Properties

Label 425.2.p.a.16.12
Level $425$
Weight $2$
Character 425.16
Analytic conductor $3.394$
Analytic rank $0$
Dimension $168$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(16,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(42\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 16.12
Character \(\chi\) \(=\) 425.16
Dual form 425.2.p.a.186.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.46406 - 1.06370i) q^{2} +(1.47315 - 0.478654i) q^{3} +(0.393974 + 1.21253i) q^{4} +(-2.22243 + 0.246559i) q^{5} +(-2.66592 - 0.866209i) q^{6} +0.242729i q^{7} +(-0.405475 + 1.24792i) q^{8} +(-0.486001 + 0.353100i) q^{9} +(3.51604 + 2.00303i) q^{10} +(-1.18766 + 1.63468i) q^{11} +(1.16076 + 1.59765i) q^{12} +(-0.848997 + 0.616833i) q^{13} +(0.258191 - 0.355369i) q^{14} +(-3.15595 + 1.42699i) q^{15} +(3.98394 - 2.89450i) q^{16} +(0.190938 + 4.11868i) q^{17} +1.08713 q^{18} +(-1.98369 + 6.10517i) q^{19} +(-1.17454 - 2.59763i) q^{20} +(0.116183 + 0.357575i) q^{21} +(3.47761 - 1.12994i) q^{22} +(3.87906 - 5.33906i) q^{23} +2.03246i q^{24} +(4.87842 - 1.09592i) q^{25} +1.89911 q^{26} +(-3.27830 + 4.51219i) q^{27} +(-0.294315 + 0.0956289i) q^{28} +(-9.41832 + 3.06020i) q^{29} +(6.13839 + 1.26779i) q^{30} +(-1.61534 - 0.524856i) q^{31} -6.28730 q^{32} +(-0.967154 + 2.97660i) q^{33} +(4.10150 - 6.23309i) q^{34} +(-0.0598468 - 0.539448i) q^{35} +(-0.619616 - 0.450178i) q^{36} +(1.00647 + 1.38529i) q^{37} +(9.39831 - 6.82827i) q^{38} +(-0.955447 + 1.31506i) q^{39} +(0.593455 - 2.87340i) q^{40} +(-5.92266 - 8.15184i) q^{41} +(0.210254 - 0.647095i) q^{42} +6.02232 q^{43} +(-2.45000 - 0.796053i) q^{44} +(0.993045 - 0.904570i) q^{45} +(-11.3583 + 3.69054i) q^{46} +(2.51500 + 7.74038i) q^{47} +(4.48346 - 6.17095i) q^{48} +6.94108 q^{49} +(-8.30802 - 3.58469i) q^{50} +(2.25270 + 5.97603i) q^{51} +(-1.08241 - 0.786417i) q^{52} +(1.75644 + 5.40578i) q^{53} +(9.59925 - 3.11899i) q^{54} +(2.23645 - 3.92579i) q^{55} +(-0.302907 - 0.0984205i) q^{56} +9.94331i q^{57} +(17.0441 + 5.53797i) q^{58} +(-10.7215 + 7.78959i) q^{59} +(-2.97364 - 3.26448i) q^{60} +(-3.34286 + 4.60106i) q^{61} +(1.80666 + 2.48666i) q^{62} +(-0.0857076 - 0.117966i) q^{63} +(1.23711 + 0.898816i) q^{64} +(1.73475 - 1.58020i) q^{65} +(4.58218 - 3.32915i) q^{66} +(2.32205 - 7.14655i) q^{67} +(-4.91880 + 1.85417i) q^{68} +(3.15885 - 9.72194i) q^{69} +(-0.486192 + 0.853443i) q^{70} +(7.05636 - 2.29275i) q^{71} +(-0.243581 - 0.749666i) q^{72} +(1.66711 - 2.29458i) q^{73} -3.09872i q^{74} +(6.66206 - 3.94953i) q^{75} -8.18421 q^{76} +(-0.396783 - 0.288280i) q^{77} +(2.79766 - 0.909016i) q^{78} +(1.47964 - 0.480764i) q^{79} +(-8.14037 + 7.41510i) q^{80} +(-2.11273 + 6.50231i) q^{81} +18.2347i q^{82} +(-2.82701 + 8.70064i) q^{83} +(-0.387797 + 0.281751i) q^{84} +(-1.43984 - 9.10642i) q^{85} +(-8.81702 - 6.40594i) q^{86} +(-12.4098 + 9.01624i) q^{87} +(-1.55838 - 2.14493i) q^{88} +(-8.63047 - 6.27041i) q^{89} +(-2.41607 + 0.268041i) q^{90} +(-0.149723 - 0.206076i) q^{91} +(8.00201 + 2.60001i) q^{92} -2.63086 q^{93} +(4.55134 - 14.0076i) q^{94} +(2.90334 - 14.0574i) q^{95} +(-9.26212 + 3.00944i) q^{96} +(-9.47382 + 3.07823i) q^{97} +(-10.1622 - 7.38324i) q^{98} -1.21382i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 8 q^{2} - 44 q^{4} - 4 q^{8} + 28 q^{9} - 18 q^{13} - 10 q^{15} - 28 q^{16} + 2 q^{17} - 60 q^{18} - 8 q^{19} + 32 q^{21} + 6 q^{25} + 52 q^{26} - 54 q^{30} + 44 q^{32} - 24 q^{33} + 26 q^{35} + 34 q^{36}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46406 1.06370i −1.03525 0.752150i −0.0658940 0.997827i \(-0.520990\pi\)
−0.969352 + 0.245676i \(0.920990\pi\)
\(3\) 1.47315 0.478654i 0.850521 0.276351i 0.148857 0.988859i \(-0.452441\pi\)
0.701664 + 0.712508i \(0.252441\pi\)
\(4\) 0.393974 + 1.21253i 0.196987 + 0.606264i
\(5\) −2.22243 + 0.246559i −0.993902 + 0.110264i
\(6\) −2.66592 0.866209i −1.08836 0.353628i
\(7\) 0.242729i 0.0917428i 0.998947 + 0.0458714i \(0.0146065\pi\)
−0.998947 + 0.0458714i \(0.985394\pi\)
\(8\) −0.405475 + 1.24792i −0.143357 + 0.441208i
\(9\) −0.486001 + 0.353100i −0.162000 + 0.117700i
\(10\) 3.51604 + 2.00303i 1.11187 + 0.633413i
\(11\) −1.18766 + 1.63468i −0.358093 + 0.492873i −0.949616 0.313415i \(-0.898527\pi\)
0.591523 + 0.806288i \(0.298527\pi\)
\(12\) 1.16076 + 1.59765i 0.335084 + 0.461203i
\(13\) −0.848997 + 0.616833i −0.235469 + 0.171079i −0.699262 0.714865i \(-0.746488\pi\)
0.463793 + 0.885944i \(0.346488\pi\)
\(14\) 0.258191 0.355369i 0.0690044 0.0949764i
\(15\) −3.15595 + 1.42699i −0.814863 + 0.368448i
\(16\) 3.98394 2.89450i 0.995984 0.723625i
\(17\) 0.190938 + 4.11868i 0.0463093 + 0.998927i
\(18\) 1.08713 0.256238
\(19\) −1.98369 + 6.10517i −0.455090 + 1.40062i 0.415940 + 0.909392i \(0.363452\pi\)
−0.871030 + 0.491230i \(0.836548\pi\)
\(20\) −1.17454 2.59763i −0.262635 0.580847i
\(21\) 0.116183 + 0.357575i 0.0253532 + 0.0780292i
\(22\) 3.47761 1.12994i 0.741429 0.240905i
\(23\) 3.87906 5.33906i 0.808839 1.11327i −0.182663 0.983176i \(-0.558472\pi\)
0.991501 0.130096i \(-0.0415284\pi\)
\(24\) 2.03246i 0.414874i
\(25\) 4.87842 1.09592i 0.975684 0.219184i
\(26\) 1.89911 0.372446
\(27\) −3.27830 + 4.51219i −0.630909 + 0.868372i
\(28\) −0.294315 + 0.0956289i −0.0556204 + 0.0180722i
\(29\) −9.41832 + 3.06020i −1.74894 + 0.568264i −0.995961 0.0897832i \(-0.971383\pi\)
−0.752976 + 0.658047i \(0.771383\pi\)
\(30\) 6.13839 + 1.26779i 1.12071 + 0.231465i
\(31\) −1.61534 0.524856i −0.290124 0.0942669i 0.160339 0.987062i \(-0.448741\pi\)
−0.450463 + 0.892795i \(0.648741\pi\)
\(32\) −6.28730 −1.11145
\(33\) −0.967154 + 2.97660i −0.168360 + 0.518159i
\(34\) 4.10150 6.23309i 0.703402 1.06897i
\(35\) −0.0598468 0.539448i −0.0101160 0.0911834i
\(36\) −0.619616 0.450178i −0.103269 0.0750296i
\(37\) 1.00647 + 1.38529i 0.165463 + 0.227740i 0.883695 0.468064i \(-0.155048\pi\)
−0.718232 + 0.695804i \(0.755048\pi\)
\(38\) 9.39831 6.82827i 1.52461 1.10769i
\(39\) −0.955447 + 1.31506i −0.152994 + 0.210578i
\(40\) 0.593455 2.87340i 0.0938335 0.454325i
\(41\) −5.92266 8.15184i −0.924964 1.27310i −0.961792 0.273783i \(-0.911725\pi\)
0.0368272 0.999322i \(-0.488275\pi\)
\(42\) 0.210254 0.647095i 0.0324429 0.0998489i
\(43\) 6.02232 0.918394 0.459197 0.888334i \(-0.348137\pi\)
0.459197 + 0.888334i \(0.348137\pi\)
\(44\) −2.45000 0.796053i −0.369351 0.120010i
\(45\) 0.993045 0.904570i 0.148034 0.134845i
\(46\) −11.3583 + 3.69054i −1.67469 + 0.544141i
\(47\) 2.51500 + 7.74038i 0.366851 + 1.12905i 0.948814 + 0.315835i \(0.102285\pi\)
−0.581963 + 0.813215i \(0.697715\pi\)
\(48\) 4.48346 6.17095i 0.647131 0.890699i
\(49\) 6.94108 0.991583
\(50\) −8.30802 3.58469i −1.17493 0.506951i
\(51\) 2.25270 + 5.97603i 0.315442 + 0.836811i
\(52\) −1.08241 0.786417i −0.150103 0.109056i
\(53\) 1.75644 + 5.40578i 0.241266 + 0.742540i 0.996228 + 0.0867721i \(0.0276552\pi\)
−0.754962 + 0.655768i \(0.772345\pi\)
\(54\) 9.59925 3.11899i 1.30629 0.424440i
\(55\) 2.23645 3.92579i 0.301563 0.529353i
\(56\) −0.302907 0.0984205i −0.0404777 0.0131520i
\(57\) 9.94331i 1.31702i
\(58\) 17.0441 + 5.53797i 2.23800 + 0.727171i
\(59\) −10.7215 + 7.78959i −1.39581 + 1.01412i −0.400616 + 0.916246i \(0.631204\pi\)
−0.995199 + 0.0978725i \(0.968796\pi\)
\(60\) −2.97364 3.26448i −0.383895 0.421443i
\(61\) −3.34286 + 4.60106i −0.428010 + 0.589105i −0.967495 0.252890i \(-0.918619\pi\)
0.539485 + 0.841995i \(0.318619\pi\)
\(62\) 1.80666 + 2.48666i 0.229446 + 0.315806i
\(63\) −0.0857076 0.117966i −0.0107981 0.0148624i
\(64\) 1.23711 + 0.898816i 0.154639 + 0.112352i
\(65\) 1.73475 1.58020i 0.215170 0.195999i
\(66\) 4.58218 3.32915i 0.564027 0.409790i
\(67\) 2.32205 7.14655i 0.283684 0.873090i −0.703106 0.711085i \(-0.748204\pi\)
0.986790 0.162005i \(-0.0517959\pi\)
\(68\) −4.91880 + 1.85417i −0.596492 + 0.224852i
\(69\) 3.15885 9.72194i 0.380281 1.17038i
\(70\) −0.486192 + 0.853443i −0.0581111 + 0.102006i
\(71\) 7.05636 2.29275i 0.837436 0.272099i 0.141262 0.989972i \(-0.454884\pi\)
0.696174 + 0.717873i \(0.254884\pi\)
\(72\) −0.243581 0.749666i −0.0287063 0.0883490i
\(73\) 1.66711 2.29458i 0.195121 0.268561i −0.700235 0.713912i \(-0.746921\pi\)
0.895356 + 0.445352i \(0.146921\pi\)
\(74\) 3.09872i 0.360219i
\(75\) 6.66206 3.94953i 0.769268 0.456052i
\(76\) −8.18421 −0.938794
\(77\) −0.396783 0.288280i −0.0452176 0.0328525i
\(78\) 2.79766 0.909016i 0.316773 0.102926i
\(79\) 1.47964 0.480764i 0.166472 0.0540902i −0.224595 0.974452i \(-0.572106\pi\)
0.391067 + 0.920362i \(0.372106\pi\)
\(80\) −8.14037 + 7.41510i −0.910121 + 0.829034i
\(81\) −2.11273 + 6.50231i −0.234748 + 0.722479i
\(82\) 18.2347i 2.01369i
\(83\) −2.82701 + 8.70064i −0.310305 + 0.955020i 0.667340 + 0.744754i \(0.267433\pi\)
−0.977644 + 0.210266i \(0.932567\pi\)
\(84\) −0.387797 + 0.281751i −0.0423121 + 0.0307415i
\(85\) −1.43984 9.10642i −0.156173 0.987730i
\(86\) −8.81702 6.40594i −0.950764 0.690771i
\(87\) −12.4098 + 9.01624i −1.33047 + 0.966642i
\(88\) −1.55838 2.14493i −0.166124 0.228651i
\(89\) −8.63047 6.27041i −0.914828 0.664662i 0.0274029 0.999624i \(-0.491276\pi\)
−0.942231 + 0.334963i \(0.891276\pi\)
\(90\) −2.41607 + 0.268041i −0.254676 + 0.0282540i
\(91\) −0.149723 0.206076i −0.0156952 0.0216026i
\(92\) 8.00201 + 2.60001i 0.834268 + 0.271070i
\(93\) −2.63086 −0.272807
\(94\) 4.55134 14.0076i 0.469435 1.44477i
\(95\) 2.90334 14.0574i 0.297876 1.44226i
\(96\) −9.26212 + 3.00944i −0.945311 + 0.307150i
\(97\) −9.47382 + 3.07823i −0.961921 + 0.312547i −0.747550 0.664205i \(-0.768770\pi\)
−0.214371 + 0.976752i \(0.568770\pi\)
\(98\) −10.1622 7.38324i −1.02653 0.745820i
\(99\) 1.21382i 0.121993i
\(100\) 3.25081 + 5.48346i 0.325081 + 0.548346i
\(101\) −11.8846 −1.18256 −0.591279 0.806467i \(-0.701377\pi\)
−0.591279 + 0.806467i \(0.701377\pi\)
\(102\) 3.05862 11.1455i 0.302848 1.10356i
\(103\) −2.51099 7.72802i −0.247415 0.761464i −0.995230 0.0975574i \(-0.968897\pi\)
0.747815 0.663907i \(-0.231103\pi\)
\(104\) −0.425513 1.30959i −0.0417250 0.128416i
\(105\) −0.346372 0.766040i −0.0338025 0.0747579i
\(106\) 3.17859 9.78270i 0.308732 0.950180i
\(107\) 4.46593i 0.431738i 0.976422 + 0.215869i \(0.0692584\pi\)
−0.976422 + 0.215869i \(0.930742\pi\)
\(108\) −6.76273 2.19734i −0.650744 0.211440i
\(109\) −10.9222 15.0331i −1.04615 1.43991i −0.892097 0.451844i \(-0.850766\pi\)
−0.154056 0.988062i \(-0.549234\pi\)
\(110\) −7.45016 + 3.36866i −0.710345 + 0.321189i
\(111\) 2.14575 + 1.55898i 0.203666 + 0.147972i
\(112\) 0.702578 + 0.967015i 0.0663874 + 0.0913744i
\(113\) −3.29913 4.54086i −0.310356 0.427168i 0.625136 0.780516i \(-0.285043\pi\)
−0.935492 + 0.353347i \(0.885043\pi\)
\(114\) 10.5767 14.5576i 0.990599 1.36344i
\(115\) −7.30455 + 12.8221i −0.681153 + 1.19567i
\(116\) −7.42115 10.2143i −0.689037 0.948378i
\(117\) 0.194810 0.599563i 0.0180102 0.0554296i
\(118\) 23.9826 2.20778
\(119\) −0.999722 + 0.0463461i −0.0916444 + 0.00424854i
\(120\) −0.501120 4.51700i −0.0457458 0.412344i
\(121\) 2.13756 + 6.57874i 0.194324 + 0.598067i
\(122\) 9.78830 3.18041i 0.886191 0.287941i
\(123\) −12.6269 9.17395i −1.13853 0.827187i
\(124\) 2.16543i 0.194461i
\(125\) −10.5717 + 3.63842i −0.945566 + 0.325431i
\(126\) 0.263877i 0.0235080i
\(127\) −4.77080 3.46619i −0.423340 0.307575i 0.355640 0.934623i \(-0.384263\pi\)
−0.778980 + 0.627048i \(0.784263\pi\)
\(128\) 3.03063 + 9.32733i 0.267873 + 0.824427i
\(129\) 8.87175 2.88261i 0.781114 0.253799i
\(130\) −4.22064 + 0.468241i −0.370175 + 0.0410675i
\(131\) 12.5300 + 4.07126i 1.09476 + 0.355708i 0.800082 0.599890i \(-0.204789\pi\)
0.294673 + 0.955598i \(0.404789\pi\)
\(132\) −3.99024 −0.347306
\(133\) −1.48190 0.481498i −0.128497 0.0417512i
\(134\) −11.0014 + 7.99299i −0.950377 + 0.690489i
\(135\) 6.17328 10.8363i 0.531312 0.932644i
\(136\) −5.21723 1.43175i −0.447373 0.122771i
\(137\) 8.68461 6.30974i 0.741976 0.539077i −0.151353 0.988480i \(-0.548363\pi\)
0.893329 + 0.449402i \(0.148363\pi\)
\(138\) −14.9660 + 10.8734i −1.27399 + 0.925607i
\(139\) −4.65830 + 6.41161i −0.395112 + 0.543825i −0.959509 0.281678i \(-0.909109\pi\)
0.564397 + 0.825504i \(0.309109\pi\)
\(140\) 0.630518 0.285095i 0.0532885 0.0240949i
\(141\) 7.40993 + 10.1989i 0.624029 + 0.858902i
\(142\) −12.7697 4.14914i −1.07161 0.348188i
\(143\) 2.12042i 0.177319i
\(144\) −0.914148 + 2.81346i −0.0761790 + 0.234455i
\(145\) 20.1771 9.12325i 1.67561 0.757645i
\(146\) −4.88150 + 1.58610i −0.403996 + 0.131266i
\(147\) 10.2252 3.32238i 0.843363 0.274025i
\(148\) −1.28318 + 1.76614i −0.105476 + 0.145176i
\(149\) 14.7776 1.21062 0.605312 0.795988i \(-0.293048\pi\)
0.605312 + 0.795988i \(0.293048\pi\)
\(150\) −13.9548 1.30410i −1.13940 0.106479i
\(151\) −20.9136 −1.70193 −0.850964 0.525224i \(-0.823981\pi\)
−0.850964 + 0.525224i \(0.823981\pi\)
\(152\) −6.81445 4.95099i −0.552725 0.401578i
\(153\) −1.54710 1.93426i −0.125076 0.156376i
\(154\) 0.274270 + 0.844116i 0.0221013 + 0.0680208i
\(155\) 3.71939 + 0.768181i 0.298749 + 0.0617018i
\(156\) −1.97097 0.640407i −0.157804 0.0512736i
\(157\) 16.2695 1.29845 0.649225 0.760596i \(-0.275093\pi\)
0.649225 + 0.760596i \(0.275093\pi\)
\(158\) −2.67767 0.870027i −0.213024 0.0692157i
\(159\) 5.17499 + 7.12277i 0.410404 + 0.564872i
\(160\) 13.9731 1.55019i 1.10467 0.122553i
\(161\) 1.29594 + 0.941558i 0.102135 + 0.0742052i
\(162\) 10.0097 7.27245i 0.786434 0.571378i
\(163\) 8.48761 + 11.6822i 0.664801 + 0.915019i 0.999628 0.0272599i \(-0.00867816\pi\)
−0.334828 + 0.942279i \(0.608678\pi\)
\(164\) 7.55097 10.3930i 0.589632 0.811558i
\(165\) 1.41553 6.85374i 0.110199 0.533563i
\(166\) 13.3938 9.73116i 1.03956 0.755284i
\(167\) −5.49426 1.78519i −0.425159 0.138142i 0.0886193 0.996066i \(-0.471755\pi\)
−0.513778 + 0.857923i \(0.671755\pi\)
\(168\) −0.493336 −0.0380617
\(169\) −3.67691 + 11.3164i −0.282839 + 0.870489i
\(170\) −7.57849 + 14.8639i −0.581244 + 1.14001i
\(171\) −1.19166 3.66756i −0.0911287 0.280465i
\(172\) 2.37264 + 7.30223i 0.180912 + 0.556790i
\(173\) 7.28947 10.0331i 0.554208 0.762802i −0.436368 0.899768i \(-0.643735\pi\)
0.990576 + 0.136967i \(0.0437354\pi\)
\(174\) 27.7592 2.10442
\(175\) 0.266011 + 1.18413i 0.0201086 + 0.0895120i
\(176\) 9.95013i 0.750019i
\(177\) −12.0657 + 16.6071i −0.906917 + 1.24826i
\(178\) 5.96568 + 18.3605i 0.447147 + 1.37618i
\(179\) −0.829599 2.55324i −0.0620071 0.190838i 0.915254 0.402877i \(-0.131990\pi\)
−0.977261 + 0.212039i \(0.931990\pi\)
\(180\) 1.48805 + 0.847718i 0.110913 + 0.0631852i
\(181\) 15.0144 + 4.87846i 1.11601 + 0.362613i 0.808243 0.588849i \(-0.200419\pi\)
0.307766 + 0.951462i \(0.400419\pi\)
\(182\) 0.460968i 0.0341692i
\(183\) −2.72221 + 8.37811i −0.201232 + 0.619328i
\(184\) 5.08989 + 7.00563i 0.375231 + 0.516462i
\(185\) −2.57837 2.83055i −0.189565 0.208106i
\(186\) 3.85173 + 2.79844i 0.282422 + 0.205192i
\(187\) −6.95948 4.57948i −0.508928 0.334885i
\(188\) −8.39458 + 6.09902i −0.612238 + 0.444817i
\(189\) −1.09524 0.795738i −0.0796669 0.0578814i
\(190\) −19.2035 + 17.4926i −1.39317 + 1.26905i
\(191\) 11.5356 8.38110i 0.834686 0.606435i −0.0861950 0.996278i \(-0.527471\pi\)
0.920881 + 0.389843i \(0.127471\pi\)
\(192\) 2.25267 + 0.731937i 0.162573 + 0.0528230i
\(193\) 17.7012i 1.27416i 0.770796 + 0.637082i \(0.219859\pi\)
−0.770796 + 0.637082i \(0.780141\pi\)
\(194\) 17.1445 + 5.57060i 1.23091 + 0.399946i
\(195\) 1.79918 3.15821i 0.128842 0.226164i
\(196\) 2.73461 + 8.41626i 0.195329 + 0.601162i
\(197\) 7.34621 2.38693i 0.523396 0.170062i −0.0353902 0.999374i \(-0.511267\pi\)
0.558786 + 0.829312i \(0.311267\pi\)
\(198\) −1.29114 + 1.77710i −0.0917573 + 0.126293i
\(199\) 7.56325i 0.536145i −0.963399 0.268072i \(-0.913613\pi\)
0.963399 0.268072i \(-0.0863866\pi\)
\(200\) −0.610452 + 6.53227i −0.0431655 + 0.461901i
\(201\) 11.6394i 0.820978i
\(202\) 17.3997 + 12.6416i 1.22424 + 0.889461i
\(203\) −0.742798 2.28610i −0.0521342 0.160452i
\(204\) −6.35860 + 5.08587i −0.445191 + 0.356082i
\(205\) 15.1726 + 16.6566i 1.05970 + 1.16335i
\(206\) −4.54407 + 13.9852i −0.316600 + 0.974396i
\(207\) 3.96449i 0.275551i
\(208\) −1.59693 + 4.91484i −0.110727 + 0.340783i
\(209\) −7.62402 10.4936i −0.527364 0.725855i
\(210\) −0.307728 + 1.48996i −0.0212353 + 0.102817i
\(211\) 0.0113559 0.0156301i 0.000781773 0.00107602i −0.808626 0.588323i \(-0.799788\pi\)
0.809408 + 0.587247i \(0.199788\pi\)
\(212\) −5.86266 + 4.25947i −0.402649 + 0.292542i
\(213\) 9.29762 6.75511i 0.637062 0.462853i
\(214\) 4.75041 6.53838i 0.324732 0.446955i
\(215\) −13.3842 + 1.48485i −0.912794 + 0.101266i
\(216\) −4.30161 5.92066i −0.292687 0.402850i
\(217\) 0.127398 0.392089i 0.00864831 0.0266168i
\(218\) 33.6272i 2.27752i
\(219\) 1.35759 4.17823i 0.0917373 0.282338i
\(220\) 5.64123 + 1.16511i 0.380332 + 0.0785514i
\(221\) −2.70264 3.37897i −0.181799 0.227294i
\(222\) −1.48322 4.56487i −0.0995470 0.306374i
\(223\) −14.6658 10.6553i −0.982096 0.713534i −0.0239196 0.999714i \(-0.507615\pi\)
−0.958176 + 0.286180i \(0.907615\pi\)
\(224\) 1.52611i 0.101967i
\(225\) −1.98395 + 2.25519i −0.132263 + 0.150346i
\(226\) 10.1574i 0.675658i
\(227\) 4.04784 5.57138i 0.268665 0.369785i −0.653274 0.757122i \(-0.726605\pi\)
0.921938 + 0.387337i \(0.126605\pi\)
\(228\) −12.0565 + 3.91741i −0.798464 + 0.259437i
\(229\) 0.876387 + 2.69724i 0.0579133 + 0.178239i 0.975828 0.218538i \(-0.0701287\pi\)
−0.917915 + 0.396777i \(0.870129\pi\)
\(230\) 24.3332 11.0025i 1.60448 0.725482i
\(231\) −0.722505 0.234756i −0.0475374 0.0154458i
\(232\) 12.9942i 0.853110i
\(233\) 3.75445 + 1.21989i 0.245962 + 0.0799179i 0.429404 0.903113i \(-0.358724\pi\)
−0.183442 + 0.983031i \(0.558724\pi\)
\(234\) −0.922968 + 0.670576i −0.0603363 + 0.0438369i
\(235\) −7.49788 16.5824i −0.489108 1.08171i
\(236\) −13.6691 9.93117i −0.889782 0.646464i
\(237\) 1.94961 1.41647i 0.126641 0.0920097i
\(238\) 1.51295 + 0.995552i 0.0980700 + 0.0645321i
\(239\) 11.9610 + 8.69020i 0.773695 + 0.562122i 0.903080 0.429472i \(-0.141300\pi\)
−0.129385 + 0.991594i \(0.541300\pi\)
\(240\) −8.44268 + 14.8200i −0.544973 + 0.956624i
\(241\) 17.6599 + 24.3067i 1.13757 + 1.56573i 0.772816 + 0.634631i \(0.218848\pi\)
0.364756 + 0.931103i \(0.381152\pi\)
\(242\) 3.86830 11.9054i 0.248663 0.765307i
\(243\) 6.14202i 0.394011i
\(244\) −6.89592 2.24062i −0.441466 0.143441i
\(245\) −15.4261 + 1.71138i −0.985537 + 0.109336i
\(246\) 8.72813 + 26.8624i 0.556485 + 1.71268i
\(247\) −2.08172 6.40687i −0.132457 0.407660i
\(248\) 1.30996 1.80301i 0.0831826 0.114491i
\(249\) 14.1705i 0.898018i
\(250\) 19.3479 + 5.91831i 1.22367 + 0.374307i
\(251\) 2.10539 0.132891 0.0664456 0.997790i \(-0.478834\pi\)
0.0664456 + 0.997790i \(0.478834\pi\)
\(252\) 0.109271 0.150399i 0.00688343 0.00947423i
\(253\) 4.12063 + 12.6820i 0.259062 + 0.797310i
\(254\) 3.29775 + 10.1494i 0.206919 + 0.636831i
\(255\) −6.47993 12.7259i −0.405789 0.796927i
\(256\) 6.42953 19.7881i 0.401846 1.23675i
\(257\) −7.72335 −0.481769 −0.240885 0.970554i \(-0.577438\pi\)
−0.240885 + 0.970554i \(0.577438\pi\)
\(258\) −16.0550 5.21658i −0.999540 0.324770i
\(259\) −0.336249 + 0.244299i −0.0208935 + 0.0151800i
\(260\) 2.59948 + 1.48088i 0.161213 + 0.0918404i
\(261\) 3.49676 4.81287i 0.216444 0.297909i
\(262\) −14.0141 19.2888i −0.865796 1.19167i
\(263\) 6.58068 4.78114i 0.405782 0.294818i −0.366110 0.930572i \(-0.619311\pi\)
0.771892 + 0.635754i \(0.219311\pi\)
\(264\) −3.32241 2.41387i −0.204480 0.148564i
\(265\) −5.23642 11.5809i −0.321671 0.711410i
\(266\) 1.65742 + 2.28124i 0.101623 + 0.139872i
\(267\) −15.7153 5.10621i −0.961761 0.312495i
\(268\) 9.58022 0.585205
\(269\) 21.7066 + 7.05292i 1.32348 + 0.430024i 0.883688 0.468077i \(-0.155053\pi\)
0.439790 + 0.898101i \(0.355053\pi\)
\(270\) −20.5647 + 9.29851i −1.25153 + 0.565890i
\(271\) 4.73730 + 14.5799i 0.287770 + 0.885666i 0.985555 + 0.169358i \(0.0541694\pi\)
−0.697784 + 0.716308i \(0.745831\pi\)
\(272\) 12.6822 + 15.8559i 0.768972 + 0.961405i
\(273\) −0.319203 0.231915i −0.0193190 0.0140361i
\(274\) −19.4265 −1.17360
\(275\) −4.00243 + 9.27621i −0.241356 + 0.559377i
\(276\) 13.0326 0.784473
\(277\) 7.78048 10.7089i 0.467484 0.643436i −0.508556 0.861029i \(-0.669820\pi\)
0.976040 + 0.217593i \(0.0698205\pi\)
\(278\) 13.6401 4.43192i 0.818077 0.265809i
\(279\) 0.970384 0.315297i 0.0580953 0.0188763i
\(280\) 0.697457 + 0.144049i 0.0416810 + 0.00860855i
\(281\) −0.481752 + 1.48268i −0.0287389 + 0.0884492i −0.964397 0.264458i \(-0.914807\pi\)
0.935658 + 0.352907i \(0.114807\pi\)
\(282\) 22.8137i 1.35854i
\(283\) −12.7602 4.14604i −0.758514 0.246456i −0.0958735 0.995394i \(-0.530564\pi\)
−0.662641 + 0.748937i \(0.730564\pi\)
\(284\) 5.56005 + 7.65275i 0.329928 + 0.454107i
\(285\) −2.45161 22.0983i −0.145221 1.30899i
\(286\) −2.25550 + 3.10442i −0.133370 + 0.183568i
\(287\) 1.97869 1.43760i 0.116798 0.0848589i
\(288\) 3.05564 2.22005i 0.180055 0.130818i
\(289\) −16.9271 + 1.57283i −0.995711 + 0.0925192i
\(290\) −39.2448 8.10539i −2.30454 0.475965i
\(291\) −12.4829 + 9.06937i −0.731761 + 0.531656i
\(292\) 3.43905 + 1.11741i 0.201255 + 0.0653917i
\(293\) 19.8261 1.15825 0.579127 0.815238i \(-0.303394\pi\)
0.579127 + 0.815238i \(0.303394\pi\)
\(294\) −18.5044 6.01243i −1.07920 0.350652i
\(295\) 21.9071 19.9553i 1.27548 1.16184i
\(296\) −2.13683 + 0.694299i −0.124201 + 0.0403553i
\(297\) −3.48246 10.7179i −0.202073 0.621917i
\(298\) −21.6352 15.7189i −1.25329 0.910571i
\(299\) 6.92558i 0.400516i
\(300\) 7.41359 + 6.52192i 0.428024 + 0.376543i
\(301\) 1.46179i 0.0842561i
\(302\) 30.6188 + 22.2459i 1.76191 + 1.28011i
\(303\) −17.5077 + 5.68860i −1.00579 + 0.326801i
\(304\) 9.76851 + 30.0644i 0.560262 + 1.72431i
\(305\) 6.29486 11.0498i 0.360443 0.632707i
\(306\) 0.207574 + 4.47753i 0.0118662 + 0.255963i
\(307\) 14.6056 0.833585 0.416793 0.909002i \(-0.363154\pi\)
0.416793 + 0.909002i \(0.363154\pi\)
\(308\) 0.193225 0.594685i 0.0110100 0.0338853i
\(309\) −7.39810 10.1826i −0.420863 0.579268i
\(310\) −4.62829 5.08098i −0.262869 0.288580i
\(311\) 16.6189 22.8740i 0.942373 1.29707i −0.0124595 0.999922i \(-0.503966\pi\)
0.954833 0.297143i \(-0.0960339\pi\)
\(312\) −1.25369 1.72555i −0.0709760 0.0976901i
\(313\) 14.6727 + 20.1953i 0.829351 + 1.14150i 0.988043 + 0.154176i \(0.0492723\pi\)
−0.158692 + 0.987328i \(0.550728\pi\)
\(314\) −23.8196 17.3059i −1.34422 0.976630i
\(315\) 0.219565 + 0.241041i 0.0123711 + 0.0135811i
\(316\) 1.16588 + 1.60470i 0.0655859 + 0.0902712i
\(317\) 15.9429 + 5.18017i 0.895443 + 0.290947i 0.720355 0.693606i \(-0.243979\pi\)
0.175088 + 0.984553i \(0.443979\pi\)
\(318\) 15.9328i 0.893467i
\(319\) 6.18334 19.0304i 0.346201 1.06550i
\(320\) −2.97101 1.69254i −0.166085 0.0946157i
\(321\) 2.13764 + 6.57897i 0.119311 + 0.367202i
\(322\) −0.895801 2.75699i −0.0499211 0.153641i
\(323\) −25.5240 7.00448i −1.42019 0.389740i
\(324\) −8.71660 −0.484255
\(325\) −3.46576 + 3.93960i −0.192246 + 0.218530i
\(326\) 26.1317i 1.44730i
\(327\) −23.2856 16.9180i −1.28770 0.935565i
\(328\) 12.5744 4.08566i 0.694304 0.225593i
\(329\) −1.87881 + 0.610463i −0.103582 + 0.0336559i
\(330\) −9.36276 + 8.52858i −0.515403 + 0.469483i
\(331\) −7.74545 + 23.8381i −0.425729 + 1.31026i 0.476566 + 0.879139i \(0.341881\pi\)
−0.902295 + 0.431120i \(0.858119\pi\)
\(332\) −11.6635 −0.640120
\(333\) −0.978291 0.317866i −0.0536100 0.0174189i
\(334\) 6.14501 + 8.45788i 0.336240 + 0.462795i
\(335\) −3.39857 + 16.4552i −0.185684 + 0.899046i
\(336\) 1.49787 + 1.08826i 0.0817153 + 0.0593696i
\(337\) −4.59380 6.32282i −0.250240 0.344426i 0.665355 0.746527i \(-0.268280\pi\)
−0.915595 + 0.402101i \(0.868280\pi\)
\(338\) 17.4204 12.6567i 0.947546 0.688433i
\(339\) −7.03360 5.11021i −0.382013 0.277548i
\(340\) 10.4745 5.33355i 0.568061 0.289252i
\(341\) 2.77645 2.01721i 0.150353 0.109238i
\(342\) −2.15652 + 6.63710i −0.116611 + 0.358893i
\(343\) 3.38390i 0.182713i
\(344\) −2.44190 + 7.51540i −0.131658 + 0.405203i
\(345\) −4.62331 + 22.3852i −0.248910 + 1.20518i
\(346\) −21.3444 + 6.93522i −1.14748 + 0.372840i
\(347\) −19.7437 + 6.41511i −1.05990 + 0.344381i −0.786545 0.617533i \(-0.788132\pi\)
−0.273351 + 0.961914i \(0.588132\pi\)
\(348\) −15.8216 11.4951i −0.848126 0.616199i
\(349\) 9.65277 0.516701 0.258350 0.966051i \(-0.416821\pi\)
0.258350 + 0.966051i \(0.416821\pi\)
\(350\) 0.870106 2.01660i 0.0465091 0.107792i
\(351\) 5.85300i 0.312410i
\(352\) 7.46719 10.2777i 0.398003 0.547803i
\(353\) −1.11789 3.44051i −0.0594992 0.183120i 0.916889 0.399142i \(-0.130692\pi\)
−0.976389 + 0.216022i \(0.930692\pi\)
\(354\) 35.3299 11.4794i 1.87776 0.610123i
\(355\) −15.1170 + 6.83529i −0.802327 + 0.362780i
\(356\) 4.20286 12.9351i 0.222751 0.685558i
\(357\) −1.45055 + 0.546796i −0.0767714 + 0.0289395i
\(358\) −1.50130 + 4.62054i −0.0793464 + 0.244203i
\(359\) 1.26563 0.919531i 0.0667972 0.0485310i −0.553886 0.832593i \(-0.686855\pi\)
0.620683 + 0.784062i \(0.286855\pi\)
\(360\) 0.726180 + 1.60603i 0.0382730 + 0.0846450i
\(361\) −17.9667 13.0536i −0.945617 0.687031i
\(362\) −16.7927 23.1132i −0.882604 1.21480i
\(363\) 6.29788 + 8.66829i 0.330553 + 0.454967i
\(364\) 0.190886 0.262732i 0.0100051 0.0137709i
\(365\) −3.13930 + 5.51060i −0.164318 + 0.288438i
\(366\) 12.8973 9.37042i 0.674152 0.489800i
\(367\) −21.4374 6.96542i −1.11902 0.363592i −0.309627 0.950858i \(-0.600204\pi\)
−0.809394 + 0.587266i \(0.800204\pi\)
\(368\) 32.4984i 1.69410i
\(369\) 5.75684 + 1.87051i 0.299689 + 0.0973749i
\(370\) 0.764017 + 6.88671i 0.0397194 + 0.358023i
\(371\) −1.31214 + 0.426339i −0.0681228 + 0.0221344i
\(372\) −1.03649 3.18999i −0.0537395 0.165393i
\(373\) 7.22701 + 5.25073i 0.374200 + 0.271872i 0.758950 0.651148i \(-0.225712\pi\)
−0.384750 + 0.923021i \(0.625712\pi\)
\(374\) 5.31789 + 14.1074i 0.274982 + 0.729478i
\(375\) −13.8322 + 10.4201i −0.714291 + 0.538094i
\(376\) −10.6792 −0.550737
\(377\) 6.10850 8.40762i 0.314604 0.433015i
\(378\) 0.757067 + 2.33001i 0.0389393 + 0.119843i
\(379\) −34.4804 + 11.2034i −1.77114 + 0.575478i −0.998254 0.0590693i \(-0.981187\pi\)
−0.772884 + 0.634547i \(0.781187\pi\)
\(380\) 18.1889 2.01789i 0.933069 0.103515i
\(381\) −8.68720 2.82264i −0.445059 0.144608i
\(382\) −25.8038 −1.32024
\(383\) 7.54702 23.2274i 0.385635 1.18686i −0.550384 0.834912i \(-0.685519\pi\)
0.936019 0.351950i \(-0.114481\pi\)
\(384\) 8.92913 + 12.2899i 0.455663 + 0.627166i
\(385\) 0.952901 + 0.542852i 0.0485643 + 0.0276663i
\(386\) 18.8288 25.9157i 0.958362 1.31907i
\(387\) −2.92685 + 2.12648i −0.148780 + 0.108095i
\(388\) −7.46489 10.2745i −0.378972 0.521610i
\(389\) 3.00212 + 2.18117i 0.152214 + 0.110590i 0.661285 0.750134i \(-0.270011\pi\)
−0.509072 + 0.860724i \(0.670011\pi\)
\(390\) −5.99349 + 2.71001i −0.303492 + 0.137227i
\(391\) 22.7306 + 14.9572i 1.14953 + 0.756416i
\(392\) −2.81444 + 8.66195i −0.142151 + 0.437494i
\(393\) 20.4073 1.02941
\(394\) −13.2943 4.31957i −0.669755 0.217617i
\(395\) −3.16986 + 1.43328i −0.159493 + 0.0721163i
\(396\) 1.47179 0.478213i 0.0739602 0.0240311i
\(397\) 0.0609325 0.0197982i 0.00305812 0.000993642i −0.307488 0.951552i \(-0.599488\pi\)
0.310546 + 0.950558i \(0.399488\pi\)
\(398\) −8.04504 + 11.0730i −0.403261 + 0.555042i
\(399\) −2.41353 −0.120827
\(400\) 16.2632 18.4866i 0.813158 0.924332i
\(401\) 19.8302i 0.990273i 0.868815 + 0.495136i \(0.164882\pi\)
−0.868815 + 0.495136i \(0.835118\pi\)
\(402\) −12.3808 + 17.0407i −0.617499 + 0.849914i
\(403\) 1.69517 0.550793i 0.0844423 0.0274370i
\(404\) −4.68221 14.4104i −0.232949 0.716943i
\(405\) 3.09220 14.9719i 0.153653 0.743958i
\(406\) −1.34422 + 4.13709i −0.0667127 + 0.205321i
\(407\) −3.45984 −0.171498
\(408\) −8.37105 + 0.388073i −0.414429 + 0.0192125i
\(409\) −7.26262 + 5.27661i −0.359114 + 0.260911i −0.752682 0.658384i \(-0.771240\pi\)
0.393569 + 0.919295i \(0.371240\pi\)
\(410\) −4.49593 40.5254i −0.222038 2.00141i
\(411\) 9.77352 13.4521i 0.482092 0.663543i
\(412\) 8.38118 6.08928i 0.412911 0.299997i
\(413\) −1.89076 2.60241i −0.0930381 0.128056i
\(414\) 4.21703 5.80424i 0.207256 0.285263i
\(415\) 4.13762 20.0336i 0.203108 0.983412i
\(416\) 5.33790 3.87821i 0.261712 0.190145i
\(417\) −3.79342 + 11.6749i −0.185765 + 0.571725i
\(418\) 23.4729i 1.14810i
\(419\) 5.08187 + 1.65120i 0.248266 + 0.0806664i 0.430506 0.902588i \(-0.358335\pi\)
−0.182241 + 0.983254i \(0.558335\pi\)
\(420\) 0.792384 0.721787i 0.0386644 0.0352196i
\(421\) −4.02311 12.3819i −0.196074 0.603455i −0.999962 0.00867416i \(-0.997239\pi\)
0.803888 0.594781i \(-0.202761\pi\)
\(422\) −0.0332515 + 0.0108041i −0.00161866 + 0.000525933i
\(423\) −3.95542 2.87378i −0.192319 0.139728i
\(424\) −7.45820 −0.362202
\(425\) 5.44522 + 19.8834i 0.264132 + 0.964487i
\(426\) −20.7977 −1.00765
\(427\) −1.11681 0.811409i −0.0540462 0.0392668i
\(428\) −5.41507 + 1.75946i −0.261747 + 0.0850468i
\(429\) −1.01495 3.12369i −0.0490022 0.150813i
\(430\) 21.1747 + 12.0629i 1.02113 + 0.581723i
\(431\) −1.93484 0.628669i −0.0931981 0.0302819i 0.262047 0.965055i \(-0.415603\pi\)
−0.355245 + 0.934773i \(0.615603\pi\)
\(432\) 27.4653i 1.32143i
\(433\) −1.91926 + 5.90688i −0.0922338 + 0.283867i −0.986523 0.163623i \(-0.947682\pi\)
0.894289 + 0.447490i \(0.147682\pi\)
\(434\) −0.603583 + 0.438529i −0.0289729 + 0.0210501i
\(435\) 25.3569 23.0977i 1.21577 1.10745i
\(436\) 13.9250 19.1661i 0.666885 0.917888i
\(437\) 24.9010 + 34.2733i 1.19118 + 1.63952i
\(438\) −6.43197 + 4.67310i −0.307331 + 0.223289i
\(439\) 2.68141 3.69064i 0.127977 0.176145i −0.740220 0.672364i \(-0.765279\pi\)
0.868197 + 0.496220i \(0.165279\pi\)
\(440\) 3.99226 + 4.38274i 0.190323 + 0.208939i
\(441\) −3.37337 + 2.45090i −0.160637 + 0.116709i
\(442\) 0.362612 + 7.82182i 0.0172477 + 0.372046i
\(443\) 19.4598 0.924563 0.462281 0.886733i \(-0.347031\pi\)
0.462281 + 0.886733i \(0.347031\pi\)
\(444\) −1.04494 + 3.21598i −0.0495904 + 0.152624i
\(445\) 20.7267 + 11.8076i 0.982539 + 0.559736i
\(446\) 10.1375 + 31.2001i 0.480026 + 1.47737i
\(447\) 21.7695 7.07334i 1.02966 0.334557i
\(448\) −0.218168 + 0.300283i −0.0103075 + 0.0141870i
\(449\) 2.70954i 0.127871i 0.997954 + 0.0639355i \(0.0203652\pi\)
−0.997954 + 0.0639355i \(0.979635\pi\)
\(450\) 5.30346 1.19140i 0.250008 0.0561634i
\(451\) 20.3597 0.958703
\(452\) 4.20615 5.78927i 0.197841 0.272304i
\(453\) −30.8088 + 10.0104i −1.44753 + 0.470330i
\(454\) −11.8526 + 3.85113i −0.556268 + 0.180742i
\(455\) 0.383559 + 0.421075i 0.0179815 + 0.0197403i
\(456\) −12.4085 4.03177i −0.581081 0.188805i
\(457\) 14.1515 0.661977 0.330989 0.943635i \(-0.392618\pi\)
0.330989 + 0.943635i \(0.392618\pi\)
\(458\) 1.58598 4.88114i 0.0741079 0.228081i
\(459\) −19.2102 12.6407i −0.896657 0.590019i
\(460\) −18.4250 3.80539i −0.859070 0.177427i
\(461\) 30.1221 + 21.8850i 1.40293 + 1.01929i 0.994304 + 0.106581i \(0.0339904\pi\)
0.408622 + 0.912704i \(0.366010\pi\)
\(462\) 0.808080 + 1.11223i 0.0375953 + 0.0517455i
\(463\) −1.82655 + 1.32707i −0.0848870 + 0.0616740i −0.629419 0.777066i \(-0.716707\pi\)
0.544532 + 0.838740i \(0.316707\pi\)
\(464\) −28.6642 + 39.4529i −1.33070 + 1.83156i
\(465\) 5.84690 0.648660i 0.271144 0.0300809i
\(466\) −4.19913 5.77960i −0.194521 0.267735i
\(467\) 0.119157 0.366727i 0.00551392 0.0169701i −0.948262 0.317490i \(-0.897160\pi\)
0.953776 + 0.300520i \(0.0971601\pi\)
\(468\) 0.803737 0.0371527
\(469\) 1.73467 + 0.563629i 0.0800997 + 0.0260260i
\(470\) −6.66136 + 32.2531i −0.307265 + 1.48772i
\(471\) 23.9674 7.78749i 1.10436 0.358828i
\(472\) −5.37354 16.5381i −0.247337 0.761226i
\(473\) −7.15247 + 9.84453i −0.328871 + 0.452652i
\(474\) −4.36104 −0.200309
\(475\) −2.98649 + 31.9575i −0.137030 + 1.46631i
\(476\) −0.450061 1.19393i −0.0206285 0.0547238i
\(477\) −2.76242 2.00701i −0.126482 0.0918948i
\(478\) −8.26788 25.4459i −0.378164 1.16387i
\(479\) −33.7742 + 10.9739i −1.54318 + 0.501410i −0.952252 0.305314i \(-0.901239\pi\)
−0.590929 + 0.806723i \(0.701239\pi\)
\(480\) 19.8424 8.97195i 0.905679 0.409511i
\(481\) −1.70898 0.555281i −0.0779228 0.0253186i
\(482\) 54.3713i 2.47654i
\(483\) 2.35979 + 0.766744i 0.107374 + 0.0348881i
\(484\) −7.13476 + 5.18371i −0.324307 + 0.235623i
\(485\) 20.2960 9.17701i 0.921592 0.416707i
\(486\) −6.53327 + 8.99228i −0.296355 + 0.407898i
\(487\) 14.1669 + 19.4991i 0.641963 + 0.883586i 0.998718 0.0506115i \(-0.0161170\pi\)
−0.356755 + 0.934198i \(0.616117\pi\)
\(488\) −4.38632 6.03726i −0.198560 0.273294i
\(489\) 18.0952 + 13.1469i 0.818294 + 0.594525i
\(490\) 24.4051 + 13.9032i 1.10251 + 0.628082i
\(491\) 34.1096 24.7821i 1.53935 1.11840i 0.588601 0.808423i \(-0.299679\pi\)
0.950744 0.309977i \(-0.100321\pi\)
\(492\) 6.14902 18.9247i 0.277219 0.853193i
\(493\) −14.4023 38.2068i −0.648647 1.72075i
\(494\) −3.76724 + 11.5944i −0.169496 + 0.521655i
\(495\) 0.299277 + 2.69763i 0.0134515 + 0.121249i
\(496\) −7.95460 + 2.58461i −0.357172 + 0.116052i
\(497\) 0.556516 + 1.71278i 0.0249632 + 0.0768287i
\(498\) 15.0732 20.7464i 0.675444 0.929669i
\(499\) 1.44082i 0.0644999i 0.999480 + 0.0322499i \(0.0102673\pi\)
−0.999480 + 0.0322499i \(0.989733\pi\)
\(500\) −8.57669 11.3851i −0.383561 0.509157i
\(501\) −8.94834 −0.399782
\(502\) −3.08242 2.23951i −0.137575 0.0999541i
\(503\) −27.8337 + 9.04373i −1.24104 + 0.403240i −0.854704 0.519116i \(-0.826261\pi\)
−0.386341 + 0.922356i \(0.626261\pi\)
\(504\) 0.181966 0.0591242i 0.00810539 0.00263360i
\(505\) 26.4126 2.93024i 1.17535 0.130394i
\(506\) 7.45701 22.9503i 0.331504 1.02027i
\(507\) 18.4306i 0.818532i
\(508\) 2.32328 7.15033i 0.103079 0.317244i
\(509\) 4.45572 3.23727i 0.197496 0.143490i −0.484642 0.874713i \(-0.661050\pi\)
0.682138 + 0.731223i \(0.261050\pi\)
\(510\) −4.04956 + 25.5242i −0.179317 + 1.13023i
\(511\) 0.556961 + 0.404656i 0.0246385 + 0.0179009i
\(512\) −14.5932 + 10.6026i −0.644935 + 0.468573i
\(513\) −21.0446 28.9654i −0.929141 1.27885i
\(514\) 11.3074 + 8.21533i 0.498749 + 0.362363i
\(515\) 7.48591 + 16.5559i 0.329869 + 0.729540i
\(516\) 6.99049 + 9.62158i 0.307739 + 0.423566i
\(517\) −15.6400 5.08174i −0.687845 0.223495i
\(518\) 0.752149 0.0330475
\(519\) 5.93607 18.2693i 0.260564 0.801935i
\(520\) 1.26857 + 2.80557i 0.0556303 + 0.123033i
\(521\) −0.191085 + 0.0620874i −0.00837160 + 0.00272010i −0.313200 0.949687i \(-0.601401\pi\)
0.304828 + 0.952407i \(0.401401\pi\)
\(522\) −10.2389 + 3.32682i −0.448145 + 0.145611i
\(523\) −7.98228 5.79946i −0.349041 0.253593i 0.399426 0.916766i \(-0.369209\pi\)
−0.748466 + 0.663173i \(0.769209\pi\)
\(524\) 16.7970i 0.733781i
\(525\) 0.958663 + 1.61707i 0.0418395 + 0.0705748i
\(526\) −14.7202 −0.641831
\(527\) 1.85328 6.75329i 0.0807303 0.294178i
\(528\) 4.76267 + 14.6580i 0.207269 + 0.637907i
\(529\) −6.35112 19.5467i −0.276135 0.849858i
\(530\) −4.65220 + 22.5251i −0.202079 + 0.978428i
\(531\) 2.46013 7.57150i 0.106761 0.328575i
\(532\) 1.98654i 0.0861276i
\(533\) 10.0566 + 3.26760i 0.435602 + 0.141536i
\(534\) 17.5767 + 24.1922i 0.760616 + 1.04690i
\(535\) −1.10111 9.92523i −0.0476053 0.429105i
\(536\) 7.97682 + 5.79550i 0.344546 + 0.250327i
\(537\) −2.44424 3.36421i −0.105477 0.145176i
\(538\) −24.2776 33.4153i −1.04668 1.44063i
\(539\) −8.24366 + 11.3464i −0.355079 + 0.488725i
\(540\) 15.5715 + 3.21604i 0.670090 + 0.138396i
\(541\) −1.49891 2.06307i −0.0644431 0.0886983i 0.775579 0.631251i \(-0.217458\pi\)
−0.840022 + 0.542552i \(0.817458\pi\)
\(542\) 8.57297 26.3849i 0.368241 1.13333i
\(543\) 24.4535 1.04940
\(544\) −1.20049 25.8954i −0.0514704 1.11026i
\(545\) 27.9803 + 30.7170i 1.19854 + 1.31577i
\(546\) 0.220644 + 0.679073i 0.00944270 + 0.0290616i
\(547\) −13.2995 + 4.32126i −0.568644 + 0.184764i −0.579207 0.815181i \(-0.696638\pi\)
0.0105629 + 0.999944i \(0.496638\pi\)
\(548\) 11.0723 + 8.04446i 0.472983 + 0.343642i
\(549\) 3.41649i 0.145812i
\(550\) 15.7269 9.32353i 0.670598 0.397557i
\(551\) 63.5709i 2.70821i
\(552\) 10.8514 + 7.88402i 0.461867 + 0.335566i
\(553\) 0.116695 + 0.359151i 0.00496239 + 0.0152727i
\(554\) −22.7822 + 7.40237i −0.967921 + 0.314497i
\(555\) −5.15317 2.93567i −0.218740 0.124612i
\(556\) −9.60951 3.12232i −0.407534 0.132416i
\(557\) 0.897073 0.0380102 0.0190051 0.999819i \(-0.493950\pi\)
0.0190051 + 0.999819i \(0.493950\pi\)
\(558\) −1.75608 0.570585i −0.0743408 0.0241548i
\(559\) −5.11293 + 3.71476i −0.216254 + 0.157118i
\(560\) −1.79986 1.97590i −0.0760579 0.0834970i
\(561\) −12.4443 3.41506i −0.525399 0.144184i
\(562\) 2.28244 1.65829i 0.0962789 0.0699507i
\(563\) −30.4778 + 22.1434i −1.28449 + 0.933234i −0.999679 0.0253512i \(-0.991930\pi\)
−0.284807 + 0.958585i \(0.591930\pi\)
\(564\) −9.44713 + 13.0029i −0.397796 + 0.547519i
\(565\) 8.45168 + 9.27833i 0.355565 + 0.390342i
\(566\) 14.2715 + 19.6431i 0.599877 + 0.825660i
\(567\) −1.57830 0.512820i −0.0662822 0.0215364i
\(568\) 9.73546i 0.408491i
\(569\) 8.00618 24.6405i 0.335637 1.03298i −0.630771 0.775969i \(-0.717261\pi\)
0.966408 0.257014i \(-0.0827387\pi\)
\(570\) −19.9167 + 34.9610i −0.834220 + 1.46436i
\(571\) −16.6317 + 5.40398i −0.696016 + 0.226149i −0.635594 0.772024i \(-0.719245\pi\)
−0.0604223 + 0.998173i \(0.519245\pi\)
\(572\) 2.57107 0.835393i 0.107502 0.0349295i
\(573\) 12.9820 17.8681i 0.542329 0.746452i
\(574\) −4.42609 −0.184741
\(575\) 13.0725 30.2973i 0.545160 1.26348i
\(576\) −0.918611 −0.0382755
\(577\) 1.26167 + 0.916656i 0.0525240 + 0.0381609i 0.613737 0.789510i \(-0.289665\pi\)
−0.561213 + 0.827671i \(0.689665\pi\)
\(578\) 26.4553 + 15.7026i 1.10039 + 0.653144i
\(579\) 8.47278 + 26.0765i 0.352117 + 1.08370i
\(580\) 19.0114 + 20.8709i 0.789407 + 0.866619i
\(581\) −2.11190 0.686197i −0.0876162 0.0284682i
\(582\) 27.9228 1.15744
\(583\) −10.9228 3.54902i −0.452374 0.146985i
\(584\) 2.18749 + 3.01083i 0.0905191 + 0.124589i
\(585\) −0.285124 + 1.38052i −0.0117884 + 0.0570775i
\(586\) −29.0266 21.0890i −1.19908 0.871180i
\(587\) −10.7167 + 7.78616i −0.442327 + 0.321369i −0.786559 0.617515i \(-0.788139\pi\)
0.344232 + 0.938885i \(0.388139\pi\)
\(588\) 8.05696 + 11.0895i 0.332263 + 0.457321i
\(589\) 6.40866 8.82077i 0.264064 0.363453i
\(590\) −53.2998 + 5.91313i −2.19432 + 0.243440i
\(591\) 9.67952 7.03259i 0.398162 0.289282i
\(592\) 8.01942 + 2.60567i 0.329596 + 0.107092i
\(593\) −5.36929 −0.220490 −0.110245 0.993904i \(-0.535164\pi\)
−0.110245 + 0.993904i \(0.535164\pi\)
\(594\) −6.30213 + 19.3960i −0.258580 + 0.795826i
\(595\) 2.21039 0.349491i 0.0906171 0.0143277i
\(596\) 5.82198 + 17.9182i 0.238478 + 0.733958i
\(597\) −3.62018 11.1418i −0.148164 0.456003i
\(598\) 7.36674 10.1394i 0.301248 0.414633i
\(599\) −38.1668 −1.55945 −0.779727 0.626120i \(-0.784642\pi\)
−0.779727 + 0.626120i \(0.784642\pi\)
\(600\) 2.22741 + 9.91518i 0.0909337 + 0.404785i
\(601\) 21.3310i 0.870111i 0.900404 + 0.435055i \(0.143271\pi\)
−0.900404 + 0.435055i \(0.856729\pi\)
\(602\) 1.55491 2.14014i 0.0633732 0.0872258i
\(603\) 1.39493 + 4.29315i 0.0568059 + 0.174830i
\(604\) −8.23944 25.3584i −0.335258 1.03182i
\(605\) −6.37263 14.0938i −0.259084 0.572993i
\(606\) 31.6833 + 10.2945i 1.28704 + 0.418186i
\(607\) 18.7737i 0.762002i −0.924575 0.381001i \(-0.875579\pi\)
0.924575 0.381001i \(-0.124421\pi\)
\(608\) 12.4721 38.3851i 0.505809 1.55672i
\(609\) −2.18850 3.01221i −0.0886825 0.122061i
\(610\) −20.9697 + 9.48164i −0.849038 + 0.383900i
\(611\) −6.90975 5.02022i −0.279538 0.203097i
\(612\) 1.73583 2.63796i 0.0701668 0.106633i
\(613\) −13.3910 + 9.72917i −0.540859 + 0.392957i −0.824404 0.566002i \(-0.808490\pi\)
0.283545 + 0.958959i \(0.408490\pi\)
\(614\) −21.3835 15.5360i −0.862966 0.626981i
\(615\) 30.3243 + 17.2752i 1.22279 + 0.696605i
\(616\) 0.520637 0.378265i 0.0209771 0.0152407i
\(617\) 33.1149 + 10.7597i 1.33316 + 0.433169i 0.886993 0.461782i \(-0.152790\pi\)
0.446164 + 0.894951i \(0.352790\pi\)
\(618\) 22.7773i 0.916238i
\(619\) 21.6527 + 7.03540i 0.870297 + 0.282776i 0.709922 0.704280i \(-0.248730\pi\)
0.160374 + 0.987056i \(0.448730\pi\)
\(620\) 0.533904 + 4.81251i 0.0214421 + 0.193275i
\(621\) 11.3742 + 35.0061i 0.456430 + 1.40475i
\(622\) −48.6622 + 15.8113i −1.95118 + 0.633976i
\(623\) 1.52201 2.09486i 0.0609780 0.0839290i
\(624\) 8.00466i 0.320443i
\(625\) 22.5979 10.6927i 0.903917 0.427708i
\(626\) 45.1745i 1.80553i
\(627\) −16.2541 11.8093i −0.649125 0.471617i
\(628\) 6.40978 + 19.7273i 0.255778 + 0.787204i
\(629\) −5.51338 + 4.40983i −0.219833 + 0.175832i
\(630\) −0.0650612 0.586449i −0.00259210 0.0233647i
\(631\) 5.50417 16.9401i 0.219117 0.674374i −0.779718 0.626131i \(-0.784638\pi\)
0.998836 0.0482434i \(-0.0153623\pi\)
\(632\) 2.04142i 0.0812032i
\(633\) 0.00924752 0.0284609i 0.000367556 0.00113122i
\(634\) −17.8312 24.5426i −0.708168 0.974709i
\(635\) 11.4574 + 6.52710i 0.454674 + 0.259020i
\(636\) −6.59775 + 9.08102i −0.261618 + 0.360086i
\(637\) −5.89296 + 4.28149i −0.233488 + 0.169639i
\(638\) −29.2954 + 21.2844i −1.15982 + 0.842656i
\(639\) −2.61983 + 3.60588i −0.103639 + 0.142647i
\(640\) −9.03511 19.9821i −0.357144 0.789863i
\(641\) −0.611110 0.841121i −0.0241374 0.0332223i 0.796778 0.604272i \(-0.206536\pi\)
−0.820915 + 0.571050i \(0.806536\pi\)
\(642\) 3.86843 11.9058i 0.152675 0.469884i
\(643\) 2.30605i 0.0909416i 0.998966 + 0.0454708i \(0.0144788\pi\)
−0.998966 + 0.0454708i \(0.985521\pi\)
\(644\) −0.631097 + 1.94232i −0.0248687 + 0.0765381i
\(645\) −19.0061 + 8.59381i −0.748366 + 0.338381i
\(646\) 29.9180 + 37.4049i 1.17711 + 1.47168i
\(647\) 7.68808 + 23.6615i 0.302250 + 0.930229i 0.980689 + 0.195573i \(0.0626566\pi\)
−0.678439 + 0.734656i \(0.737343\pi\)
\(648\) −7.25773 5.27305i −0.285111 0.207145i
\(649\) 26.7775i 1.05111i
\(650\) 9.26464 2.08127i 0.363389 0.0816341i
\(651\) 0.638584i 0.0250281i
\(652\) −10.8211 + 14.8939i −0.423786 + 0.583292i
\(653\) 26.4902 8.60718i 1.03664 0.336825i 0.259228 0.965816i \(-0.416532\pi\)
0.777413 + 0.628991i \(0.216532\pi\)
\(654\) 16.0958 + 49.5378i 0.629396 + 1.93708i
\(655\) −28.8510 5.95871i −1.12730 0.232826i
\(656\) −47.1910 15.3333i −1.84250 0.598664i
\(657\) 1.70383i 0.0664726i
\(658\) 3.40004 + 1.10474i 0.132547 + 0.0430673i
\(659\) 18.8509 13.6960i 0.734328 0.533521i −0.156601 0.987662i \(-0.550054\pi\)
0.890930 + 0.454141i \(0.150054\pi\)
\(660\) 8.86804 0.983828i 0.345188 0.0382955i
\(661\) −7.66748 5.57075i −0.298230 0.216677i 0.428600 0.903495i \(-0.359007\pi\)
−0.726830 + 0.686818i \(0.759007\pi\)
\(662\) 36.6964 26.6615i 1.42624 1.03623i
\(663\) −5.59875 3.68409i −0.217437 0.143078i
\(664\) −9.71146 7.05579i −0.376878 0.273818i
\(665\) 3.41214 + 0.704723i 0.132317 + 0.0273280i
\(666\) 1.09416 + 1.50598i 0.0423979 + 0.0583557i
\(667\) −20.1956 + 62.1557i −0.781977 + 2.40668i
\(668\) 7.36527i 0.284971i
\(669\) −26.7051 8.67702i −1.03248 0.335473i
\(670\) 22.4792 20.4764i 0.868446 0.791072i
\(671\) −3.55105 10.9290i −0.137087 0.421909i
\(672\) −0.730479 2.24818i −0.0281788 0.0867255i
\(673\) −16.0915 + 22.1480i −0.620281 + 0.853744i −0.997373 0.0724317i \(-0.976924\pi\)
0.377092 + 0.926176i \(0.376924\pi\)
\(674\) 14.1434i 0.544784i
\(675\) −11.0479 + 25.6051i −0.425235 + 0.985542i
\(676\) −15.1700 −0.583462
\(677\) −29.2663 + 40.2817i −1.12480 + 1.54815i −0.327205 + 0.944953i \(0.606107\pi\)
−0.797592 + 0.603197i \(0.793893\pi\)
\(678\) 4.86187 + 14.9633i 0.186719 + 0.574662i
\(679\) −0.747175 2.29957i −0.0286739 0.0882493i
\(680\) 11.9479 + 1.89561i 0.458183 + 0.0726934i
\(681\) 3.29630 10.1450i 0.126314 0.388756i
\(682\) −6.21058 −0.237816
\(683\) −14.3181 4.65224i −0.547867 0.178013i 0.0219876 0.999758i \(-0.493001\pi\)
−0.569855 + 0.821745i \(0.693001\pi\)
\(684\) 3.97754 2.88985i 0.152085 0.110496i
\(685\) −17.7452 + 16.1642i −0.678011 + 0.617604i
\(686\) 3.59946 4.95423i 0.137428 0.189153i
\(687\) 2.58209 + 3.55395i 0.0985130 + 0.135592i
\(688\) 23.9925 17.4316i 0.914706 0.664573i
\(689\) −4.82567 3.50606i −0.183844 0.133570i
\(690\) 30.5800 27.8555i 1.16416 1.06044i
\(691\) −12.9694 17.8508i −0.493378 0.679076i 0.487629 0.873051i \(-0.337862\pi\)
−0.981006 + 0.193975i \(0.937862\pi\)
\(692\) 15.0373 + 4.88590i 0.571631 + 0.185734i
\(693\) 0.294628 0.0111920
\(694\) 35.7297 + 11.6093i 1.35628 + 0.440682i
\(695\) 8.77193 15.3979i 0.332738 0.584076i
\(696\) −6.21972 19.1423i −0.235758 0.725588i
\(697\) 32.4440 25.9501i 1.22890 0.982929i
\(698\) −14.1322 10.2677i −0.534912 0.388637i
\(699\) 6.11475 0.231281
\(700\) −1.33099 + 0.789064i −0.0503068 + 0.0298238i
\(701\) −40.2226 −1.51919 −0.759594 0.650397i \(-0.774602\pi\)
−0.759594 + 0.650397i \(0.774602\pi\)
\(702\) −6.22584 + 8.56914i −0.234979 + 0.323421i
\(703\) −10.4539 + 3.39669i −0.394277 + 0.128109i
\(704\) −2.93854 + 0.954791i −0.110751 + 0.0359850i
\(705\) −18.9827 20.8394i −0.714930 0.784856i
\(706\) −2.02302 + 6.22621i −0.0761372 + 0.234326i
\(707\) 2.88472i 0.108491i
\(708\) −24.8902 8.08730i −0.935429 0.303939i
\(709\) −11.6253 16.0008i −0.436597 0.600924i 0.532855 0.846207i \(-0.321119\pi\)
−0.969452 + 0.245283i \(0.921119\pi\)
\(710\) 29.4029 + 6.07269i 1.10347 + 0.227904i
\(711\) −0.549349 + 0.756113i −0.0206022 + 0.0283565i
\(712\) 11.3244 8.22769i 0.424401 0.308346i
\(713\) −9.06823 + 6.58845i −0.339608 + 0.246740i
\(714\) 2.70532 + 0.742414i 0.101244 + 0.0277841i
\(715\) 0.522809 + 4.71250i 0.0195519 + 0.176237i
\(716\) 2.76904 2.01182i 0.103484 0.0751854i
\(717\) 21.7799 + 7.07673i 0.813387 + 0.264285i
\(718\) −2.83106 −0.105654
\(719\) −6.56865 2.13428i −0.244969 0.0795953i 0.183959 0.982934i \(-0.441109\pi\)
−0.428928 + 0.903339i \(0.641109\pi\)
\(720\) 1.33795 6.47811i 0.0498625 0.241425i
\(721\) 1.87581 0.609488i 0.0698589 0.0226985i
\(722\) 12.4192 + 38.2225i 0.462196 + 1.42249i
\(723\) 37.6501 + 27.3544i 1.40022 + 1.01732i
\(724\) 20.1273i 0.748027i
\(725\) −42.5928 + 25.2506i −1.58186 + 0.937785i
\(726\) 19.3900i 0.719629i
\(727\) −1.98037 1.43883i −0.0734480 0.0533631i 0.550455 0.834865i \(-0.314454\pi\)
−0.623903 + 0.781502i \(0.714454\pi\)
\(728\) 0.317876 0.103284i 0.0117813 0.00382797i
\(729\) −9.27809 28.5550i −0.343633 1.05759i
\(730\) 10.4577 4.72857i 0.387058 0.175012i
\(731\) 1.14989 + 24.8040i 0.0425302 + 0.917409i
\(732\) −11.2312 −0.415116
\(733\) −4.22803 + 13.0125i −0.156166 + 0.480629i −0.998277 0.0586748i \(-0.981313\pi\)
0.842111 + 0.539304i \(0.181313\pi\)
\(734\) 23.9764 + 33.0007i 0.884986 + 1.21808i
\(735\) −21.9057 + 9.90488i −0.808005 + 0.365347i
\(736\) −24.3888 + 33.5683i −0.898983 + 1.23734i
\(737\) 8.92447 + 12.2835i 0.328737 + 0.452468i
\(738\) −6.43869 8.86209i −0.237011 0.326218i
\(739\) 6.76499 + 4.91505i 0.248854 + 0.180803i 0.705219 0.708990i \(-0.250849\pi\)
−0.456365 + 0.889793i \(0.650849\pi\)
\(740\) 2.41632 4.24151i 0.0888256 0.155921i
\(741\) −6.13336 8.44184i −0.225314 0.310119i
\(742\) 2.37454 + 0.771536i 0.0871722 + 0.0283240i
\(743\) 39.8408i 1.46162i 0.682583 + 0.730808i \(0.260857\pi\)
−0.682583 + 0.730808i \(0.739143\pi\)
\(744\) 1.06675 3.28311i 0.0391088 0.120365i
\(745\) −32.8421 + 3.64353i −1.20324 + 0.133489i
\(746\) −4.99556 15.3747i −0.182900 0.562909i
\(747\) −1.69827 5.22674i −0.0621365 0.191236i
\(748\) 2.81089 10.2428i 0.102776 0.374513i
\(749\) −1.08401 −0.0396088
\(750\) 31.3350 0.542395i 1.14419 0.0198055i
\(751\) 22.1983i 0.810028i 0.914311 + 0.405014i \(0.132733\pi\)
−0.914311 + 0.405014i \(0.867267\pi\)
\(752\) 32.4241 + 23.5575i 1.18239 + 0.859053i
\(753\) 3.10155 1.00775i 0.113027 0.0367246i
\(754\) −17.8864 + 5.81164i −0.651384 + 0.211648i
\(755\) 46.4792 5.15644i 1.69155 0.187662i
\(756\) 0.533359 1.64151i 0.0193981 0.0597011i
\(757\) 30.2086 1.09795 0.548975 0.835839i \(-0.315018\pi\)
0.548975 + 0.835839i \(0.315018\pi\)
\(758\) 62.3983 + 20.2744i 2.26641 + 0.736401i
\(759\) 12.1406 + 16.7101i 0.440675 + 0.606537i
\(760\) 16.3654 + 9.32308i 0.593635 + 0.338184i
\(761\) 30.7817 + 22.3642i 1.11584 + 0.810702i 0.983573 0.180512i \(-0.0577756\pi\)
0.132263 + 0.991215i \(0.457776\pi\)
\(762\) 9.71612 + 13.3731i 0.351978 + 0.484456i
\(763\) 3.64896 2.65112i 0.132101 0.0959770i
\(764\) 14.7071 + 10.6853i 0.532082 + 0.386580i
\(765\) 3.91525 + 3.91732i 0.141556 + 0.141631i
\(766\) −35.7562 + 25.9784i −1.29193 + 0.938639i
\(767\) 4.29761 13.2267i 0.155178 0.477588i
\(768\) 32.2282i 1.16294i
\(769\) 5.39412 16.6014i 0.194517 0.598661i −0.805465 0.592643i \(-0.798084\pi\)
0.999982 0.00601813i \(-0.00191564\pi\)
\(770\) −0.817671 1.80837i −0.0294668 0.0651691i
\(771\) −11.3776 + 3.69681i −0.409755 + 0.133137i