 0.469446i \(-0.155546\pi\)
\(108\) −10.4101 3.38244i −1.00171 0.325475i
\(109\) 6.14770 + 8.46159i 0.588843 + 0.810473i 0.994630 0.103495i \(-0.0330025\pi\)
−0.405787 + 0.913968i \(0.633003\pi\)
\(110\) −0.0292478 0.936843i −0.00278867 0.0893245i
\(111\) 2.33356 + 1.69543i 0.221492 + 0.160923i
\(112\) 7.44940 + 10.2532i 0.703902 + 0.968839i
\(113\) −5.90118 8.12228i −0.555136 0.764079i 0.435562 0.900159i \(-0.356550\pi\)
−0.990698 + 0.136079i \(0.956550\pi\)
\(114\) 1.22708 1.68893i 0.114927 0.158183i
\(115\) −11.1539 14.3857i −1.04011 1.34147i
\(116\) −16.5439 22.7708i −1.53607 2.11421i
\(117\) −3.58018 + 11.0187i −0.330987 + 1.01867i
\(118\) 20.7921 1.91407
\(119\) −0.716974 + 4.72941i −0.0657249 + 0.433545i
\(120\) 6.35439 + 1.84754i 0.580073 + 0.168657i
\(121\) 3.39142 + 10.4377i 0.308311 + 0.948883i
\(122\) 8.81425 2.86392i 0.798005 0.259288i
\(123\) 2.06657 + 1.50145i 0.186337 + 0.135381i
\(124\) 30.1921i 2.71133i
\(125\) 8.39108 7.38849i 0.750521 0.660847i
\(126\) 8.77248i 0.781515i
\(127\) −3.26349 2.37107i −0.289588 0.210398i 0.433501 0.901153i \(-0.357278\pi\)
−0.723089 + 0.690755i \(0.757278\pi\)
\(128\) 2.30430 + 7.09192i 0.203674 + 0.626843i
\(129\) −1.85572 + 0.602961i −0.163387 + 0.0530878i
\(130\) 6.68665 22.9979i 0.586458 2.01705i
\(131\) 18.9049 + 6.14258i 1.65173 + 0.536679i 0.979114 0.203313i \(-0.0651709\pi\)
0.672615 + 0.739992i \(0.265171\pi\)
\(132\) 0.296139 0.0257756
\(133\) 2.32762 + 0.756288i 0.201830 + 0.0655785i
\(134\) −1.98620 + 1.44306i −0.171582 + 0.124661i
\(135\) −3.00515 3.87587i −0.258643 0.333582i
\(136\) −14.6075 + 29.1446i −1.25258 + 2.49913i
\(137\) −11.3659 + 8.25781i −0.971055 + 0.705513i −0.955692 0.294369i \(-0.904890\pi\)
−0.0153631 + 0.999882i \(0.504890\pi\)
\(138\) 6.51759 4.73531i 0.554814 0.403096i
\(139\) 3.80974 5.24365i 0.323138 0.444761i −0.616284 0.787524i \(-0.711363\pi\)
0.939422 + 0.342763i \(0.111363\pi\)
\(140\) 0.403981 + 12.9400i 0.0341426 + 1.09363i
\(141\) 0.272060 + 0.374458i 0.0229116 + 0.0315351i
\(142\) 21.7635 + 7.07140i 1.82636 + 0.593419i
\(143\) 0.642258i 0.0537083i
\(144\) 9.65428 29.7128i 0.804523 2.47607i
\(145\) −0.393528 12.6052i −0.0326807 1.04680i
\(146\) −2.37112 + 0.770423i −0.196235 + 0.0637607i
\(147\) 2.01269 0.653963i 0.166004 0.0539380i
\(148\) −22.6054 + 31.1137i −1.85815 + 2.55753i
\(149\) −15.4603 −1.26656 −0.633279 0.773924i \(-0.718291\pi\)
−0.633279 + 0.773924i \(0.718291\pi\)
\(150\) 3.15245 + 3.81386i 0.257396 + 0.311401i
\(151\) 15.4718 1.25908 0.629539 0.776969i \(-0.283244\pi\)
0.629539 + 0.776969i \(0.283244\pi\)
\(152\) 13.4941 + 9.80405i 1.09452 + 0.795213i
\(153\) 10.4708 5.42281i 0.846511 0.438409i
\(154\) 0.150277 + 0.462505i 0.0121097 + 0.0372697i
\(155\) 7.60618 11.1872i 0.610943 0.898576i
\(156\) 7.19670 + 2.33835i 0.576197 + 0.187218i
\(157\) −2.29408 −0.183087 −0.0915436 0.995801i \(-0.529180\pi\)
−0.0915436 + 0.995801i \(0.529180\pi\)
\(158\) 31.2142 + 10.1421i 2.48327 + 0.806864i
\(159\) −2.35472 3.24099i −0.186741 0.257027i
\(160\) −8.15902 + 28.0619i −0.645027 + 2.21849i
\(161\) 7.64077 + 5.55135i 0.602177 + 0.437507i
\(162\) −16.5960 + 12.0577i −1.30391 + 0.947345i
\(163\) −12.4569 17.1454i −0.975698 1.34293i −0.939115 0.343603i \(-0.888353\pi\)
−0.0365830 0.999331i \(-0.511647\pi\)
\(164\) −20.0191 + 27.5539i −1.56323 + 2.15160i
\(165\) 0.109729 + 0.0746052i 0.00854243 + 0.00580801i
\(166\) −10.6752 + 7.75599i −0.828556 + 0.601982i
\(167\) −0.126289 0.0410339i −0.00977257 0.00317530i 0.304127 0.952632i \(-0.401635\pi\)
−0.313899 + 0.949456i \(0.601635\pi\)
\(168\) −3.43342 −0.264894
\(169\) 1.05413 3.24428i 0.0810869 0.249560i
\(170\) −21.2851 + 11.8801i −1.63249 + 0.911166i
\(171\) −1.86433 5.73781i −0.142569 0.438781i
\(172\) −8.03936 24.7426i −0.612995 1.88661i
\(173\) −3.50306 + 4.82154i −0.266332 + 0.366575i −0.921147 0.389214i \(-0.872747\pi\)
0.654815 + 0.755789i \(0.272747\pi\)
\(174\) 5.58139 0.423124
\(175\) −3.11024 + 4.89648i −0.235112 + 0.370139i
\(176\) 1.73191i 0.130548i
\(177\) −1.73012 + 2.38130i −0.130044 + 0.178990i
\(178\) 0.193121 + 0.594364i 0.0144750 + 0.0445495i
\(179\) 5.72829 + 17.6299i 0.428153 + 1.31772i 0.899943 + 0.436008i \(0.143608\pi\)
−0.471790 + 0.881711i \(0.656392\pi\)
\(180\) 25.2210 19.5551i 1.87986 1.45755i
\(181\) 2.26572 + 0.736177i 0.168410 + 0.0547196i 0.392008 0.919962i \(-0.371780\pi\)
−0.223599 + 0.974681i \(0.571780\pi\)
\(182\) 12.4263i 0.921098i
\(183\) −0.405434 + 1.24780i −0.0299705 + 0.0922397i
\(184\) 37.8338 + 52.0737i 2.78914 + 3.83893i
\(185\) −16.2144 + 5.83377i −1.19211 + 0.428907i
\(186\) 4.84365 + 3.51912i 0.355154 + 0.258034i
\(187\) −0.459147 + 0.465272i −0.0335761 + 0.0340241i
\(188\) −4.99270 + 3.62741i −0.364130 + 0.264556i
\(189\) 2.05863 + 1.49568i 0.149743 + 0.108795i
\(190\) 4.22223 + 11.7353i 0.306313 + 0.851368i
\(191\) 18.0124 13.0868i 1.30333 0.946925i 0.303348 0.952880i \(-0.401896\pi\)
0.999982 + 0.00595506i \(0.00189557\pi\)
\(192\) −4.52321 1.46968i −0.326434 0.106065i
\(193\) 13.8247i 0.995126i 0.867428 + 0.497563i \(0.165772\pi\)
−0.867428 + 0.497563i \(0.834228\pi\)
\(194\) 14.6285 + 4.75308i 1.05026 + 0.341251i
\(195\) 2.07753 + 2.67948i 0.148775 + 0.191881i
\(196\) 8.71937 + 26.8355i 0.622812 + 1.91682i
\(197\) 13.0461 4.23892i 0.929493 0.302010i 0.195137 0.980776i \(-0.437485\pi\)
0.734355 + 0.678765i \(0.237485\pi\)
\(198\) 0.704634 0.969845i 0.0500761 0.0689239i
\(199\) 26.7064i 1.89316i −0.322463 0.946582i \(-0.604511\pi\)
0.322463 0.946582i \(-0.395489\pi\)
\(200\) −30.4717 + 25.1872i −2.15468 + 1.78100i
\(201\) 0.347555i 0.0245147i
\(202\) −36.0300 26.1773i −2.53506 1.84183i
\(203\) 2.02197 + 6.22299i 0.141915 + 0.436768i
\(204\) −3.54185 6.83886i −0.247979 0.478816i
\(205\) −14.3593 + 5.16631i −1.00290 + 0.360831i
\(206\) 10.5660 32.5187i 0.736166 2.26568i
\(207\) 23.2817i 1.61819i
\(208\) −13.6754 + 42.0884i −0.948216 + 2.91831i
\(209\) 0.196583 + 0.270573i 0.0135979 + 0.0187160i
\(210\) −2.12303 1.44345i −0.146503 0.0996074i
\(211\) 5.20269 7.16088i 0.358168 0.492976i −0.591469 0.806327i \(-0.701452\pi\)
0.949637 + 0.313352i \(0.101452\pi\)
\(212\) 43.2125 31.3957i 2.96785 2.15627i
\(213\) −2.62083 + 1.90415i −0.179576 + 0.130470i
\(214\) −15.0932 + 20.7740i −1.03175 + 1.42008i
\(215\) 3.25446 11.1933i 0.221952 0.763376i
\(216\) 10.1934 + 14.0300i 0.693574 + 0.954623i
\(217\) −2.16894 + 6.67532i −0.147237 + 0.453150i
\(218\) 27.6534i 1.87292i
\(219\) 0.109066 0.335669i 0.00736997 0.0226824i
\(220\) −0.994720 + 1.46304i −0.0670640 + 0.0986379i
\(221\) −14.8319 + 7.68146i −0.997704 + 0.516711i
\(222\) −2.35667 7.25308i −0.158169 0.486795i
\(223\) 4.33472 + 3.14936i 0.290274 + 0.210897i 0.723386 0.690444i \(-0.242585\pi\)
−0.433112 + 0.901340i \(0.642585\pi\)
\(224\) 15.1625i 1.01309i
\(225\) 14.2717 0.891979i 0.951445 0.0594652i
\(226\) 26.5445i 1.76571i
\(227\) −13.0145 + 17.9129i −0.863801 + 1.18892i 0.116848 + 0.993150i \(0.462721\pi\)
−0.980650 + 0.195771i \(0.937279\pi\)
\(228\) −3.74758 + 1.21766i −0.248190 + 0.0806417i
\(229\) −1.07460 3.30729i −0.0710118 0.218552i 0.909252 0.416246i \(-0.136655\pi\)
−0.980264 + 0.197694i \(0.936655\pi\)
\(230\) 1.50182 + 48.1050i 0.0990268 + 3.17195i
\(231\) −0.0654749 0.0212741i −0.00430793 0.00139973i
\(232\) 44.5938i 2.92772i
\(233\) 19.4057 + 6.30529i 1.27131 + 0.413073i 0.865511 0.500889i \(-0.166994\pi\)
0.405798 + 0.913963i \(0.366994\pi\)
\(234\) 24.7819 18.0051i 1.62004 1.17703i
\(235\) −2.76380 + 0.0862845i −0.180291 + 0.00562858i
\(236\) −31.7502 23.0679i −2.06676 1.50159i
\(237\) −3.75891 + 2.73101i −0.244168 + 0.177398i
\(238\) 8.88349 9.00200i 0.575831 0.583513i
\(239\) −0.820630 0.596223i −0.0530821 0.0385664i 0.560928 0.827865i \(-0.310445\pi\)
−0.614010 + 0.789298i \(0.710445\pi\)
\(240\) −5.60225 7.22545i −0.361623 0.466401i
\(241\) −2.33496 3.21379i −0.150408 0.207018i 0.727164 0.686464i \(-0.240838\pi\)
−0.877572 + 0.479445i \(0.840838\pi\)
\(242\) 8.96676 27.5969i 0.576405 1.77399i
\(243\) 9.48403i 0.608401i
\(244\) −16.6370 5.40570i −1.06508 0.346064i
\(245\) −3.52974 + 12.1401i −0.225507 + 0.775601i
\(246\) −2.08703 6.42323i −0.133064 0.409530i
\(247\) 2.64084 + 8.12765i 0.168032 + 0.517150i
\(248\) −28.1168 + 38.6994i −1.78542 + 2.45742i
\(249\) 1.86800i 0.118380i
\(250\) −29.4309 + 2.76364i −1.86137 + 0.174788i
\(251\) −0.275968 −0.0174189 −0.00870946 0.999962i \(-0.502772\pi\)
−0.00870946 + 0.999962i \(0.502772\pi\)
\(252\) −9.73265 + 13.3958i −0.613100 + 0.843859i
\(253\) 0.398827 + 1.22746i 0.0250740 + 0.0771699i
\(254\) 3.29581 + 10.1434i 0.206797 + 0.636456i
\(255\) 0.410515 3.42631i 0.0257074 0.214564i
\(256\) −1.76061 + 5.41859i −0.110038 + 0.338662i
\(257\) 5.55790 0.346692 0.173346 0.984861i \(-0.444542\pi\)
0.173346 + 0.984861i \(0.444542\pi\)
\(258\) 4.90645 + 1.59420i 0.305462 + 0.0992508i
\(259\) 7.23309 5.25515i 0.449442 0.326539i
\(260\) −35.7258 + 27.6999i −2.21562 + 1.71788i
\(261\) 9.48082 13.0492i 0.586848 0.807727i
\(262\) −30.8916 42.5187i −1.90849 2.62681i
\(263\) 9.27346 6.73757i 0.571826 0.415456i −0.263942 0.964539i \(-0.585023\pi\)
0.835768 + 0.549082i \(0.185023\pi\)
\(264\) −0.379584 0.275784i −0.0233618 0.0169733i
\(265\) 23.9211 0.746805i 1.46946 0.0458758i
\(266\) −3.80345 5.23500i −0.233205 0.320979i
\(267\) −0.0841416 0.0273393i −0.00514938 0.00167314i
\(268\) 4.63400 0.283067
\(269\) 12.6730 + 4.11771i 0.772688 + 0.251061i 0.668715 0.743519i \(-0.266845\pi\)
0.103973 + 0.994580i \(0.466845\pi\)
\(270\) 0.404629 + 12.9608i 0.0246249 + 0.788767i
\(271\) −5.54966 17.0801i −0.337118 1.03754i −0.965669 0.259775i \(-0.916352\pi\)
0.628551 0.777768i \(-0.283648\pi\)
\(272\) 39.9957 20.7138i 2.42509 1.25596i
\(273\) −1.42317 1.03400i −0.0861343 0.0625802i
\(274\) 37.1450 2.24401
\(275\) −0.737155 + 0.291508i −0.0444521 + 0.0175786i
\(276\) −15.2062 −0.915303
\(277\) 2.33430 3.21289i 0.140255 0.193044i −0.733111 0.680109i \(-0.761933\pi\)
0.873366 + 0.487065i \(0.161933\pi\)
\(278\) −16.2981 + 5.29557i −0.977494 + 0.317607i
\(279\) 16.4553 5.34666i 0.985155 0.320096i
\(280\) 11.5327 16.9624i 0.689214 1.01370i
\(281\) −0.340613 + 1.04830i −0.0203193 + 0.0625364i −0.960702 0.277582i \(-0.910467\pi\)
0.940383 + 0.340118i \(0.110467\pi\)
\(282\) 1.22377i 0.0728745i
\(283\) −10.2867 3.34234i −0.611478 0.198681i −0.0131253 0.999914i \(-0.504178\pi\)
−0.598353 + 0.801232i \(0.704178\pi\)
\(284\) −25.3882 34.9439i −1.50651 2.07354i
\(285\) −1.69537 0.492929i −0.100425 0.0291986i
\(286\) −0.998120 + 1.37379i −0.0590200 + 0.0812341i
\(287\) 6.40553 4.65389i 0.378107 0.274710i
\(288\) −30.2387 + 21.9697i −1.78183 + 1.29458i
\(289\) 16.2362 + 5.03857i 0.955068 + 0.296386i
\(290\) −18.7477 + 27.5741i −1.10090 + 1.61921i
\(291\) −1.76161 + 1.27988i −0.103267 + 0.0750280i
\(292\) 4.47552 + 1.45418i 0.261910 + 0.0850997i
\(293\) 20.4738 1.19609 0.598047 0.801461i \(-0.295944\pi\)
0.598047 + 0.801461i \(0.295944\pi\)
\(294\) −5.32147 1.72905i −0.310354 0.100840i
\(295\) −5.95311 16.5461i −0.346604 0.963353i
\(296\) 57.9501 18.8291i 3.36828 1.09442i
\(297\) 0.107454 + 0.330711i 0.00623514 + 0.0191898i
\(298\) 33.0697 + 24.0265i 1.91567 + 1.39182i
\(299\) 32.9787i 1.90721i
\(300\) −0.582585 9.32138i −0.0336356 0.538170i
\(301\) 6.04800i 0.348601i
\(302\) −33.0943 24.0444i −1.90436 1.38360i
\(303\) 5.99612 1.94826i 0.344468 0.111925i
\(304\) −7.12126 21.9170i −0.408432 1.25702i
\(305\) −4.80274 6.19429i −0.275004 0.354684i
\(306\) −30.8245 4.67296i −1.76212 0.267136i
\(307\) −28.2888 −1.61453 −0.807263 0.590192i \(-0.799052\pi\)
−0.807263 + 0.590192i \(0.799052\pi\)
\(308\) 0.283650 0.872984i 0.0161624 0.0497429i
\(309\) 2.84514 + 3.91600i 0.161854 + 0.222773i
\(310\) −33.6554 + 12.1088i −1.91150 + 0.687736i
\(311\) 4.30029 5.91884i 0.243847 0.335627i −0.669497 0.742814i \(-0.733490\pi\)
0.913345 + 0.407188i \(0.133490\pi\)
\(312\) −7.04693 9.69927i −0.398954 0.549113i
\(313\) 14.7613 + 20.3172i 0.834357 + 1.14839i 0.987096 + 0.160127i \(0.0511904\pi\)
−0.152740 + 0.988266i \(0.548810\pi\)
\(314\) 4.90704 + 3.56518i 0.276920 + 0.201194i
\(315\) −6.98104 + 2.51170i −0.393337 + 0.141518i
\(316\) −36.4129 50.1180i −2.04838 2.81936i
\(317\) 30.6939 + 9.97305i 1.72394 + 0.560142i 0.992552 0.121818i \(-0.0388725\pi\)
0.731389 + 0.681961i \(0.238873\pi\)
\(318\) 10.5919i 0.593964i
\(319\) −0.276310 + 0.850396i −0.0154704 + 0.0476130i
\(320\) 22.4541 17.4097i 1.25522 0.973233i
\(321\) −1.12332 3.45721i −0.0626974 0.192963i
\(322\) −7.71643 23.7487i −0.430020 1.32346i
\(323\) 3.89731 7.77585i 0.216852 0.432660i
\(324\) 38.7201 2.15112
\(325\) −20.2159 + 1.26350i −1.12138 + 0.0700861i
\(326\) 56.0331i 3.10339i
\(327\) 3.16712 + 2.30105i 0.175142 + 0.127248i
\(328\) 51.3198 16.6748i 2.83366 0.920713i
\(329\) 1.36445 0.443336i 0.0752244 0.0244419i
\(330\) −0.118770 0.330109i −0.00653805 0.0181719i
\(331\) −4.31303 + 13.2741i −0.237065 + 0.729612i 0.759775 + 0.650186i \(0.225309\pi\)
−0.996841 + 0.0794267i \(0.974691\pi\)
\(332\) 24.9063 1.36691
\(333\) −20.9608 6.81057i −1.14864 0.373217i
\(334\) 0.206364 + 0.284035i 0.0112917 + 0.0155417i
\(335\) 1.71705 + 1.16743i 0.0938126 + 0.0637833i
\(336\) 3.83772 + 2.78826i 0.209365 + 0.152112i
\(337\) −14.5173 19.9813i −0.790805 1.08845i −0.994007 0.109313i \(-0.965135\pi\)
0.203202 0.979137i \(-0.434865\pi\)
\(338\) −7.29665 + 5.30132i −0.396885 + 0.288354i
\(339\) −3.04012 2.20877i −0.165116 0.119964i
\(340\) 45.6834 + 5.47344i 2.47753 + 0.296839i
\(341\) −0.775971 + 0.563776i −0.0420212 + 0.0305302i
\(342\) −4.92920 + 15.1705i −0.266541 + 0.820328i
\(343\) 14.6807i 0.792682i
\(344\) −12.7372 + 39.2012i −0.686746 + 2.11359i
\(345\) −5.63439 3.83083i −0.303345 0.206245i
\(346\) 14.9861 4.86928i 0.805658 0.261774i
\(347\) −8.19542 + 2.66285i −0.439953 + 0.142949i −0.520614 0.853792i \(-0.674297\pi\)
0.0806609 + 0.996742i \(0.474297\pi\)
\(348\) −8.52295 6.19229i −0.456878 0.331942i
\(349\) −10.5358 −0.563966 −0.281983 0.959419i \(-0.590992\pi\)
−0.281983 + 0.959419i \(0.590992\pi\)
\(350\) 14.2623 5.64004i 0.762354 0.301473i
\(351\) 8.88533i 0.474264i
\(352\) 1.21790 1.67630i 0.0649143 0.0893468i
\(353\) −2.62310 8.07307i −0.139614 0.429686i 0.856666 0.515872i \(-0.172532\pi\)
−0.996279 + 0.0861859i \(0.972532\pi\)
\(354\) 7.40146 2.40488i 0.393383 0.127818i
\(355\) −0.603905 19.3438i −0.0320520 1.02666i
\(356\) 0.364518 1.12187i 0.0193194 0.0594590i
\(357\) 0.291794 + 1.76648i 0.0154434 + 0.0934919i
\(358\) 15.1454 46.6126i 0.800457 2.46355i
\(359\) −16.7441 + 12.1653i −0.883719 + 0.642059i −0.934233 0.356664i \(-0.883914\pi\)
0.0505141 + 0.998723i \(0.483914\pi\)
\(360\) −50.5386 + 1.57779i −2.66362 + 0.0831569i
\(361\) 11.7711 + 8.55218i 0.619529 + 0.450114i
\(362\) −3.70231 5.09580i −0.194589 0.267829i
\(363\) 2.41452 + 3.32330i 0.126729 + 0.174428i
\(364\) 13.7864 18.9753i 0.722603 0.994577i
\(365\) 1.29198 + 1.66633i 0.0676255 + 0.0872194i
\(366\) 2.80640 2.03897i 0.146693 0.106579i
\(367\) 13.5290 + 4.39585i 0.706210 + 0.229461i 0.640034 0.768347i \(-0.278920\pi\)
0.0661757 + 0.997808i \(0.478920\pi\)
\(368\) 88.9301i 4.63580i
\(369\) −18.5626 6.03135i −0.966330 0.313980i
\(370\) 43.7489 + 12.7200i 2.27439 + 0.661282i
\(371\) −11.8095 + 3.83713i −0.613117 + 0.199214i
\(372\) −3.49211 10.7476i −0.181057 0.557237i
\(373\) −24.1497 17.5458i −1.25043 0.908487i −0.252179 0.967681i \(-0.581147\pi\)
−0.998247 + 0.0591937i \(0.981147\pi\)
\(374\) 1.70519 0.281670i 0.0881731 0.0145648i
\(375\) 2.13243 3.60065i 0.110118 0.185937i
\(376\) 9.77759 0.504241
\(377\) −13.4297 + 18.4843i −0.691663 + 0.951992i
\(378\) −2.07901 6.39853i −0.106933 0.329105i
\(379\) −4.41964 + 1.43603i −0.227022 + 0.0737639i −0.420319 0.907376i \(-0.638082\pi\)
0.193297 + 0.981140i \(0.438082\pi\)
\(380\) 6.57229 22.6045i 0.337151 1.15959i
\(381\) −1.43596 0.466573i −0.0735667 0.0239033i
\(382\) −58.8664 −3.01187
\(383\) −1.53572 + 4.72645i −0.0784715 + 0.241510i −0.982595 0.185761i \(-0.940525\pi\)
0.904123 + 0.427271i \(0.140525\pi\)
\(384\) 1.64055 + 2.25802i 0.0837188 + 0.115229i
\(385\) 0.325029 0.252011i 0.0165650 0.0128437i
\(386\) 21.4847 29.5712i 1.09354 1.50513i
\(387\) 12.0616 8.76325i 0.613124 0.445461i
\(388\) −17.0648 23.4877i −0.866335 1.19241i
\(389\) −7.21454 5.24167i −0.365792 0.265763i 0.389672 0.920954i \(-0.372588\pi\)
−0.755464 + 0.655191i \(0.772588\pi\)
\(390\) −0.279728 8.96005i −0.0141646 0.453710i
\(391\) 23.5763 23.8908i 1.19230 1.20821i
\(392\) 13.8146 42.5171i 0.697744 2.14744i
\(393\) 7.44013 0.375305
\(394\) −34.4932 11.2075i −1.73774 0.564626i
\(395\) −0.866147 27.7438i −0.0435806 1.39594i
\(396\) −2.15199 + 0.699225i −0.108142 + 0.0351374i
\(397\) −11.6937 + 3.79951i −0.586890 + 0.190692i −0.587385 0.809308i \(-0.699842\pi\)
0.000495067 1.00000i \(0.499842\pi\)
\(398\) −41.5038 + 57.1251i −2.08040 + 2.86342i
\(399\) 0.916046 0.0458597
\(400\) 54.5142 3.40713i 2.72571 0.170357i
\(401\) 8.51040i 0.424989i 0.977162 + 0.212495i \(0.0681588\pi\)
−0.977162 + 0.212495i \(0.931841\pi\)
\(402\) −0.540128 + 0.743423i −0.0269391 + 0.0370786i
\(403\) −23.3091 + 7.57359i −1.16111 + 0.377267i
\(404\) 25.9764 + 79.9471i 1.29237 + 3.97752i
\(405\) 14.3471 + 9.75462i 0.712914 + 0.484711i
\(406\) 5.34600 16.4533i 0.265318 0.816564i
\(407\) 1.22177 0.0605608
\(408\) −1.82893 + 12.0643i −0.0905456 + 0.597270i
\(409\) −32.5839 + 23.6736i −1.61117 + 1.17058i −0.751492 + 0.659742i \(0.770666\pi\)
−0.859676 + 0.510840i \(0.829334\pi\)
\(410\) 38.7434 + 11.2647i 1.91340 + 0.556323i
\(411\) −3.09085 + 4.25418i −0.152460 + 0.209843i
\(412\) −52.2125 + 37.9346i −2.57232 + 1.86890i
\(413\) 5.36266 + 7.38106i 0.263879 + 0.363198i
\(414\) −36.1816 + 49.7996i −1.77823 + 2.44752i
\(415\) 9.22861 + 6.27454i 0.453015 + 0.308005i
\(416\) 42.8334 31.1203i 2.10008 1.52580i
\(417\) 0.749671 2.30725i 0.0367116 0.112987i
\(418\) 0.884263i 0.0432507i
\(419\) −5.23163 1.69986i −0.255582 0.0830436i 0.178424 0.983954i \(-0.442900\pi\)
−0.434006 + 0.900910i \(0.642900\pi\)
\(420\) 1.64049 + 4.55958i 0.0800476 + 0.222485i
\(421\) 8.87870 + 27.3258i 0.432721 + 1.33178i 0.895404 + 0.445256i \(0.146887\pi\)
−0.462682 + 0.886524i \(0.653113\pi\)
\(422\) −22.2571 + 7.23179i −1.08346 + 0.352038i
\(423\) −2.86116 2.07876i −0.139114 0.101073i
\(424\) −84.6264 −4.10982
\(425\) 15.5483 + 13.5370i 0.754205 + 0.656639i
\(426\) 8.56516 0.414984
\(427\) 3.29003 + 2.39034i 0.159216 + 0.115677i
\(428\) 46.0954 14.9773i 2.22811 0.723956i
\(429\) −0.0742856 0.228627i −0.00358654 0.0110382i
\(430\) −24.3566 + 18.8848i −1.17458 + 0.910707i
\(431\) 6.63952 + 2.15731i 0.319814 + 0.103914i 0.464525 0.885560i \(-0.346225\pi\)
−0.144711 + 0.989474i \(0.546225\pi\)
\(432\) 23.9601i 1.15278i
\(433\) −5.97762 + 18.3972i −0.287266 + 0.884114i 0.698444 + 0.715664i \(0.253876\pi\)
−0.985710 + 0.168449i \(0.946124\pi\)
\(434\) 15.0133 10.9078i 0.720664 0.523593i
\(435\) −1.59804 4.44161i −0.0766202 0.212959i
\(436\) −30.6801 + 42.2276i −1.46931 + 2.02233i
\(437\) −10.0942 13.8934i −0.482869 0.664612i
\(438\) −0.754948 + 0.548502i −0.0360728 + 0.0262084i
\(439\) −14.3775 + 19.7889i −0.686200 + 0.944473i −0.999987 0.00502013i \(-0.998402\pi\)
0.313788 + 0.949493i \(0.398402\pi\)
\(440\) 2.63748 0.948936i 0.125737 0.0452388i
\(441\) −13.0818 + 9.50449i −0.622943 + 0.452595i
\(442\) 43.6632 + 6.61929i 2.07684 + 0.314848i
\(443\) −31.6552 −1.50399 −0.751993 0.659171i \(-0.770907\pi\)
−0.751993 + 0.659171i \(0.770907\pi\)
\(444\) −4.44824 + 13.6903i −0.211104 + 0.649712i
\(445\) 0.417695 0.323859i 0.0198006 0.0153524i
\(446\) −4.37764 13.4730i −0.207287 0.637964i
\(447\) −5.50347 + 1.78819i −0.260305 + 0.0845783i
\(448\) −8.66490 + 11.9262i −0.409378 + 0.563460i
\(449\) 23.4934i 1.10872i −0.832276 0.554362i \(-0.812962\pi\)
0.832276 0.554362i \(-0.187038\pi\)
\(450\) −31.9134 20.2714i −1.50441 0.955601i
\(451\) 1.08198 0.0509485
\(452\) 29.4498 40.5342i 1.38520 1.90657i
\(453\) 5.50756 1.78952i 0.258768 0.0840788i
\(454\) 55.6761 18.0903i 2.61301 0.849018i
\(455\) 9.88870 3.55784i 0.463590 0.166794i
\(456\) 5.93752 + 1.92922i 0.278050 + 0.0903439i
\(457\) 30.5760 1.43028 0.715142 0.698979i \(-0.246362\pi\)
0.715142 + 0.698979i \(0.246362\pi\)
\(458\) −2.84120 + 8.74433i −0.132761 + 0.408596i
\(459\) 6.35207 6.43682i 0.296489 0.300445i
\(460\) 51.0769 75.1240i 2.38147 3.50268i
\(461\) 4.86925 + 3.53772i 0.226783 + 0.164768i 0.695375 0.718647i \(-0.255238\pi\)
−0.468591 + 0.883415i \(0.655238\pi\)
\(462\) 0.106989 + 0.147258i 0.00497760 + 0.00685108i
\(463\) −4.83170 + 3.51044i −0.224548 + 0.163144i −0.694372 0.719617i \(-0.744318\pi\)
0.469823 + 0.882760i \(0.344318\pi\)
\(464\) 36.2143 49.8448i 1.68121 2.31398i
\(465\) 1.41366 4.86210i 0.0655569 0.225475i
\(466\) −31.7100 43.6450i −1.46894 2.02182i
\(467\) −8.59414 + 26.4500i −0.397689 + 1.22396i 0.529158 + 0.848523i \(0.322508\pi\)
−0.926847 + 0.375439i \(0.877492\pi\)
\(468\) −57.8184 −2.67266
\(469\) −1.02455 0.332898i −0.0473095 0.0153718i
\(470\) 6.04588 + 4.11060i 0.278876 + 0.189608i
\(471\) −0.816632 + 0.265340i −0.0376284 + 0.0122262i
\(472\) 19.2143 + 59.1356i 0.884411 + 2.72194i
\(473\) −0.485795 + 0.668639i −0.0223369 + 0.0307440i
\(474\) 12.2845 0.564247
\(475\) 8.12993 6.72001i 0.373027 0.308335i
\(476\) −23.5527 + 3.89053i −1.07953 + 0.178322i
\(477\) 24.7638 + 17.9919i 1.13385 + 0.823794i
\(478\) 0.828755 + 2.55065i 0.0379064 + 0.116664i
\(479\) 28.7904 9.35456i 1.31547 0.427421i 0.434530 0.900657i \(-0.356914\pi\)
0.880935 + 0.473237i \(0.156914\pi\)
\(480\) 0.341323 + 10.9330i 0.0155792 + 0.499021i
\(481\) 29.6911 + 9.64723i 1.35380 + 0.439876i
\(482\) 10.5030i 0.478399i
\(483\) 3.36201 + 1.09238i 0.152977 + 0.0497051i
\(484\) −44.3099 + 32.1930i −2.01409 + 1.46332i
\(485\) −0.405918 13.0021i −0.0184318 0.590393i
\(486\) −14.7389 + 20.2864i −0.668571 + 0.920209i
\(487\) 17.8876 + 24.6201i 0.810563 + 1.11564i 0.991236 + 0.132101i \(0.0421723\pi\)
−0.180674 + 0.983543i \(0.557828\pi\)
\(488\) 16.2908 + 22.4223i 0.737449 + 1.01501i
\(489\) −6.41742 4.66253i −0.290206 0.210847i
\(490\) 26.4168 20.4822i 1.19339 0.925292i
\(491\) −12.1606 + 8.83517i −0.548799 + 0.398726i −0.827342 0.561698i \(-0.810148\pi\)
0.278544 + 0.960424i \(0.410148\pi\)
\(492\) −3.93931 + 12.1239i −0.177598 + 0.546589i
\(493\) 22.9432 3.78986i 1.03331 0.170687i
\(494\) 6.98225 21.4892i 0.314146 0.966843i
\(495\) −0.973540 0.283057i −0.0437573 0.0127225i
\(496\) 62.8552 20.4229i 2.82228 0.917015i
\(497\) 3.10290 + 9.54976i 0.139184 + 0.428365i
\(498\) −2.90302 + 3.99566i −0.130087 + 0.179050i
\(499\) 20.5765i 0.921130i 0.887626 + 0.460565i \(0.152353\pi\)
−0.887626 + 0.460565i \(0.847647\pi\)
\(500\) 48.0079 + 28.4320i 2.14698 + 1.27152i
\(501\) −0.0497019 −0.00222052
\(502\) 0.590296 + 0.428875i 0.0263462 + 0.0191416i
\(503\) 8.18400 2.65914i 0.364906 0.118565i −0.120824 0.992674i \(-0.538554\pi\)
0.485730 + 0.874109i \(0.338554\pi\)
\(504\) 24.9501 8.10679i 1.11137 0.361105i
\(505\) −10.5156 + 36.1672i −0.467940 + 1.60942i
\(506\) 1.05448 3.24536i 0.0468774 0.144274i
\(507\) 1.27680i 0.0567048i
\(508\) 6.22088 19.1459i 0.276007 0.849461i
\(509\) 20.5422 14.9248i 0.910518 0.661530i −0.0306282 0.999531i \(-0.509751\pi\)
0.941146 + 0.338001i \(0.109751\pi\)
\(510\) −6.20285 + 6.69093i −0.274667 + 0.296279i
\(511\) −0.885049 0.643026i −0.0391523 0.0284458i
\(512\) 24.2523 17.6204i 1.07181 0.778717i
\(513\) −2.71963 3.74325i −0.120075 0.165269i
\(514\) −11.8884 8.63741i −0.524374 0.380980i
\(515\) −28.9032 + 0.902344i −1.27363 + 0.0397620i
\(516\) −5.72361 7.87788i −0.251968 0.346804i
\(517\) 0.186457 + 0.0605836i 0.00820037 + 0.00266446i
\(518\) −23.6385 −1.03862
\(519\) −0.689323 + 2.12152i −0.0302579 + 0.0931244i
\(520\) 71.5884 2.23495i 3.13936 0.0980092i
\(521\) −10.0997 + 3.28159i −0.442475 + 0.143769i −0.521777 0.853082i \(-0.674731\pi\)
0.0793021 + 0.996851i \(0.474731\pi\)
\(522\) −40.5591 + 13.1784i −1.77522 + 0.576805i
\(523\) 15.4162 + 11.2005i 0.674104 + 0.489765i 0.871397 0.490579i \(-0.163215\pi\)
−0.197292 + 0.980345i \(0.563215\pi\)
\(524\) 99.2002i 4.33358i
\(525\) −0.540823 + 2.10276i −0.0236035 + 0.0917720i
\(526\) −30.3067 −1.32143
\(527\) 22.3002 + 11.1770i 0.971411 + 0.486878i
\(528\) 0.200318 + 0.616515i 0.00871772 + 0.0268304i
\(529\) −13.3716 41.1535i −0.581373 1.78928i
\(530\) −52.3279 35.5778i −2.27298 1.54540i
\(531\) 6.94990 21.3896i 0.301600 0.928229i
\(532\) 12.2138i 0.529534i
\(533\) 26.2941 + 8.54346i 1.13892 + 0.370058i
\(534\) 0.137492 + 0.189242i 0.00594986 + 0.00818928i
\(535\) 20.8531 + 6.06305i 0.901558 + 0.262129i
\(536\) −5.93974 4.31548i −0.256558 0.186400i
\(537\) 4.07825 + 5.61323i 0.175990 + 0.242229i
\(538\) −20.7084 28.5027i −0.892803 1.22884i
\(539\) 0.526886 0.725196i 0.0226946 0.0312364i
\(540\) 13.7615 20.2404i 0.592199 0.871008i
\(541\) 14.3045 + 19.6884i 0.614998 + 0.846472i 0.996977 0.0776993i \(-0.0247574\pi\)
−0.381979 + 0.924171i \(0.624757\pi\)
\(542\) −14.6731 + 45.1591i −0.630262 + 1.93975i
\(543\) 0.891687 0.0382660
\(544\) −53.2776 8.07682i −2.28426 0.346291i
\(545\) −22.0062 + 7.91760i −0.942644 + 0.339153i
\(546\) 1.43726 + 4.42344i 0.0615092 + 0.189306i
\(547\) −23.8001 + 7.73314i −1.01762 + 0.330645i −0.769885 0.638183i \(-0.779686\pi\)
−0.247736 + 0.968828i \(0.579686\pi\)
\(548\) −56.7216 41.2106i −2.42303 1.76043i
\(549\) 10.0248i 0.427849i
\(550\) 2.02980 + 0.522059i 0.0865511 + 0.0222607i
\(551\) 11.8977i 0.506860i
\(552\) 19.4909 + 14.1609i 0.829586 + 0.602730i
\(553\) 4.45032 + 13.6967i 0.189247 + 0.582442i
\(554\) −9.98616 + 3.24470i −0.424271 + 0.137854i
\(555\) −5.09717 + 3.95208i −0.216363 + 0.167756i
\(556\) 30.7629 + 9.99546i 1.30464 + 0.423902i
\(557\) 29.6870 1.25788 0.628940 0.777454i \(-0.283489\pi\)
0.628940 + 0.777454i \(0.283489\pi\)
\(558\) −43.5072 14.1363i −1.84181 0.598439i
\(559\) −17.0853 + 12.4132i −0.722632 + 0.525023i
\(560\) −26.6658 + 9.59406i −1.12684 + 0.405423i
\(561\) −0.109630 + 0.218731i −0.00462857 + 0.00923485i
\(562\) 2.35771 1.71298i 0.0994542 0.0722577i
\(563\) −20.0297 + 14.5524i −0.844152 + 0.613312i −0.923527 0.383533i \(-0.874707\pi\)
0.0793756 + 0.996845i \(0.474707\pi\)
\(564\) −1.35772 + 1.86873i −0.0571701 + 0.0786879i
\(565\) 21.1238 7.60011i 0.888685 0.319739i
\(566\) 16.8090 + 23.1356i 0.706533 + 0.972460i
\(567\) −8.56083 2.78158i −0.359521 0.116815i
\(568\) 68.4333i 2.87140i
\(569\) 4.55310 14.0130i 0.190876 0.587456i −0.809124 0.587638i \(-0.800058\pi\)
1.00000 0.000182164i \(5.79846e-5\pi\)
\(570\) 2.86035 + 3.68911i 0.119807 + 0.154520i
\(571\) −13.9916 + 4.54614i −0.585529 + 0.190250i −0.586776 0.809749i \(-0.699603\pi\)
0.00124675 + 0.999999i \(0.499603\pi\)
\(572\) 3.04832 0.990459i 0.127457 0.0414132i
\(573\) 4.89829 6.74192i 0.204629 0.281648i
\(574\) −20.9340 −0.873767
\(575\) 37.8514 14.9684i 1.57851 0.624224i
\(576\) 36.3395 1.51415
\(577\) 4.88320 + 3.54785i 0.203290 + 0.147699i 0.684773 0.728757i \(-0.259902\pi\)
−0.481483 + 0.876456i \(0.659902\pi\)
\(578\) −26.8989 36.0098i −1.11885 1.49781i
\(579\) 1.59901 + 4.92125i 0.0664526 + 0.204520i
\(580\) 59.2205 21.3069i 2.45900 0.884720i
\(581\) −5.50665 1.78922i −0.228454 0.0742293i
\(582\) 5.75712 0.238640
\(583\) −1.61381 0.524359i −0.0668372 0.0217167i
\(584\) −4.38238 6.03183i −0.181344 0.249599i
\(585\) −21.4237 14.5660i −0.885760 0.602229i
\(586\) −43.7936 31.8179i −1.80910 1.31439i
\(587\) −36.3862 + 26.4361i −1.50182 + 1.09113i −0.532166 + 0.846640i \(0.678622\pi\)
−0.969651 + 0.244494i \(0.921378\pi\)
\(588\) 6.20774 + 8.54423i 0.256003 + 0.352358i
\(589\) 7.50163 10.3251i 0.309099 0.425439i
\(590\) −12.9802 + 44.6439i −0.534388 + 1.83796i
\(591\) 4.15377 3.01789i 0.170863 0.124140i
\(592\) −80.0648 26.0146i −3.29064 1.06920i
\(593\) −24.3317 −0.999182 −0.499591 0.866261i \(-0.666516\pi\)
−0.499591 + 0.866261i \(0.666516\pi\)
\(594\) 0.284105 0.874384i 0.0116570 0.0358764i
\(595\) −9.70718 4.49196i −0.397955 0.184153i
\(596\) −23.8421 73.3785i −0.976611 3.00570i
\(597\) −3.08894 9.50678i −0.126422 0.389087i
\(598\) 51.2515 70.5416i 2.09583 2.88466i
\(599\) −11.7623 −0.480593 −0.240297 0.970699i \(-0.577245\pi\)
−0.240297 + 0.970699i \(0.577245\pi\)
\(600\) −7.93392 + 12.4904i −0.323901 + 0.509920i
\(601\) 3.33100i 0.135874i −0.997690 0.0679372i \(-0.978358\pi\)
0.997690 0.0679372i \(-0.0216417\pi\)
\(602\) 9.39906 12.9367i 0.383077 0.527261i
\(603\) 0.820627 + 2.52563i 0.0334185 + 0.102852i
\(604\) 23.8598 + 73.4330i 0.970843 + 2.98795i
\(605\) −24.5286 + 0.765771i −0.997229 + 0.0311330i
\(606\) −15.8535 5.15111i −0.644004 0.209250i
\(607\) 43.2234i 1.75439i −0.480139 0.877193i \(-0.659414\pi\)
0.480139 0.877193i \(-0.340586\pi\)
\(608\) −8.51970 + 26.2210i −0.345520 + 1.06340i
\(609\) 1.43954 + 1.98136i 0.0583331 + 0.0802886i
\(610\) 0.646664 + 20.7135i 0.0261827 + 0.838663i
\(611\) 4.05286 + 2.94458i 0.163961 + 0.119125i
\(612\) 41.8855 + 41.3341i 1.69312 + 1.67083i
\(613\) −18.4231 + 13.3852i −0.744101 + 0.540621i −0.893993 0.448081i \(-0.852108\pi\)
0.149892 + 0.988702i \(0.452108\pi\)
\(614\) 60.5098 + 43.9630i 2.44198 + 1.77420i
\(615\) −4.51398 + 3.49991i −0.182021 + 0.141130i
\(616\) −1.17655 + 0.854816i −0.0474047 + 0.0344415i
\(617\) 31.3252 + 10.1782i 1.26111 + 0.409758i 0.861888 0.507099i \(-0.169282\pi\)
0.399217 + 0.916856i \(0.369282\pi\)
\(618\) 12.7979i 0.514807i
\(619\) −29.0420 9.43631i −1.16730 0.379277i −0.339663 0.940547i \(-0.610313\pi\)
−0.827633 + 0.561270i \(0.810313\pi\)
\(620\) 64.8270 + 18.8485i 2.60352 + 0.756974i
\(621\) −5.51757 16.9813i −0.221413 0.681438i
\(622\) −18.3967 + 5.97745i −0.737640 + 0.239674i
\(623\) −0.161186 + 0.221854i −0.00645779 + 0.00888838i
\(624\) 16.5641i 0.663096i
\(625\) 10.6258 + 22.6295i 0.425032 + 0.905179i
\(626\) 66.3987i 2.65382i
\(627\) 0.101274 + 0.0735798i 0.00404449 + 0.00293849i
\(628\) −3.53781 10.8883i −0.141174 0.434489i
\(629\) −14.6124 28.2148i −0.582636 1.12500i
\(630\) 18.8359 + 5.47654i 0.750439 + 0.218191i
\(631\) 5.29714 16.3029i 0.210876 0.649009i −0.788545 0.614977i \(-0.789165\pi\)
0.999421 0.0340320i \(-0.0108348\pi\)
\(632\) 98.1500i 3.90420i
\(633\) 1.02377 3.15085i 0.0406913 0.125235i
\(634\) −50.1555 69.0331i −1.99193 2.74166i
\(635\) 7.12840 5.52699i 0.282882 0.219332i
\(636\) 11.7512 16.1742i 0.465966 0.641347i
\(637\) 18.5305 13.4632i 0.734205 0.533431i
\(638\) 1.91261 1.38959i 0.0757210 0.0550145i
\(639\) 14.5492 20.0253i 0.575558 0.792187i
\(640\) −16.6660 + 0.520304i −0.658781 + 0.0205668i
\(641\) −4.92690 6.78130i −0.194601 0.267845i 0.700555 0.713598i \(-0.252936\pi\)
−0.895156 + 0.445753i \(0.852936\pi\)
\(642\) −2.97000 + 9.14072i −0.117217 + 0.360755i
\(643\) 29.7140i 1.17180i 0.810382 + 0.585902i \(0.199260\pi\)
−0.810382 + 0.585902i \(0.800740\pi\)
\(644\) −14.5649 + 44.8260i −0.573936 + 1.76639i
\(645\) −0.136147 4.36095i −0.00536077 0.171712i
\(646\) −20.4206 + 10.5759i −0.803440 + 0.416102i
\(647\) −1.80257 5.54775i −0.0708665 0.218105i 0.909350 0.416031i \(-0.136579\pi\)
−0.980217 + 0.197926i \(0.936579\pi\)
\(648\) −49.6305 36.0587i −1.94967 1.41652i
\(649\) 1.24676i 0.0489397i
\(650\) 45.2056 + 28.7145i 1.77311 + 1.12628i
\(651\) 2.62711i 0.102964i
\(652\) 62.1661 85.5643i 2.43461 3.35096i
\(653\) −41.5529 + 13.5014i −1.62609 + 0.528349i −0.973368 0.229248i \(-0.926373\pi\)
−0.652722 + 0.757597i \(0.726373\pi\)
\(654\) −3.19848 9.84389i −0.125070 0.384927i
\(655\) −24.9911 + 36.7570i −0.976484 + 1.43621i
\(656\) −70.9044 23.0382i −2.76835 0.899492i
\(657\) 2.69677i 0.105211i
\(658\) −3.60754 1.17216i −0.140636 0.0456955i
\(659\) 20.6806 15.0253i 0.805602 0.585304i −0.106950 0.994264i \(-0.534109\pi\)
0.912552 + 0.408960i \(0.134109\pi\)
\(660\) −0.184876 + 0.635856i −0.00719627 + 0.0247507i
\(661\) −4.20146 3.05254i −0.163418 0.118730i 0.503071 0.864245i \(-0.332203\pi\)
−0.666489 + 0.745515i \(0.732203\pi\)
\(662\) 29.8546 21.6907i 1.16033 0.843031i
\(663\) −4.39132 + 4.44991i −0.170545 + 0.172820i
\(664\) −31.9242 23.1943i −1.23890 0.900114i
\(665\) −3.07697 + 4.52561i −0.119320 + 0.175496i
\(666\) 34.2511 + 47.1425i 1.32720 + 1.82674i
\(667\) 14.1880 43.6662i 0.549362 1.69076i
\(668\) 0.662682i 0.0256399i
\(669\) 1.90731 + 0.619723i 0.0737410 + 0.0239599i
\(670\) −1.85851 5.16556i −0.0718006 0.199563i
\(671\) 0.171730 + 0.528531i 0.00662957 + 0.0204037i
\(672\) −1.75374 5.39746i −0.0676520 0.208211i
\(673\) 6.62456 9.11792i 0.255358 0.351470i −0.662021 0.749486i \(-0.730301\pi\)
0.917379 + 0.398015i \(0.130301\pi\)
\(674\) 65.3010i 2.51530i
\(675\) 10.1982 4.03287i 0.392528 0.155225i
\(676\) 17.0238 0.654760
\(677\) −11.6342 + 16.0131i −0.447139 + 0.615434i −0.971780 0.235890i \(-0.924200\pi\)
0.524641 + 0.851324i \(0.324200\pi\)
\(678\) 3.07022 + 9.44916i 0.117911 + 0.362893i
\(679\) 2.08563 + 6.41892i 0.0800393 + 0.246336i
\(680\) −53.4586 49.5590i −2.05005 1.90050i
\(681\) −2.56096 + 7.88182i −0.0981362 + 0.302032i
\(682\) 2.53596 0.0971069
\(683\) 10.1306 + 3.29164i 0.387638 + 0.125951i 0.496351 0.868122i \(-0.334673\pi\)
−0.108713 + 0.994073i \(0.534673\pi\)
\(684\) 24.3580 17.6971i 0.931352 0.676667i
\(685\) −10.6352 29.5596i −0.406350 1.12941i
\(686\) −22.8149 + 31.4020i −0.871077 + 1.19893i
\(687\) −0.765063 1.05302i −0.0291890 0.0401752i
\(688\) 46.0722 33.4734i 1.75648 1.27616i
\(689\) −35.0781 25.4857i −1.33637 0.970928i
\(690\) 6.09858 + 16.9505i 0.232169 + 0.645293i
\(691\) −24.7486 34.0636i −0.941483 1.29584i −0.955208 0.295934i \(-0.904369\pi\)
0.0137256 0.999906i \(-0.495631\pi\)
\(692\) −28.2865 9.19084i −1.07529 0.349383i
\(693\) 0.526026 0.0199821
\(694\) 21.6683 + 7.04046i 0.822518 + 0.267252i
\(695\) 8.88056 + 11.4536i 0.336859 + 0.434461i
\(696\) 5.15785 + 15.8742i 0.195508 + 0.601711i
\(697\) −12.9406 24.9866i −0.490160 0.946436i
\(698\) 22.5360 + 16.3734i 0.853002 + 0.619742i
\(699\) 7.63722 0.288866
\(700\) −28.0364 7.21086i −1.05968 0.272545i
\(701\) −24.9855 −0.943688 −0.471844 0.881682i \(-0.656411\pi\)
−0.471844 + 0.881682i \(0.656411\pi\)
\(702\) 13.8085 19.0058i 0.521168 0.717326i
\(703\) −15.4612 + 5.02366i −0.583132 + 0.189471i
\(704\) −1.91590 + 0.622514i −0.0722083 + 0.0234619i
\(705\) −0.973862 + 0.350385i −0.0366778 + 0.0131963i
\(706\) −6.93536 + 21.3449i −0.261016 + 0.803324i
\(707\) 19.5420i 0.734952i
\(708\) −13.9704 4.53924i −0.525038 0.170595i
\(709\) 11.0352 + 15.1887i 0.414437 + 0.570424i 0.964294 0.264835i \(-0.0853175\pi\)
−0.549856 + 0.835259i \(0.685318\pi\)
\(710\) −28.7701 + 42.3151i −1.07972 + 1.58806i
\(711\) 20.8671 28.7211i 0.782578 1.07713i
\(712\) −1.51199 + 1.09852i −0.0566641 + 0.0411689i
\(713\) 39.8446 28.9488i 1.49219 1.08414i
\(714\) 2.12109 4.23197i 0.0793800 0.158378i
\(715\) 1.37903 + 0.400953i 0.0515727 + 0.0149948i
\(716\) −74.8419 + 54.3758i −2.79697 + 2.03212i
\(717\) −0.361084 0.117323i −0.0134849 0.00438152i
\(718\) 54.7215 2.04219
\(719\) −42.2776 13.7368i −1.57669 0.512298i −0.615489 0.788146i \(-0.711041\pi\)
−0.961201 + 0.275848i \(0.911041\pi\)
\(720\) 57.7709 + 39.2785i 2.15300 + 1.46382i
\(721\) 14.2691 4.63630i 0.531408 0.172665i
\(722\) −11.8876 36.5863i −0.442411 1.36160i
\(723\) −1.20290 0.873959i −0.0447364 0.0325029i
\(724\) 11.8890i 0.441850i
\(725\) 27.3109 + 7.02429i 1.01430 + 0.260875i
\(726\) 10.8609i 0.403086i
\(727\) −34.2286 24.8685i −1.26947 0.922323i −0.270288 0.962780i \(-0.587119\pi\)
−0.999181 + 0.0404561i \(0.987119\pi\)
\(728\) −35.3421 + 11.4833i −1.30986 + 0.425601i
\(729\) 6.09582 + 18.7610i 0.225771 + 0.694852i
\(730\) −0.173959 5.57212i −0.00643851 0.206233i
\(731\) 21.2513 + 3.22167i 0.786007 + 0.119158i
\(732\) −6.54759 −0.242006
\(733\) −2.20558 + 6.78807i −0.0814648 + 0.250723i −0.983491 0.180959i \(-0.942080\pi\)
0.902026 + 0.431682i \(0.142080\pi\)
\(734\) −22.1072 30.4279i −0.815991 1.12311i
\(735\) 0.147663 + 4.72982i 0.00544662 + 0.174462i
\(736\) −62.5368 + 86.0745i −2.30514 + 3.17275i
\(737\) −0.0865305 0.119099i −0.00318739 0.00438707i
\(738\) 30.3323 + 41.7488i 1.11655 + 1.53679i
\(739\) 7.62443 + 5.53947i 0.280469 + 0.203773i 0.719122 0.694884i \(-0.244544\pi\)
−0.438653 + 0.898657i \(0.644544\pi\)
\(740\) −52.6936 67.9611i −1.93705 2.49830i
\(741\) 1.88014 + 2.58779i 0.0690686 + 0.0950648i
\(742\) 31.2237 + 10.1452i 1.14626 + 0.372442i
\(743\) 42.7211i 1.56729i −0.621212 0.783643i \(-0.713359\pi\)
0.621212 0.783643i \(-0.286641\pi\)
\(744\) −5.53276 + 17.0281i −0.202841 + 0.624280i
\(745\) 9.65166 33.1956i 0.353610 1.21619i
\(746\) 24.3888 + 75.0611i 0.892939 + 2.74818i
\(747\) 4.41061 + 13.5744i 0.161376 + 0.496663i
\(748\) −2.91637 1.46171i −0.106633 0.0534453i
\(749\) −11.2674 −0.411702
\(750\) −10.1570 + 4.38785i −0.370880 + 0.160221i
\(751\) 9.89387i 0.361032i −0.983572 0.180516i \(-0.942223\pi\)
0.983572 0.180516i \(-0.0577768\pi\)
\(752\) −10.9289 7.94032i −0.398536 0.289554i
\(753\) −0.0982374 + 0.0319193i −0.00357997 + 0.00116320i
\(754\) 57.4522 18.6674i 2.09229 0.679825i
\(755\) −9.65884 + 33.2203i −0.351521 + 1.20901i
\(756\) −3.92416 + 12.0773i −0.142720 + 0.439248i
\(757\) 9.09007 0.330384 0.165192 0.986261i \(-0.447176\pi\)
0.165192 + 0.986261i \(0.447176\pi\)
\(758\) 11.6853 + 3.79680i 0.424431 + 0.137906i
\(759\) 0.283944 + 0.390816i 0.0103065 + 0.0141857i
\(760\) −29.4750 + 22.8534i −1.06917 + 0.828979i
\(761\) −24.5587 17.8429i −0.890251 0.646805i 0.0456924 0.998956i \(-0.485451\pi\)
−0.935943 + 0.352150i \(0.885451\pi\)
\(762\) 2.34644 + 3.22960i 0.0850027 + 0.116996i
\(763\) 9.81677 7.13230i 0.355391 0.258207i
\(764\) 89.8908 + 65.3095i 3.25214 + 2.36282i
\(765\) 5.10685 + 25.8677i 0.184639 + 0.935250i
\(766\) 10.6302 7.72328i 0.384084 0.279054i
\(767\) −9.84459 + 30.2985i −0.355467 + 1.09402i
\(768\) 2.13252i 0.0769505i
\(769\) 5.94738 18.3041i 0.214468 0.660064i −0.784723 0.619847i \(-0.787195\pi\)
0.999191 0.0402177i \(-0.0128052\pi\)
\(770\) −1.08688 + 0.0339320i −0.0391686 + 0.00122282i
\(771\) 1.97847 0.642844i 0.0712528 0.0231514i