Properties

Label 425.2.p.a.16.1
Level $425$
Weight $2$
Character 425.16
Analytic conductor $3.394$
Analytic rank $0$
Dimension $168$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(16,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(42\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 16.1
Character \(\chi\) \(=\) 425.16
Dual form 425.2.p.a.186.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.13901 - 1.55408i) q^{2} +(-0.355974 + 0.115663i) q^{3} +(1.54215 + 4.74625i) q^{4} +(0.624287 - 2.14715i) q^{5} +(0.941180 + 0.305808i) q^{6} +1.16016i q^{7} +(2.44332 - 7.51977i) q^{8} +(-2.31371 + 1.68101i) q^{9} +(-4.67220 + 3.62258i) q^{10} +(-0.0931875 + 0.128262i) q^{11} +(-1.09793 - 1.51117i) q^{12} +(3.27739 - 2.38116i) q^{13} +(1.80297 - 2.48158i) q^{14} +(0.0261163 + 0.836538i) q^{15} +(-8.83779 + 6.42103i) q^{16} +(3.66123 + 1.89615i) q^{17} +7.56146 q^{18} +(-0.651885 + 2.00629i) q^{19} +(11.1537 - 0.348212i) q^{20} +(-0.134187 - 0.412986i) q^{21} +(0.398657 - 0.129532i) q^{22} +(4.78500 - 6.58598i) q^{23} +2.95945i q^{24} +(-4.22053 - 2.68088i) q^{25} -10.7109 q^{26} +(1.28920 - 1.77444i) q^{27} +(-5.50640 + 1.78914i) q^{28} +(5.36392 - 1.74284i) q^{29} +(1.24418 - 1.82995i) q^{30} +(5.75381 + 1.86952i) q^{31} +13.0693 q^{32} +(0.0183372 - 0.0564362i) q^{33} +(-4.88462 - 9.74572i) q^{34} +(2.49103 + 0.724271i) q^{35} +(-11.5466 - 8.38908i) q^{36} +(-4.52969 - 6.23458i) q^{37} +(4.51232 - 3.27839i) q^{38} +(-0.891254 + 1.22671i) q^{39} +(-14.6208 - 9.94068i) q^{40} +(-4.01143 - 5.52126i) q^{41} +(-0.354785 + 1.09192i) q^{42} -5.21309 q^{43} +(-0.752471 - 0.244493i) q^{44} +(2.16497 + 6.01732i) q^{45} +(-20.4703 + 6.65119i) q^{46} +(0.382134 + 1.17609i) q^{47} +(2.40335 - 3.30793i) q^{48} +5.65404 q^{49} +(4.86145 + 12.2934i) q^{50} +(-1.52262 - 0.251512i) q^{51} +(16.3558 + 11.8832i) q^{52} +(-3.30742 - 10.1792i) q^{53} +(-5.51523 + 1.79201i) q^{54} +(0.217222 + 0.280160i) q^{55} +(8.72412 + 2.83464i) q^{56} -0.789588i q^{57} +(-14.1820 - 4.60800i) q^{58} +(-6.36212 + 4.62235i) q^{59} +(-3.93014 + 1.41402i) q^{60} +(2.06036 - 2.83585i) q^{61} +(-9.40203 - 12.9408i) q^{62} +(-1.95024 - 2.68427i) q^{63} +(-10.2798 - 7.46873i) q^{64} +(-3.06669 - 8.52359i) q^{65} +(-0.126930 + 0.0922198i) q^{66} +(0.286942 - 0.883117i) q^{67} +(-3.35345 + 20.3013i) q^{68} +(-0.941581 + 2.89789i) q^{69} +(-4.20276 - 5.42048i) q^{70} +(8.23143 - 2.67455i) q^{71} +(6.98767 + 21.5058i) q^{72} +(-0.554257 + 0.762870i) q^{73} +20.3753i q^{74} +(1.81248 + 0.466164i) q^{75} -10.5277 q^{76} +(-0.148804 - 0.108112i) q^{77} +(3.81280 - 1.23885i) q^{78} +(11.8059 - 3.83596i) q^{79} +(8.26962 + 22.9846i) q^{80} +(2.39759 - 7.37902i) q^{81} +18.0441i q^{82} +(1.54222 - 4.74647i) q^{83} +(1.75320 - 1.27377i) q^{84} +(6.35699 - 6.67748i) q^{85} +(11.1508 + 8.10154i) q^{86} +(-1.70783 + 1.24081i) q^{87} +(0.736811 + 1.01413i) q^{88} +(-0.191227 - 0.138935i) q^{89} +(4.72052 - 16.2356i) q^{90} +(2.76252 + 3.80229i) q^{91} +(38.6379 + 12.5542i) q^{92} -2.26444 q^{93} +(1.01035 - 3.10952i) q^{94} +(3.90086 + 2.65220i) q^{95} +(-4.65235 + 1.51164i) q^{96} +(5.53280 - 1.79772i) q^{97} +(-12.0940 - 8.78681i) q^{98} -0.453409i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168 q - 8 q^{2} - 44 q^{4} - 4 q^{8} + 28 q^{9} - 18 q^{13} - 10 q^{15} - 28 q^{16} + 2 q^{17} - 60 q^{18} - 8 q^{19} + 32 q^{21} + 6 q^{25} + 52 q^{26} - 54 q^{30} + 44 q^{32} - 24 q^{33} + 26 q^{35} + 34 q^{36}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.13901 1.55408i −1.51251 1.09890i −0.965051 0.262064i \(-0.915597\pi\)
−0.547454 0.836835i \(-0.684403\pi\)
\(3\) −0.355974 + 0.115663i −0.205522 + 0.0667781i −0.409969 0.912100i \(-0.634460\pi\)
0.204447 + 0.978878i \(0.434460\pi\)
\(4\) 1.54215 + 4.74625i 0.771075 + 2.37312i
\(5\) 0.624287 2.14715i 0.279189 0.960236i
\(6\) 0.941180 + 0.305808i 0.384235 + 0.124846i
\(7\) 1.16016i 0.438498i 0.975669 + 0.219249i \(0.0703607\pi\)
−0.975669 + 0.219249i \(0.929639\pi\)
\(8\) 2.44332 7.51977i 0.863845 2.65864i
\(9\) −2.31371 + 1.68101i −0.771237 + 0.560337i
\(10\) −4.67220 + 3.62258i −1.47748 + 1.14556i
\(11\) −0.0931875 + 0.128262i −0.0280971 + 0.0386723i −0.822834 0.568281i \(-0.807609\pi\)
0.794737 + 0.606954i \(0.207609\pi\)
\(12\) −1.09793 1.51117i −0.316946 0.436238i
\(13\) 3.27739 2.38116i 0.908985 0.660416i −0.0317732 0.999495i \(-0.510115\pi\)
0.940758 + 0.339079i \(0.110115\pi\)
\(14\) 1.80297 2.48158i 0.481865 0.663231i
\(15\) 0.0261163 + 0.836538i 0.00674320 + 0.215993i
\(16\) −8.83779 + 6.42103i −2.20945 + 1.60526i
\(17\) 3.66123 + 1.89615i 0.887979 + 0.459885i
\(18\) 7.56146 1.78225
\(19\) −0.651885 + 2.00629i −0.149553 + 0.460275i −0.997568 0.0696956i \(-0.977797\pi\)
0.848016 + 0.529971i \(0.177797\pi\)
\(20\) 11.1537 0.348212i 2.49404 0.0778626i
\(21\) −0.134187 0.412986i −0.0292821 0.0901210i
\(22\) 0.398657 0.129532i 0.0849940 0.0276162i
\(23\) 4.78500 6.58598i 0.997741 1.37327i 0.0710393 0.997474i \(-0.477368\pi\)
0.926701 0.375799i \(-0.122632\pi\)
\(24\) 2.95945i 0.604095i
\(25\) −4.22053 2.68088i −0.844106 0.536176i
\(26\) −10.7109 −2.10057
\(27\) 1.28920 1.77444i 0.248107 0.341491i
\(28\) −5.50640 + 1.78914i −1.04061 + 0.338115i
\(29\) 5.36392 1.74284i 0.996055 0.323638i 0.234767 0.972052i \(-0.424567\pi\)
0.761288 + 0.648414i \(0.224567\pi\)
\(30\) 1.24418 1.82995i 0.227156 0.334101i
\(31\) 5.75381 + 1.86952i 1.03341 + 0.335777i 0.776139 0.630562i \(-0.217175\pi\)
0.257275 + 0.966338i \(0.417175\pi\)
\(32\) 13.0693 2.31036
\(33\) 0.0183372 0.0564362i 0.00319210 0.00982428i
\(34\) −4.88462 9.74572i −0.837706 1.67138i
\(35\) 2.49103 + 0.724271i 0.421062 + 0.122424i
\(36\) −11.5466 8.38908i −1.92443 1.39818i
\(37\) −4.52969 6.23458i −0.744676 1.02496i −0.998336 0.0576651i \(-0.981634\pi\)
0.253660 0.967293i \(-0.418366\pi\)
\(38\) 4.51232 3.27839i 0.731995 0.531826i
\(39\) −0.891254 + 1.22671i −0.142715 + 0.196430i
\(40\) −14.6208 9.94068i −2.31175 1.57176i
\(41\) −4.01143 5.52126i −0.626480 0.862276i 0.371324 0.928503i \(-0.378904\pi\)
−0.997805 + 0.0662271i \(0.978904\pi\)
\(42\) −0.354785 + 1.09192i −0.0547446 + 0.168486i
\(43\) −5.21309 −0.794988 −0.397494 0.917605i \(-0.630120\pi\)
−0.397494 + 0.917605i \(0.630120\pi\)
\(44\) −0.752471 0.244493i −0.113439 0.0368586i
\(45\) 2.16497 + 6.01732i 0.322734 + 0.897010i
\(46\) −20.4703 + 6.65119i −3.01818 + 0.980665i
\(47\) 0.382134 + 1.17609i 0.0557400 + 0.171550i 0.975051 0.221983i \(-0.0712528\pi\)
−0.919311 + 0.393533i \(0.871253\pi\)
\(48\) 2.40335 3.30793i 0.346894 0.477458i
\(49\) 5.65404 0.807719
\(50\) 4.86145 + 12.2934i 0.687512 + 1.73856i
\(51\) −1.52262 0.251512i −0.213209 0.0352188i
\(52\) 16.3558 + 11.8832i 2.26815 + 1.64790i
\(53\) −3.30742 10.1792i −0.454310 1.39822i −0.871944 0.489606i \(-0.837141\pi\)
0.417634 0.908615i \(-0.362859\pi\)
\(54\) −5.51523 + 1.79201i −0.750527 + 0.243861i
\(55\) 0.217222 + 0.280160i 0.0292902 + 0.0377768i
\(56\) 8.72412 + 2.83464i 1.16581 + 0.378794i
\(57\) 0.789588i 0.104584i
\(58\) −14.1820 4.60800i −1.86218 0.605060i
\(59\) −6.36212 + 4.62235i −0.828278 + 0.601779i −0.919072 0.394091i \(-0.871060\pi\)
0.0907936 + 0.995870i \(0.471060\pi\)
\(60\) −3.93014 + 1.41402i −0.507379 + 0.182549i
\(61\) 2.06036 2.83585i 0.263802 0.363093i −0.656483 0.754341i \(-0.727957\pi\)
0.920285 + 0.391248i \(0.127957\pi\)
\(62\) −9.40203 12.9408i −1.19406 1.64348i
\(63\) −1.95024 2.68427i −0.245707 0.338186i
\(64\) −10.2798 7.46873i −1.28498 0.933591i
\(65\) −3.06669 8.52359i −0.380376 1.05722i
\(66\) −0.126930 + 0.0922198i −0.0156240 + 0.0113515i
\(67\) 0.286942 0.883117i 0.0350555 0.107890i −0.931998 0.362464i \(-0.881935\pi\)
0.967053 + 0.254575i \(0.0819354\pi\)
\(68\) −3.35345 + 20.3013i −0.406665 + 2.46189i
\(69\) −0.941581 + 2.89789i −0.113353 + 0.348865i
\(70\) −4.20276 5.42048i −0.502326 0.647871i
\(71\) 8.23143 2.67455i 0.976891 0.317411i 0.223297 0.974751i \(-0.428318\pi\)
0.753595 + 0.657339i \(0.228318\pi\)
\(72\) 6.98767 + 21.5058i 0.823504 + 2.53449i
\(73\) −0.554257 + 0.762870i −0.0648709 + 0.0892872i −0.840220 0.542246i \(-0.817574\pi\)
0.775349 + 0.631533i \(0.217574\pi\)
\(74\) 20.3753i 2.36858i
\(75\) 1.81248 + 0.466164i 0.209287 + 0.0538280i
\(76\) −10.5277 −1.20761
\(77\) −0.148804 0.108112i −0.0169577 0.0123205i
\(78\) 3.81280 1.23885i 0.431714 0.140272i
\(79\) 11.8059 3.83596i 1.32827 0.431580i 0.442940 0.896551i \(-0.353936\pi\)
0.885326 + 0.464972i \(0.153936\pi\)
\(80\) 8.26962 + 22.9846i 0.924572 + 2.56976i
\(81\) 2.39759 7.37902i 0.266399 0.819892i
\(82\) 18.0441i 1.99264i
\(83\) 1.54222 4.74647i 0.169281 0.520993i −0.830045 0.557696i \(-0.811686\pi\)
0.999326 + 0.0367031i \(0.0116856\pi\)
\(84\) 1.75320 1.27377i 0.191290 0.138980i
\(85\) 6.35699 6.67748i 0.689512 0.724274i
\(86\) 11.1508 + 8.10154i 1.20242 + 0.873612i
\(87\) −1.70783 + 1.24081i −0.183099 + 0.133029i
\(88\) 0.736811 + 1.01413i 0.0785443 + 0.108107i
\(89\) −0.191227 0.138935i −0.0202701 0.0147271i 0.577604 0.816317i \(-0.303988\pi\)
−0.597874 + 0.801590i \(0.703988\pi\)
\(90\) 4.72052 16.2356i 0.497586 1.71138i
\(91\) 2.76252 + 3.80229i 0.289591 + 0.398588i
\(92\) 38.6379 + 12.5542i 4.02828 + 1.30887i
\(93\) −2.26444 −0.234812
\(94\) 1.01035 3.10952i 0.104209 0.320723i
\(95\) 3.90086 + 2.65220i 0.400220 + 0.272110i
\(96\) −4.65235 + 1.51164i −0.474829 + 0.154281i
\(97\) 5.53280 1.79772i 0.561771 0.182530i −0.0143469 0.999897i \(-0.504567\pi\)
0.576118 + 0.817367i \(0.304567\pi\)
\(98\) −12.0940 8.78681i −1.22168 0.887602i
\(99\) 0.453409i 0.0455694i
\(100\) 6.21542 24.1660i 0.621542 2.41660i
\(101\) 16.8443 1.67607 0.838033 0.545619i \(-0.183705\pi\)
0.838033 + 0.545619i \(0.183705\pi\)
\(102\) 2.86602 + 2.90426i 0.283778 + 0.287564i
\(103\) 3.99627 + 12.2993i 0.393764 + 1.21188i 0.929920 + 0.367763i \(0.119876\pi\)
−0.536155 + 0.844119i \(0.680124\pi\)
\(104\) −9.89809 30.4632i −0.970587 2.98716i
\(105\) −0.970516 + 0.0302990i −0.0947126 + 0.00295688i
\(106\) −8.74468 + 26.9134i −0.849358 + 2.61406i
\(107\) 9.71197i 0.938892i 0.882961 + 0.469446i \(0.155546\pi\)
−0.882961 + 0.469446i \(0.844454\pi\)
\(108\) 10.4101 + 3.38244i 1.00171 + 0.325475i
\(109\) −6.14770 8.46159i −0.588843 0.810473i 0.405787 0.913968i \(-0.366997\pi\)
−0.994630 + 0.103495i \(0.966997\pi\)
\(110\) −0.0292478 0.936843i −0.00278867 0.0893245i
\(111\) 2.33356 + 1.69543i 0.221492 + 0.160923i
\(112\) −7.44940 10.2532i −0.703902 0.968839i
\(113\) 5.90118 + 8.12228i 0.555136 + 0.764079i 0.990698 0.136079i \(-0.0434502\pi\)
−0.435562 + 0.900159i \(0.643450\pi\)
\(114\) −1.22708 + 1.68893i −0.114927 + 0.158183i
\(115\) −11.1539 14.3857i −1.04011 1.34147i
\(116\) 16.5439 + 22.7708i 1.53607 + 2.11421i
\(117\) −3.58018 + 11.0187i −0.330987 + 1.01867i
\(118\) 20.7921 1.91407
\(119\) −2.19983 + 4.24760i −0.201659 + 0.389377i
\(120\) 6.35439 + 1.84754i 0.580073 + 0.168657i
\(121\) 3.39142 + 10.4377i 0.308311 + 0.948883i
\(122\) −8.81425 + 2.86392i −0.798005 + 0.259288i
\(123\) 2.06657 + 1.50145i 0.186337 + 0.135381i
\(124\) 30.1921i 2.71133i
\(125\) −8.39108 + 7.38849i −0.750521 + 0.660847i
\(126\) 8.77248i 0.781515i
\(127\) −3.26349 2.37107i −0.289588 0.210398i 0.433501 0.901153i \(-0.357278\pi\)
−0.723089 + 0.690755i \(0.757278\pi\)
\(128\) 2.30430 + 7.09192i 0.203674 + 0.626843i
\(129\) 1.85572 0.602961i 0.163387 0.0530878i
\(130\) −6.68665 + 22.9979i −0.586458 + 2.01705i
\(131\) −18.9049 6.14258i −1.65173 0.536679i −0.672615 0.739992i \(-0.734829\pi\)
−0.979114 + 0.203313i \(0.934829\pi\)
\(132\) 0.296139 0.0257756
\(133\) −2.32762 0.756288i −0.201830 0.0655785i
\(134\) −1.98620 + 1.44306i −0.171582 + 0.124661i
\(135\) −3.00515 3.87587i −0.258643 0.333582i
\(136\) 23.2042 22.8987i 1.98974 1.96355i
\(137\) −11.3659 + 8.25781i −0.971055 + 0.705513i −0.955692 0.294369i \(-0.904890\pi\)
−0.0153631 + 0.999882i \(0.504890\pi\)
\(138\) 6.51759 4.73531i 0.554814 0.403096i
\(139\) −3.80974 + 5.24365i −0.323138 + 0.444761i −0.939422 0.342763i \(-0.888637\pi\)
0.616284 + 0.787524i \(0.288637\pi\)
\(140\) 0.403981 + 12.9400i 0.0341426 + 1.09363i
\(141\) −0.272060 0.374458i −0.0229116 0.0315351i
\(142\) −21.7635 7.07140i −1.82636 0.593419i
\(143\) 0.642258i 0.0537083i
\(144\) 9.65428 29.7128i 0.804523 2.47607i
\(145\) −0.393528 12.6052i −0.0326807 1.04680i
\(146\) 2.37112 0.770423i 0.196235 0.0637607i
\(147\) −2.01269 + 0.653963i −0.166004 + 0.0539380i
\(148\) 22.6054 31.1137i 1.85815 2.55753i
\(149\) −15.4603 −1.26656 −0.633279 0.773924i \(-0.718291\pi\)
−0.633279 + 0.773924i \(0.718291\pi\)
\(150\) −3.15245 3.81386i −0.257396 0.311401i
\(151\) 15.4718 1.25908 0.629539 0.776969i \(-0.283244\pi\)
0.629539 + 0.776969i \(0.283244\pi\)
\(152\) 13.4941 + 9.80405i 1.09452 + 0.795213i
\(153\) −11.6585 + 1.76741i −0.942532 + 0.142887i
\(154\) 0.150277 + 0.462505i 0.0121097 + 0.0372697i
\(155\) 7.60618 11.1872i 0.610943 0.898576i
\(156\) −7.19670 2.33835i −0.576197 0.187218i
\(157\) −2.29408 −0.183087 −0.0915436 0.995801i \(-0.529180\pi\)
−0.0915436 + 0.995801i \(0.529180\pi\)
\(158\) −31.2142 10.1421i −2.48327 0.806864i
\(159\) 2.35472 + 3.24099i 0.186741 + 0.257027i
\(160\) 8.15902 28.0619i 0.645027 2.21849i
\(161\) 7.64077 + 5.55135i 0.602177 + 0.437507i
\(162\) −16.5960 + 12.0577i −1.30391 + 0.947345i
\(163\) 12.4569 + 17.1454i 0.975698 + 1.34293i 0.939115 + 0.343603i \(0.111647\pi\)
0.0365830 + 0.999331i \(0.488353\pi\)
\(164\) 20.0191 27.5539i 1.56323 2.15160i
\(165\) −0.109729 0.0746052i −0.00854243 0.00580801i
\(166\) −10.6752 + 7.75599i −0.828556 + 0.601982i
\(167\) 0.126289 + 0.0410339i 0.00977257 + 0.00317530i 0.313899 0.949456i \(-0.398365\pi\)
−0.304127 + 0.952632i \(0.598365\pi\)
\(168\) −3.43342 −0.264894
\(169\) 1.05413 3.24428i 0.0810869 0.249560i
\(170\) −23.9750 + 4.40391i −1.83879 + 0.337764i
\(171\) −1.86433 5.73781i −0.142569 0.438781i
\(172\) −8.03936 24.7426i −0.612995 1.88661i
\(173\) 3.50306 4.82154i 0.266332 0.366575i −0.654815 0.755789i \(-0.727253\pi\)
0.921147 + 0.389214i \(0.127253\pi\)
\(174\) 5.58139 0.423124
\(175\) 3.11024 4.89648i 0.235112 0.370139i
\(176\) 1.73191i 0.130548i
\(177\) 1.73012 2.38130i 0.130044 0.178990i
\(178\) 0.193121 + 0.594364i 0.0144750 + 0.0445495i
\(179\) 5.72829 + 17.6299i 0.428153 + 1.31772i 0.899943 + 0.436008i \(0.143608\pi\)
−0.471790 + 0.881711i \(0.656392\pi\)
\(180\) −25.2210 + 19.5551i −1.87986 + 1.45755i
\(181\) −2.26572 0.736177i −0.168410 0.0547196i 0.223599 0.974681i \(-0.428220\pi\)
−0.392008 + 0.919962i \(0.628220\pi\)
\(182\) 12.4263i 0.921098i
\(183\) −0.405434 + 1.24780i −0.0299705 + 0.0922397i
\(184\) −37.8338 52.0737i −2.78914 3.83893i
\(185\) −16.2144 + 5.83377i −1.19211 + 0.428907i
\(186\) 4.84365 + 3.51912i 0.355154 + 0.258034i
\(187\) −0.584385 + 0.292898i −0.0427344 + 0.0214188i
\(188\) −4.99270 + 3.62741i −0.364130 + 0.264556i
\(189\) 2.05863 + 1.49568i 0.149743 + 0.108795i
\(190\) −4.22223 11.7353i −0.306313 0.851368i
\(191\) 18.0124 13.0868i 1.30333 0.946925i 0.303348 0.952880i \(-0.401896\pi\)
0.999982 + 0.00595506i \(0.00189557\pi\)
\(192\) 4.52321 + 1.46968i 0.326434 + 0.106065i
\(193\) 13.8247i 0.995126i −0.867428 0.497563i \(-0.834228\pi\)
0.867428 0.497563i \(-0.165772\pi\)
\(194\) −14.6285 4.75308i −1.05026 0.341251i
\(195\) 2.07753 + 2.67948i 0.148775 + 0.191881i
\(196\) 8.71937 + 26.8355i 0.622812 + 1.91682i
\(197\) −13.0461 + 4.23892i −0.929493 + 0.302010i −0.734355 0.678765i \(-0.762515\pi\)
−0.195137 + 0.980776i \(0.562515\pi\)
\(198\) −0.704634 + 0.969845i −0.0500761 + 0.0689239i
\(199\) 26.7064i 1.89316i 0.322463 + 0.946582i \(0.395489\pi\)
−0.322463 + 0.946582i \(0.604511\pi\)
\(200\) −30.4717 + 25.1872i −2.15468 + 1.78100i
\(201\) 0.347555i 0.0245147i
\(202\) −36.0300 26.1773i −2.53506 1.84183i
\(203\) 2.02197 + 6.22299i 0.141915 + 0.436768i
\(204\) −1.15437 7.61460i −0.0808217 0.533129i
\(205\) −14.3593 + 5.16631i −1.00290 + 0.360831i
\(206\) 10.5660 32.5187i 0.736166 2.26568i
\(207\) 23.2817i 1.61819i
\(208\) −13.6754 + 42.0884i −0.948216 + 2.91831i
\(209\) −0.196583 0.270573i −0.0135979 0.0187160i
\(210\) 2.12303 + 1.44345i 0.146503 + 0.0996074i
\(211\) −5.20269 + 7.16088i −0.358168 + 0.492976i −0.949637 0.313352i \(-0.898548\pi\)
0.591469 + 0.806327i \(0.298548\pi\)
\(212\) 43.2125 31.3957i 2.96785 2.15627i
\(213\) −2.62083 + 1.90415i −0.179576 + 0.130470i
\(214\) 15.0932 20.7740i 1.03175 1.42008i
\(215\) −3.25446 + 11.1933i −0.221952 + 0.763376i
\(216\) −10.1934 14.0300i −0.693574 0.954623i
\(217\) −2.16894 + 6.67532i −0.147237 + 0.453150i
\(218\) 27.6534i 1.87292i
\(219\) 0.109066 0.335669i 0.00736997 0.0226824i
\(220\) −0.994720 + 1.46304i −0.0670640 + 0.0986379i
\(221\) 16.5143 2.50356i 1.11087 0.168407i
\(222\) −2.35667 7.25308i −0.158169 0.486795i
\(223\) 4.33472 + 3.14936i 0.290274 + 0.210897i 0.723386 0.690444i \(-0.242585\pi\)
−0.433112 + 0.901340i \(0.642585\pi\)
\(224\) 15.1625i 1.01309i
\(225\) 14.2717 0.891979i 0.951445 0.0594652i
\(226\) 26.5445i 1.76571i
\(227\) 13.0145 17.9129i 0.863801 1.18892i −0.116848 0.993150i \(-0.537279\pi\)
0.980650 0.195771i \(-0.0627208\pi\)
\(228\) 3.74758 1.21766i 0.248190 0.0806417i
\(229\) −1.07460 3.30729i −0.0710118 0.218552i 0.909252 0.416246i \(-0.136655\pi\)
−0.980264 + 0.197694i \(0.936655\pi\)
\(230\) 1.50182 + 48.1050i 0.0990268 + 3.17195i
\(231\) 0.0654749 + 0.0212741i 0.00430793 + 0.00139973i
\(232\) 44.5938i 2.92772i
\(233\) −19.4057 6.30529i −1.27131 0.413073i −0.405798 0.913963i \(-0.633006\pi\)
−0.865511 + 0.500889i \(0.833006\pi\)
\(234\) 24.7819 18.0051i 1.62004 1.17703i
\(235\) 2.76380 0.0862845i 0.180291 0.00562858i
\(236\) −31.7502 23.0679i −2.06676 1.50159i
\(237\) −3.75891 + 2.73101i −0.244168 + 0.177398i
\(238\) 11.3066 5.66693i 0.732896 0.367332i
\(239\) −0.820630 0.596223i −0.0530821 0.0385664i 0.560928 0.827865i \(-0.310445\pi\)
−0.614010 + 0.789298i \(0.710445\pi\)
\(240\) −5.60225 7.22545i −0.361623 0.466401i
\(241\) 2.33496 + 3.21379i 0.150408 + 0.207018i 0.877572 0.479445i \(-0.159162\pi\)
−0.727164 + 0.686464i \(0.759162\pi\)
\(242\) 8.96676 27.5969i 0.576405 1.77399i
\(243\) 9.48403i 0.608401i
\(244\) 16.6370 + 5.40570i 1.06508 + 0.346064i
\(245\) 3.52974 12.1401i 0.225507 0.775601i
\(246\) −2.08703 6.42323i −0.133064 0.409530i
\(247\) 2.64084 + 8.12765i 0.168032 + 0.517150i
\(248\) 28.1168 38.6994i 1.78542 2.45742i
\(249\) 1.86800i 0.118380i
\(250\) 29.4309 2.76364i 1.86137 0.174788i
\(251\) −0.275968 −0.0174189 −0.00870946 0.999962i \(-0.502772\pi\)
−0.00870946 + 0.999962i \(0.502772\pi\)
\(252\) 9.73265 13.3958i 0.613100 0.843859i
\(253\) 0.398827 + 1.22746i 0.0250740 + 0.0771699i
\(254\) 3.29581 + 10.1434i 0.206797 + 0.636456i
\(255\) −1.49059 + 3.11228i −0.0933441 + 0.194899i
\(256\) −1.76061 + 5.41859i −0.110038 + 0.338662i
\(257\) 5.55790 0.346692 0.173346 0.984861i \(-0.444542\pi\)
0.173346 + 0.984861i \(0.444542\pi\)
\(258\) −4.90645 1.59420i −0.305462 0.0992508i
\(259\) 7.23309 5.25515i 0.449442 0.326539i
\(260\) 35.7258 27.6999i 2.21562 1.71788i
\(261\) −9.48082 + 13.0492i −0.586848 + 0.807727i
\(262\) 30.8916 + 42.5187i 1.90849 + 2.62681i
\(263\) 9.27346 6.73757i 0.571826 0.415456i −0.263942 0.964539i \(-0.585023\pi\)
0.835768 + 0.549082i \(0.185023\pi\)
\(264\) −0.379584 0.275784i −0.0233618 0.0169733i
\(265\) −23.9211 + 0.746805i −1.46946 + 0.0458758i
\(266\) 3.80345 + 5.23500i 0.233205 + 0.320979i
\(267\) 0.0841416 + 0.0273393i 0.00514938 + 0.00167314i
\(268\) 4.63400 0.283067
\(269\) −12.6730 4.11771i −0.772688 0.251061i −0.103973 0.994580i \(-0.533155\pi\)
−0.668715 + 0.743519i \(0.733155\pi\)
\(270\) 0.404629 + 12.9608i 0.0246249 + 0.788767i
\(271\) −5.54966 17.0801i −0.337118 1.03754i −0.965669 0.259775i \(-0.916352\pi\)
0.628551 0.777768i \(-0.283648\pi\)
\(272\) −44.5324 + 6.75107i −2.70018 + 0.409344i
\(273\) −1.42317 1.03400i −0.0861343 0.0625802i
\(274\) 37.1450 2.24401
\(275\) 0.737155 0.291508i 0.0444521 0.0175786i
\(276\) −15.2062 −0.915303
\(277\) −2.33430 + 3.21289i −0.140255 + 0.193044i −0.873366 0.487065i \(-0.838067\pi\)
0.733111 + 0.680109i \(0.238067\pi\)
\(278\) 16.2981 5.29557i 0.977494 0.317607i
\(279\) −16.4553 + 5.34666i −0.985155 + 0.320096i
\(280\) 11.5327 16.9624i 0.689214 1.01370i
\(281\) −0.340613 + 1.04830i −0.0203193 + 0.0625364i −0.960702 0.277582i \(-0.910467\pi\)
0.940383 + 0.340118i \(0.110467\pi\)
\(282\) 1.22377i 0.0728745i
\(283\) 10.2867 + 3.34234i 0.611478 + 0.198681i 0.598353 0.801232i \(-0.295822\pi\)
0.0131253 + 0.999914i \(0.495822\pi\)
\(284\) 25.3882 + 34.9439i 1.50651 + 2.07354i
\(285\) −1.69537 0.492929i −0.100425 0.0291986i
\(286\) 0.998120 1.37379i 0.0590200 0.0812341i
\(287\) 6.40553 4.65389i 0.378107 0.274710i
\(288\) −30.2387 + 21.9697i −1.78183 + 1.29458i
\(289\) 9.80921 + 13.8845i 0.577012 + 0.816735i
\(290\) −18.7477 + 27.5741i −1.10090 + 1.61921i
\(291\) −1.76161 + 1.27988i −0.103267 + 0.0750280i
\(292\) −4.47552 1.45418i −0.261910 0.0850997i
\(293\) 20.4738 1.19609 0.598047 0.801461i \(-0.295944\pi\)
0.598047 + 0.801461i \(0.295944\pi\)
\(294\) 5.32147 + 1.72905i 0.310354 + 0.100840i
\(295\) 5.95311 + 16.5461i 0.346604 + 0.963353i
\(296\) −57.9501 + 18.8291i −3.36828 + 1.09442i
\(297\) 0.107454 + 0.330711i 0.00623514 + 0.0191898i
\(298\) 33.0697 + 24.0265i 1.91567 + 1.39182i
\(299\) 32.9787i 1.90721i
\(300\) 0.582585 + 9.32138i 0.0336356 + 0.538170i
\(301\) 6.04800i 0.348601i
\(302\) −33.0943 24.0444i −1.90436 1.38360i
\(303\) −5.99612 + 1.94826i −0.344468 + 0.111925i
\(304\) −7.12126 21.9170i −0.408432 1.25702i
\(305\) −4.80274 6.19429i −0.275004 0.354684i
\(306\) 27.6842 + 14.3377i 1.58260 + 0.819631i
\(307\) −28.2888 −1.61453 −0.807263 0.590192i \(-0.799052\pi\)
−0.807263 + 0.590192i \(0.799052\pi\)
\(308\) 0.283650 0.872984i 0.0161624 0.0497429i
\(309\) −2.84514 3.91600i −0.161854 0.222773i
\(310\) −33.6554 + 12.1088i −1.91150 + 0.687736i
\(311\) −4.30029 + 5.91884i −0.243847 + 0.335627i −0.913345 0.407188i \(-0.866510\pi\)
0.669497 + 0.742814i \(0.266510\pi\)
\(312\) 7.04693 + 9.69927i 0.398954 + 0.549113i
\(313\) −14.7613 20.3172i −0.834357 1.14839i −0.987096 0.160127i \(-0.948810\pi\)
0.152740 0.988266i \(-0.451190\pi\)
\(314\) 4.90704 + 3.56518i 0.276920 + 0.201194i
\(315\) −6.98104 + 2.51170i −0.393337 + 0.141518i
\(316\) 36.4129 + 50.1180i 2.04838 + 2.81936i
\(317\) −30.6939 9.97305i −1.72394 0.560142i −0.731389 0.681961i \(-0.761127\pi\)
−0.992552 + 0.121818i \(0.961127\pi\)
\(318\) 10.5919i 0.593964i
\(319\) −0.276310 + 0.850396i −0.0154704 + 0.0476130i
\(320\) −22.4541 + 17.4097i −1.25522 + 0.973233i
\(321\) −1.12332 3.45721i −0.0626974 0.192963i
\(322\) −7.71643 23.7487i −0.430020 1.32346i
\(323\) −6.19094 + 6.10943i −0.344473 + 0.339938i
\(324\) 38.7201 2.15112
\(325\) −20.2159 + 1.26350i −1.12138 + 0.0700861i
\(326\) 56.0331i 3.10339i
\(327\) 3.16712 + 2.30105i 0.175142 + 0.127248i
\(328\) −51.3198 + 16.6748i −2.83366 + 0.920713i
\(329\) −1.36445 + 0.443336i −0.0752244 + 0.0244419i
\(330\) 0.118770 + 0.330109i 0.00653805 + 0.0181719i
\(331\) −4.31303 + 13.2741i −0.237065 + 0.729612i 0.759775 + 0.650186i \(0.225309\pi\)
−0.996841 + 0.0794267i \(0.974691\pi\)
\(332\) 24.9063 1.36691
\(333\) 20.9608 + 6.81057i 1.14864 + 0.373217i
\(334\) −0.206364 0.284035i −0.0112917 0.0155417i
\(335\) −1.71705 1.16743i −0.0938126 0.0637833i
\(336\) 3.83772 + 2.78826i 0.209365 + 0.152112i
\(337\) 14.5173 + 19.9813i 0.790805 + 1.08845i 0.994007 + 0.109313i \(0.0348652\pi\)
−0.203202 + 0.979137i \(0.565135\pi\)
\(338\) −7.29665 + 5.30132i −0.396885 + 0.288354i
\(339\) −3.04012 2.20877i −0.165116 0.119964i
\(340\) 41.4964 + 19.8742i 2.25046 + 1.07783i
\(341\) −0.775971 + 0.563776i −0.0420212 + 0.0305302i
\(342\) −4.92920 + 15.1705i −0.266541 + 0.820328i
\(343\) 14.6807i 0.792682i
\(344\) −12.7372 + 39.2012i −0.686746 + 2.11359i
\(345\) 5.63439 + 3.83083i 0.303345 + 0.206245i
\(346\) −14.9861 + 4.86928i −0.805658 + 0.261774i
\(347\) 8.19542 2.66285i 0.439953 0.142949i −0.0806609 0.996742i \(-0.525703\pi\)
0.520614 + 0.853792i \(0.325703\pi\)
\(348\) −8.52295 6.19229i −0.456878 0.331942i
\(349\) −10.5358 −0.563966 −0.281983 0.959419i \(-0.590992\pi\)
−0.281983 + 0.959419i \(0.590992\pi\)
\(350\) −14.2623 + 5.64004i −0.762354 + 0.301473i
\(351\) 8.88533i 0.474264i
\(352\) −1.21790 + 1.67630i −0.0649143 + 0.0893468i
\(353\) −2.62310 8.07307i −0.139614 0.429686i 0.856666 0.515872i \(-0.172532\pi\)
−0.996279 + 0.0861859i \(0.972532\pi\)
\(354\) −7.40146 + 2.40488i −0.393383 + 0.127818i
\(355\) −0.603905 19.3438i −0.0320520 1.02666i
\(356\) 0.364518 1.12187i 0.0193194 0.0594590i
\(357\) 0.291794 1.76648i 0.0154434 0.0934919i
\(358\) 15.1454 46.6126i 0.800457 2.46355i
\(359\) −16.7441 + 12.1653i −0.883719 + 0.642059i −0.934233 0.356664i \(-0.883914\pi\)
0.0505141 + 0.998723i \(0.483914\pi\)
\(360\) 50.5386 1.57779i 2.66362 0.0831569i
\(361\) 11.7711 + 8.55218i 0.619529 + 0.450114i
\(362\) 3.70231 + 5.09580i 0.194589 + 0.267829i
\(363\) −2.41452 3.32330i −0.126729 0.174428i
\(364\) −13.7864 + 18.9753i −0.722603 + 0.994577i
\(365\) 1.29198 + 1.66633i 0.0676255 + 0.0872194i
\(366\) 2.80640 2.03897i 0.146693 0.106579i
\(367\) −13.5290 4.39585i −0.706210 0.229461i −0.0661757 0.997808i \(-0.521080\pi\)
−0.640034 + 0.768347i \(0.721080\pi\)
\(368\) 88.9301i 4.63580i
\(369\) 18.5626 + 6.03135i 0.966330 + 0.313980i
\(370\) 43.7489 + 12.7200i 2.27439 + 0.661282i
\(371\) 11.8095 3.83713i 0.613117 0.199214i
\(372\) −3.49211 10.7476i −0.181057 0.557237i
\(373\) −24.1497 17.5458i −1.25043 0.908487i −0.252179 0.967681i \(-0.581147\pi\)
−0.998247 + 0.0591937i \(0.981147\pi\)
\(374\) 1.70519 + 0.281670i 0.0881731 + 0.0145648i
\(375\) 2.13243 3.60065i 0.110118 0.185937i
\(376\) 9.77759 0.504241
\(377\) 13.4297 18.4843i 0.691663 0.951992i
\(378\) −2.07901 6.39853i −0.106933 0.329105i
\(379\) 4.41964 1.43603i 0.227022 0.0737639i −0.193297 0.981140i \(-0.561918\pi\)
0.420319 + 0.907376i \(0.361918\pi\)
\(380\) −6.57229 + 22.6045i −0.337151 + 1.15959i
\(381\) 1.43596 + 0.466573i 0.0735667 + 0.0239033i
\(382\) −58.8664 −3.01187
\(383\) −1.53572 + 4.72645i −0.0784715 + 0.241510i −0.982595 0.185761i \(-0.940525\pi\)
0.904123 + 0.427271i \(0.140525\pi\)
\(384\) −1.64055 2.25802i −0.0837188 0.115229i
\(385\) −0.325029 + 0.252011i −0.0165650 + 0.0128437i
\(386\) −21.4847 + 29.5712i −1.09354 + 1.50513i
\(387\) 12.0616 8.76325i 0.613124 0.445461i
\(388\) 17.0648 + 23.4877i 0.866335 + 1.19241i
\(389\) −7.21454 5.24167i −0.365792 0.265763i 0.389672 0.920954i \(-0.372588\pi\)
−0.755464 + 0.655191i \(0.772588\pi\)
\(390\) −0.279728 8.96005i −0.0141646 0.453710i
\(391\) 30.0070 15.0397i 1.51752 0.760591i
\(392\) 13.8146 42.5171i 0.697744 2.14744i
\(393\) 7.44013 0.375305
\(394\) 34.4932 + 11.2075i 1.73774 + 0.564626i
\(395\) −0.866147 27.7438i −0.0435806 1.39594i
\(396\) 2.15199 0.699225i 0.108142 0.0351374i
\(397\) 11.6937 3.79951i 0.586890 0.190692i −0.000495067 1.00000i \(-0.500158\pi\)
0.587385 + 0.809308i \(0.300158\pi\)
\(398\) 41.5038 57.1251i 2.08040 2.86342i
\(399\) 0.916046 0.0458597
\(400\) 54.5142 3.40713i 2.72571 0.170357i
\(401\) 8.51040i 0.424989i −0.977162 0.212495i \(-0.931841\pi\)
0.977162 0.212495i \(-0.0681588\pi\)
\(402\) 0.540128 0.743423i 0.0269391 0.0370786i
\(403\) 23.3091 7.57359i 1.16111 0.377267i
\(404\) 25.9764 + 79.9471i 1.29237 + 3.97752i
\(405\) −14.3471 9.75462i −0.712914 0.484711i
\(406\) 5.34600 16.4533i 0.265318 0.816564i
\(407\) 1.22177 0.0605608
\(408\) −5.61156 + 10.8352i −0.277814 + 0.536423i
\(409\) −32.5839 + 23.6736i −1.61117 + 1.17058i −0.751492 + 0.659742i \(0.770666\pi\)
−0.859676 + 0.510840i \(0.829334\pi\)
\(410\) 38.7434 + 11.2647i 1.91340 + 0.556323i
\(411\) 3.09085 4.25418i 0.152460 0.209843i
\(412\) −52.2125 + 37.9346i −2.57232 + 1.86890i
\(413\) −5.36266 7.38106i −0.263879 0.363198i
\(414\) 36.1816 49.7996i 1.77823 2.44752i
\(415\) −9.22861 6.27454i −0.453015 0.308005i
\(416\) 42.8334 31.1203i 2.10008 1.52580i
\(417\) 0.749671 2.30725i 0.0367116 0.112987i
\(418\) 0.884263i 0.0432507i
\(419\) 5.23163 + 1.69986i 0.255582 + 0.0830436i 0.434006 0.900910i \(-0.357100\pi\)
−0.178424 + 0.983954i \(0.557100\pi\)
\(420\) −1.64049 4.55958i −0.0800476 0.222485i
\(421\) 8.87870 + 27.3258i 0.432721 + 1.33178i 0.895404 + 0.445256i \(0.146887\pi\)
−0.462682 + 0.886524i \(0.653113\pi\)
\(422\) 22.2571 7.23179i 1.08346 0.352038i
\(423\) −2.86116 2.07876i −0.139114 0.101073i
\(424\) −84.6264 −4.10982
\(425\) −10.3690 17.8181i −0.502970 0.864304i
\(426\) 8.56516 0.414984
\(427\) 3.29003 + 2.39034i 0.159216 + 0.115677i
\(428\) −46.0954 + 14.9773i −2.22811 + 0.723956i
\(429\) −0.0742856 0.228627i −0.00358654 0.0110382i
\(430\) 24.3566 18.8848i 1.17458 0.910707i
\(431\) −6.63952 2.15731i −0.319814 0.103914i 0.144711 0.989474i \(-0.453775\pi\)
−0.464525 + 0.885560i \(0.653775\pi\)
\(432\) 23.9601i 1.15278i
\(433\) −5.97762 + 18.3972i −0.287266 + 0.884114i 0.698444 + 0.715664i \(0.253876\pi\)
−0.985710 + 0.168449i \(0.946124\pi\)
\(434\) 15.0133 10.9078i 0.720664 0.523593i
\(435\) 1.59804 + 4.44161i 0.0766202 + 0.212959i
\(436\) 30.6801 42.2276i 1.46931 2.02233i
\(437\) 10.0942 + 13.8934i 0.482869 + 0.664612i
\(438\) −0.754948 + 0.548502i −0.0360728 + 0.0262084i
\(439\) 14.3775 19.7889i 0.686200 0.944473i −0.313788 0.949493i \(-0.601598\pi\)
0.999987 + 0.00502013i \(0.00159796\pi\)
\(440\) 2.63748 0.948936i 0.125737 0.0452388i
\(441\) −13.0818 + 9.50449i −0.622943 + 0.452595i
\(442\) −39.2150 20.3094i −1.86527 0.966022i
\(443\) −31.6552 −1.50399 −0.751993 0.659171i \(-0.770907\pi\)
−0.751993 + 0.659171i \(0.770907\pi\)
\(444\) −4.44824 + 13.6903i −0.211104 + 0.649712i
\(445\) −0.417695 + 0.323859i −0.0198006 + 0.0153524i
\(446\) −4.37764 13.4730i −0.207287 0.637964i
\(447\) 5.50347 1.78819i 0.260305 0.0845783i
\(448\) 8.66490 11.9262i 0.409378 0.563460i
\(449\) 23.4934i 1.10872i 0.832276 + 0.554362i \(0.187038\pi\)
−0.832276 + 0.554362i \(0.812962\pi\)
\(450\) −31.9134 20.2714i −1.50441 0.955601i
\(451\) 1.08198 0.0509485
\(452\) −29.4498 + 40.5342i −1.38520 + 1.90657i
\(453\) −5.50756 + 1.78952i −0.258768 + 0.0840788i
\(454\) −55.6761 + 18.0903i −2.61301 + 0.849018i
\(455\) 9.88870 3.55784i 0.463590 0.166794i
\(456\) −5.93752 1.92922i −0.278050 0.0903439i
\(457\) 30.5760 1.43028 0.715142 0.698979i \(-0.246362\pi\)
0.715142 + 0.698979i \(0.246362\pi\)
\(458\) −2.84120 + 8.74433i −0.132761 + 0.408596i
\(459\) 8.08467 4.05209i 0.377360 0.189136i
\(460\) 51.0769 75.1240i 2.38147 3.50268i
\(461\) 4.86925 + 3.53772i 0.226783 + 0.164768i 0.695375 0.718647i \(-0.255238\pi\)
−0.468591 + 0.883415i \(0.655238\pi\)
\(462\) −0.106989 0.147258i −0.00497760 0.00685108i
\(463\) −4.83170 + 3.51044i −0.224548 + 0.163144i −0.694372 0.719617i \(-0.744318\pi\)
0.469823 + 0.882760i \(0.344318\pi\)
\(464\) −36.2143 + 49.8448i −1.68121 + 2.31398i
\(465\) −1.41366 + 4.86210i −0.0655569 + 0.225475i
\(466\) 31.7100 + 43.6450i 1.46894 + 2.02182i
\(467\) −8.59414 + 26.4500i −0.397689 + 1.22396i 0.529158 + 0.848523i \(0.322508\pi\)
−0.926847 + 0.375439i \(0.877492\pi\)
\(468\) −57.8184 −2.67266
\(469\) 1.02455 + 0.332898i 0.0473095 + 0.0153718i
\(470\) −6.04588 4.11060i −0.278876 0.189608i
\(471\) 0.816632 0.265340i 0.0376284 0.0122262i
\(472\) 19.2143 + 59.1356i 0.884411 + 2.72194i
\(473\) 0.485795 0.668639i 0.0223369 0.0307440i
\(474\) 12.2845 0.564247
\(475\) 8.12993 6.72001i 0.373027 0.308335i
\(476\) −23.5527 3.89053i −1.07953 0.178322i
\(477\) 24.7638 + 17.9919i 1.13385 + 0.823794i
\(478\) 0.828755 + 2.55065i 0.0379064 + 0.116664i
\(479\) −28.7904 + 9.35456i −1.31547 + 0.427421i −0.880935 0.473237i \(-0.843086\pi\)
−0.434530 + 0.900657i \(0.643086\pi\)
\(480\) 0.341323 + 10.9330i 0.0155792 + 0.499021i
\(481\) −29.6911 9.64723i −1.35380 0.439876i
\(482\) 10.5030i 0.478399i
\(483\) −3.36201 1.09238i −0.152977 0.0497051i
\(484\) −44.3099 + 32.1930i −2.01409 + 1.46332i
\(485\) −0.405918 13.0021i −0.0184318 0.590393i
\(486\) 14.7389 20.2864i 0.668571 0.920209i
\(487\) −17.8876 24.6201i −0.810563 1.11564i −0.991236 0.132101i \(-0.957828\pi\)
0.180674 0.983543i \(-0.442172\pi\)
\(488\) −16.2908 22.4223i −0.737449 1.01501i
\(489\) −6.41742 4.66253i −0.290206 0.210847i
\(490\) −26.4168 + 20.4822i −1.19339 + 0.925292i
\(491\) −12.1606 + 8.83517i −0.548799 + 0.398726i −0.827342 0.561698i \(-0.810148\pi\)
0.278544 + 0.960424i \(0.410148\pi\)
\(492\) −3.93931 + 12.1239i −0.177598 + 0.546589i
\(493\) 22.9432 + 3.78986i 1.03331 + 0.170687i
\(494\) 6.98225 21.4892i 0.314146 0.966843i
\(495\) −0.973540 0.283057i −0.0437573 0.0127225i
\(496\) −62.8552 + 20.4229i −2.82228 + 0.917015i
\(497\) 3.10290 + 9.54976i 0.139184 + 0.428365i
\(498\) 2.90302 3.99566i 0.130087 0.179050i
\(499\) 20.5765i 0.921130i −0.887626 0.460565i \(-0.847647\pi\)
0.887626 0.460565i \(-0.152353\pi\)
\(500\) −48.0079 28.4320i −2.14698 1.27152i
\(501\) −0.0497019 −0.00222052
\(502\) 0.590296 + 0.428875i 0.0263462 + 0.0191416i
\(503\) −8.18400 + 2.65914i −0.364906 + 0.118565i −0.485730 0.874109i \(-0.661446\pi\)
0.120824 + 0.992674i \(0.461446\pi\)
\(504\) −24.9501 + 8.10679i −1.11137 + 0.361105i
\(505\) 10.5156 36.1672i 0.467940 1.60942i
\(506\) 1.05448 3.24536i 0.0468774 0.144274i
\(507\) 1.27680i 0.0567048i
\(508\) 6.22088 19.1459i 0.276007 0.849461i
\(509\) 20.5422 14.9248i 0.910518 0.661530i −0.0306282 0.999531i \(-0.509751\pi\)
0.941146 + 0.338001i \(0.109751\pi\)
\(510\) 8.02510 4.34069i 0.355357 0.192209i
\(511\) −0.885049 0.643026i −0.0391523 0.0284458i
\(512\) 24.2523 17.6204i 1.07181 0.778717i
\(513\) 2.71963 + 3.74325i 0.120075 + 0.165269i
\(514\) −11.8884 8.63741i −0.524374 0.380980i
\(515\) 28.9032 0.902344i 1.27363 0.0397620i
\(516\) 5.72361 + 7.87788i 0.251968 + 0.346804i
\(517\) −0.186457 0.0605836i −0.00820037 0.00266446i
\(518\) −23.6385 −1.03862
\(519\) −0.689323 + 2.12152i −0.0302579 + 0.0931244i
\(520\) −71.5884 + 2.23495i −3.13936 + 0.0980092i
\(521\) 10.0997 3.28159i 0.442475 0.143769i −0.0793021 0.996851i \(-0.525269\pi\)
0.521777 + 0.853082i \(0.325269\pi\)
\(522\) 40.5591 13.1784i 1.77522 0.576805i
\(523\) 15.4162 + 11.2005i 0.674104 + 0.489765i 0.871397 0.490579i \(-0.163215\pi\)
−0.197292 + 0.980345i \(0.563215\pi\)
\(524\) 99.2002i 4.33358i
\(525\) −0.540823 + 2.10276i −0.0236035 + 0.0917720i
\(526\) −30.3067 −1.32143
\(527\) 17.5211 + 17.7549i 0.763231 + 0.773413i
\(528\) 0.200318 + 0.616515i 0.00871772 + 0.0268304i
\(529\) −13.3716 41.1535i −0.581373 1.78928i
\(530\) 52.3279 + 35.5778i 2.27298 + 1.54540i
\(531\) 6.94990 21.3896i 0.301600 0.928229i
\(532\) 12.2138i 0.529534i
\(533\) −26.2941 8.54346i −1.13892 0.370058i
\(534\) −0.137492 0.189242i −0.00594986 0.00818928i
\(535\) 20.8531 + 6.06305i 0.901558 + 0.262129i
\(536\) −5.93974 4.31548i −0.256558 0.186400i
\(537\) −4.07825 5.61323i −0.175990 0.242229i
\(538\) 20.7084 + 28.5027i 0.892803 + 1.22884i
\(539\) −0.526886 + 0.725196i −0.0226946 + 0.0312364i
\(540\) 13.7615 20.2404i 0.592199 0.871008i
\(541\) −14.3045 19.6884i −0.614998 0.846472i 0.381979 0.924171i \(-0.375243\pi\)
−0.996977 + 0.0776993i \(0.975243\pi\)
\(542\) −14.6731 + 45.1591i −0.630262 + 1.93975i
\(543\) 0.891687 0.0382660
\(544\) 47.8499 + 24.7815i 2.05155 + 1.06250i
\(545\) −22.0062 + 7.91760i −0.942644 + 0.339153i
\(546\) 1.43726 + 4.42344i 0.0615092 + 0.189306i
\(547\) 23.8001 7.73314i 1.01762 0.330645i 0.247736 0.968828i \(-0.420314\pi\)
0.769885 + 0.638183i \(0.220314\pi\)
\(548\) −56.7216 41.2106i −2.42303 1.76043i
\(549\) 10.0248i 0.427849i
\(550\) −2.02980 0.522059i −0.0865511 0.0222607i
\(551\) 11.8977i 0.506860i
\(552\) 19.4909 + 14.1609i 0.829586 + 0.602730i
\(553\) 4.45032 + 13.6967i 0.189247 + 0.582442i
\(554\) 9.98616 3.24470i 0.424271 0.137854i
\(555\) 5.09717 3.95208i 0.216363 0.167756i
\(556\) −30.7629 9.99546i −1.30464 0.423902i
\(557\) 29.6870 1.25788 0.628940 0.777454i \(-0.283489\pi\)
0.628940 + 0.777454i \(0.283489\pi\)
\(558\) 43.5072 + 14.1363i 1.84181 + 0.598439i
\(559\) −17.0853 + 12.4132i −0.722632 + 0.525023i
\(560\) −26.6658 + 9.59406i −1.12684 + 0.405423i
\(561\) 0.174148 0.171856i 0.00735255 0.00725575i
\(562\) 2.35771 1.71298i 0.0994542 0.0722577i
\(563\) −20.0297 + 14.5524i −0.844152 + 0.613312i −0.923527 0.383533i \(-0.874707\pi\)
0.0793756 + 0.996845i \(0.474707\pi\)
\(564\) 1.35772 1.86873i 0.0571701 0.0786879i
\(565\) 21.1238 7.60011i 0.888685 0.319739i
\(566\) −16.8090 23.1356i −0.706533 0.972460i
\(567\) 8.56083 + 2.78158i 0.359521 + 0.116815i
\(568\) 68.4333i 2.87140i
\(569\) 4.55310 14.0130i 0.190876 0.587456i −0.809124 0.587638i \(-0.800058\pi\)
1.00000 0.000182164i \(5.79846e-5\pi\)
\(570\) 2.86035 + 3.68911i 0.119807 + 0.154520i
\(571\) 13.9916 4.54614i 0.585529 0.190250i −0.00124675 0.999999i \(-0.500397\pi\)
0.586776 + 0.809749i \(0.300397\pi\)
\(572\) −3.04832 + 0.990459i −0.127457 + 0.0414132i
\(573\) −4.89829 + 6.74192i −0.204629 + 0.281648i
\(574\) −20.9340 −0.873767
\(575\) −37.8514 + 14.9684i −1.57851 + 0.624224i
\(576\) 36.3395 1.51415
\(577\) 4.88320 + 3.54785i 0.203290 + 0.147699i 0.684773 0.728757i \(-0.259902\pi\)
−0.481483 + 0.876456i \(0.659902\pi\)
\(578\) 0.595646 44.9433i 0.0247756 1.86939i
\(579\) 1.59901 + 4.92125i 0.0664526 + 0.204520i
\(580\) 59.2205 21.3069i 2.45900 0.884720i
\(581\) 5.50665 + 1.78922i 0.228454 + 0.0742293i
\(582\) 5.75712 0.238640
\(583\) 1.61381 + 0.524359i 0.0668372 + 0.0217167i
\(584\) 4.38238 + 6.03183i 0.181344 + 0.249599i
\(585\) 21.4237 + 14.5660i 0.885760 + 0.602229i
\(586\) −43.7936 31.8179i −1.80910 1.31439i
\(587\) −36.3862 + 26.4361i −1.50182 + 1.09113i −0.532166 + 0.846640i \(0.678622\pi\)
−0.969651 + 0.244494i \(0.921378\pi\)
\(588\) −6.20774 8.54423i −0.256003 0.352358i
\(589\) −7.50163 + 10.3251i −0.309099 + 0.425439i
\(590\) 12.9802 44.6439i 0.534388 1.83796i
\(591\) 4.15377 3.01789i 0.170863 0.124140i
\(592\) 80.0648 + 26.0146i 3.29064 + 1.06920i
\(593\) −24.3317 −0.999182 −0.499591 0.866261i \(-0.666516\pi\)
−0.499591 + 0.866261i \(0.666516\pi\)
\(594\) 0.284105 0.874384i 0.0116570 0.0358764i
\(595\) 7.74692 + 7.37510i 0.317593 + 0.302350i
\(596\) −23.8421 73.3785i −0.976611 3.00570i
\(597\) −3.08894 9.50678i −0.126422 0.389087i
\(598\) −51.2515 + 70.5416i −2.09583 + 2.88466i
\(599\) −11.7623 −0.480593 −0.240297 0.970699i \(-0.577245\pi\)
−0.240297 + 0.970699i \(0.577245\pi\)
\(600\) 7.93392 12.4904i 0.323901 0.509920i
\(601\) 3.33100i 0.135874i 0.997690 + 0.0679372i \(0.0216417\pi\)
−0.997690 + 0.0679372i \(0.978358\pi\)
\(602\) −9.39906 + 12.9367i −0.383077 + 0.527261i
\(603\) 0.820627 + 2.52563i 0.0334185 + 0.102852i
\(604\) 23.8598 + 73.4330i 0.970843 + 2.98795i
\(605\) 24.5286 0.765771i 0.997229 0.0311330i
\(606\) 15.8535 + 5.15111i 0.644004 + 0.209250i
\(607\) 43.2234i 1.75439i 0.480139 + 0.877193i \(0.340586\pi\)
−0.480139 + 0.877193i \(0.659414\pi\)
\(608\) −8.51970 + 26.2210i −0.345520 + 1.06340i
\(609\) −1.43954 1.98136i −0.0583331 0.0802886i
\(610\) 0.646664 + 20.7135i 0.0261827 + 0.838663i
\(611\) 4.05286 + 2.94458i 0.163961 + 0.119125i
\(612\) −26.3677 52.6084i −1.06585 2.12657i
\(613\) −18.4231 + 13.3852i −0.744101 + 0.540621i −0.893993 0.448081i \(-0.852108\pi\)
0.149892 + 0.988702i \(0.452108\pi\)
\(614\) 60.5098 + 43.9630i 2.44198 + 1.77420i
\(615\) 4.51398 3.49991i 0.182021 0.141130i
\(616\) −1.17655 + 0.854816i −0.0474047 + 0.0344415i
\(617\) −31.3252 10.1782i −1.26111 0.409758i −0.399217 0.916856i \(-0.630718\pi\)
−0.861888 + 0.507099i \(0.830718\pi\)
\(618\) 12.7979i 0.514807i
\(619\) 29.0420 + 9.43631i 1.16730 + 0.379277i 0.827633 0.561270i \(-0.189687\pi\)
0.339663 + 0.940547i \(0.389687\pi\)
\(620\) 64.8270 + 18.8485i 2.60352 + 0.756974i
\(621\) −5.51757 16.9813i −0.221413 0.681438i
\(622\) 18.3967 5.97745i 0.737640 0.239674i
\(623\) 0.161186 0.221854i 0.00645779 0.00888838i
\(624\) 16.5641i 0.663096i
\(625\) 10.6258 + 22.6295i 0.425032 + 0.905179i
\(626\) 66.3987i 2.65382i
\(627\) 0.101274 + 0.0735798i 0.00404449 + 0.00293849i
\(628\) −3.53781 10.8883i −0.141174 0.434489i
\(629\) −4.76251 31.4152i −0.189894 1.25261i
\(630\) 18.8359 + 5.47654i 0.750439 + 0.218191i
\(631\) 5.29714 16.3029i 0.210876 0.649009i −0.788545 0.614977i \(-0.789165\pi\)
0.999421 0.0340320i \(-0.0108348\pi\)
\(632\) 98.1500i 3.90420i
\(633\) 1.02377 3.15085i 0.0406913 0.125235i
\(634\) 50.1555 + 69.0331i 1.99193 + 2.74166i
\(635\) −7.12840 + 5.52699i −0.282882 + 0.219332i
\(636\) −11.7512 + 16.1742i −0.465966 + 0.641347i
\(637\) 18.5305 13.4632i 0.734205 0.533431i
\(638\) 1.91261 1.38959i 0.0757210 0.0550145i
\(639\) −14.5492 + 20.0253i −0.575558 + 0.792187i
\(640\) 16.6660 0.520304i 0.658781 0.0205668i
\(641\) 4.92690 + 6.78130i 0.194601 + 0.267845i 0.895156 0.445753i \(-0.147064\pi\)
−0.700555 + 0.713598i \(0.747064\pi\)
\(642\) −2.97000 + 9.14072i −0.117217 + 0.360755i
\(643\) 29.7140i 1.17180i −0.810382 0.585902i \(-0.800740\pi\)
0.810382 0.585902i \(-0.199260\pi\)
\(644\) −14.5649 + 44.8260i −0.573936 + 1.76639i
\(645\) −0.136147 4.36095i −0.00536077 0.171712i
\(646\) 22.7370 3.44690i 0.894575 0.135617i
\(647\) −1.80257 5.54775i −0.0708665 0.218105i 0.909350 0.416031i \(-0.136579\pi\)
−0.980217 + 0.197926i \(0.936579\pi\)
\(648\) −49.6305 36.0587i −1.94967 1.41652i
\(649\) 1.24676i 0.0489397i
\(650\) 45.2056 + 28.7145i 1.77311 + 1.12628i
\(651\) 2.62711i 0.102964i
\(652\) −62.1661 + 85.5643i −2.43461 + 3.35096i
\(653\) 41.5529 13.5014i 1.62609 0.528349i 0.652722 0.757597i \(-0.273627\pi\)
0.973368 + 0.229248i \(0.0736268\pi\)
\(654\) −3.19848 9.84389i −0.125070 0.384927i
\(655\) −24.9911 + 36.7570i −0.976484 + 1.43621i
\(656\) 70.9044 + 23.0382i 2.76835 + 0.899492i
\(657\) 2.69677i 0.105211i
\(658\) 3.60754 + 1.17216i 0.140636 + 0.0456955i
\(659\) 20.6806 15.0253i 0.805602 0.585304i −0.106950 0.994264i \(-0.534109\pi\)
0.912552 + 0.408960i \(0.134109\pi\)
\(660\) 0.184876 0.635856i 0.00719627 0.0247507i
\(661\) −4.20146 3.05254i −0.163418 0.118730i 0.503071 0.864245i \(-0.332203\pi\)
−0.666489 + 0.745515i \(0.732203\pi\)
\(662\) 29.8546 21.6907i 1.16033 0.843031i
\(663\) −5.58911 + 2.80130i −0.217063 + 0.108793i
\(664\) −31.9242 23.1943i −1.23890 0.900114i
\(665\) −3.07697 + 4.52561i −0.119320 + 0.175496i
\(666\) −34.2511 47.1425i −1.32720 1.82674i
\(667\) 14.1880 43.6662i 0.549362 1.69076i
\(668\) 0.662682i 0.0256399i
\(669\) −1.90731 0.619723i −0.0737410 0.0239599i
\(670\) 1.85851 + 5.16556i 0.0718006 + 0.199563i
\(671\) 0.171730 + 0.528531i 0.00662957 + 0.0204037i
\(672\) −1.75374 5.39746i −0.0676520 0.208211i
\(673\) −6.62456 + 9.11792i −0.255358 + 0.351470i −0.917379 0.398015i \(-0.869699\pi\)
0.662021 + 0.749486i \(0.269699\pi\)
\(674\) 65.3010i 2.51530i
\(675\) −10.1982 + 4.03287i −0.392528 + 0.155225i
\(676\) 17.0238 0.654760
\(677\) 11.6342 16.0131i 0.447139 0.615434i −0.524641 0.851324i \(-0.675800\pi\)
0.971780 + 0.235890i \(0.0758005\pi\)
\(678\) 3.07022 + 9.44916i 0.117911 + 0.362893i
\(679\) 2.08563 + 6.41892i 0.0800393 + 0.246336i
\(680\) −34.6809 64.1183i −1.32995 2.45883i
\(681\) −2.56096 + 7.88182i −0.0981362 + 0.302032i
\(682\) 2.53596 0.0971069
\(683\) −10.1306 3.29164i −0.387638 0.125951i 0.108713 0.994073i \(-0.465327\pi\)
−0.496351 + 0.868122i \(0.665327\pi\)
\(684\) 24.3580 17.6971i 0.931352 0.676667i
\(685\) 10.6352 + 29.5596i 0.406350 + 1.12941i
\(686\) 22.8149 31.4020i 0.871077 1.19893i
\(687\) 0.765063 + 1.05302i 0.0291890 + 0.0401752i
\(688\) 46.0722 33.4734i 1.75648 1.27616i
\(689\) −35.0781 25.4857i −1.33637 0.970928i
\(690\) −6.09858 16.9505i −0.232169 0.645293i
\(691\) 24.7486 + 34.0636i 0.941483 + 1.29584i 0.955208 + 0.295934i \(0.0956309\pi\)
−0.0137256 + 0.999906i \(0.504369\pi\)
\(692\) 28.2865 + 9.19084i 1.07529 + 0.349383i
\(693\) 0.526026 0.0199821
\(694\) −21.6683 7.04046i −0.822518 0.267252i
\(695\) 8.88056 + 11.4536i 0.336859 + 0.434461i
\(696\) 5.15785 + 15.8742i 0.195508 + 0.601711i
\(697\) −4.21762 27.8209i −0.159754 1.05379i
\(698\) 22.5360 + 16.3734i 0.853002 + 0.619742i
\(699\) 7.63722 0.288866
\(700\) 28.0364 + 7.21086i 1.05968 + 0.272545i
\(701\) −24.9855 −0.943688 −0.471844 0.881682i \(-0.656411\pi\)
−0.471844 + 0.881682i \(0.656411\pi\)
\(702\) −13.8085 + 19.0058i −0.521168 + 0.717326i
\(703\) 15.4612 5.02366i 0.583132 0.189471i
\(704\) 1.91590 0.622514i 0.0722083 0.0234619i
\(705\) −0.973862 + 0.350385i −0.0366778 + 0.0131963i
\(706\) −6.93536 + 21.3449i −0.261016 + 0.803324i
\(707\) 19.5420i 0.734952i
\(708\) 13.9704 + 4.53924i 0.525038 + 0.170595i
\(709\) −11.0352 15.1887i −0.414437 0.570424i 0.549856 0.835259i \(-0.314682\pi\)
−0.964294 + 0.264835i \(0.914682\pi\)
\(710\) −28.7701 + 42.3151i −1.07972 + 1.58806i
\(711\) −20.8671 + 28.7211i −0.782578 + 1.07713i
\(712\) −1.51199 + 1.09852i −0.0566641 + 0.0411689i
\(713\) 39.8446 28.9488i 1.49219 1.08414i
\(714\) −3.36939 + 3.32503i −0.126096 + 0.124436i
\(715\) 1.37903 + 0.400953i 0.0515727 + 0.0149948i
\(716\) −74.8419 + 54.3758i −2.79697 + 2.03212i
\(717\) 0.361084 + 0.117323i 0.0134849 + 0.00438152i
\(718\) 54.7215 2.04219
\(719\) 42.2776 + 13.7368i 1.57669 + 0.512298i 0.961201 0.275848i \(-0.0889586\pi\)
0.615489 + 0.788146i \(0.288959\pi\)
\(720\) −57.7709 39.2785i −2.15300 1.46382i
\(721\) −14.2691 + 4.63630i −0.531408 + 0.172665i
\(722\) −11.8876 36.5863i −0.442411 1.36160i
\(723\) −1.20290 0.873959i −0.0447364 0.0325029i
\(724\) 11.8890i 0.441850i
\(725\) −27.3109 7.02429i −1.01430 0.260875i
\(726\) 10.8609i 0.403086i
\(727\) −34.2286 24.8685i −1.26947 0.922323i −0.270288 0.962780i \(-0.587119\pi\)
−0.999181 + 0.0404561i \(0.987119\pi\)
\(728\) 35.3421 11.4833i 1.30986 0.425601i
\(729\) 6.09582 + 18.7610i 0.225771 + 0.694852i
\(730\) −0.173959 5.57212i −0.00643851 0.206233i
\(731\) −19.0863 9.88481i −0.705933 0.365603i
\(732\) −6.54759 −0.242006
\(733\) −2.20558 + 6.78807i −0.0814648 + 0.250723i −0.983491 0.180959i \(-0.942080\pi\)
0.902026 + 0.431682i \(0.142080\pi\)
\(734\) 22.1072 + 30.4279i 0.815991 + 1.12311i
\(735\) 0.147663 + 4.72982i 0.00544662 + 0.174462i
\(736\) 62.5368 86.0745i 2.30514 3.17275i
\(737\) 0.0865305 + 0.119099i 0.00318739 + 0.00438707i
\(738\) −30.3323 41.7488i −1.11655 1.53679i
\(739\) 7.62443 + 5.53947i 0.280469 + 0.203773i 0.719122 0.694884i \(-0.244544\pi\)
−0.438653 + 0.898657i \(0.644544\pi\)
\(740\) −52.6936 67.9611i −1.93705 2.49830i
\(741\) −1.88014 2.58779i −0.0690686 0.0950648i
\(742\) −31.2237 10.1452i −1.14626 0.372442i
\(743\) 42.7211i 1.56729i 0.621212 + 0.783643i \(0.286641\pi\)
−0.621212 + 0.783643i \(0.713359\pi\)
\(744\) −5.53276 + 17.0281i −0.202841 + 0.624280i
\(745\) −9.65166 + 33.1956i −0.353610 + 1.21619i
\(746\) 24.3888 + 75.0611i 0.892939 + 2.74818i
\(747\) 4.41061 + 13.5744i 0.161376 + 0.496663i
\(748\) −2.29137 2.32194i −0.0837809 0.0848986i
\(749\) −11.2674 −0.411702
\(750\) −10.1570 + 4.38785i −0.370880 + 0.160221i
\(751\) 9.89387i 0.361032i 0.983572 + 0.180516i \(0.0577768\pi\)
−0.983572 + 0.180516i \(0.942223\pi\)
\(752\) −10.9289 7.94032i −0.398536 0.289554i
\(753\) 0.0982374 0.0319193i 0.00357997 0.00116320i
\(754\) −57.4522 + 18.6674i −2.09229 + 0.679825i
\(755\) 9.65884 33.2203i 0.351521 1.20901i
\(756\) −3.92416 + 12.0773i −0.142720 + 0.439248i
\(757\) 9.09007 0.330384 0.165192 0.986261i \(-0.447176\pi\)
0.165192 + 0.986261i \(0.447176\pi\)
\(758\) −11.6853 3.79680i −0.424431 0.137906i
\(759\) −0.283944 0.390816i −0.0103065 0.0141857i
\(760\) 29.4750 22.8534i 1.06917 0.828979i
\(761\) −24.5587 17.8429i −0.890251 0.646805i 0.0456924 0.998956i \(-0.485451\pi\)
−0.935943 + 0.352150i \(0.885451\pi\)
\(762\) −2.34644 3.22960i −0.0850027 0.116996i
\(763\) 9.81677 7.13230i 0.355391 0.258207i
\(764\) 89.8908 + 65.3095i 3.25214 + 2.36282i
\(765\) −3.48332 + 26.1359i −0.125940 + 0.944946i
\(766\) 10.6302 7.72328i 0.384084 0.279054i
\(767\) −9.84459 + 30.2985i −0.355467 + 1.09402i
\(768\) 2.13252i 0.0769505i
\(769\) 5.94738 18.3041i 0.214468 0.660064i −0.784723 0.619847i \(-0.787195\pi\)
0.999191 0.0402177i \(-0.0128052\pi\)
\(770\) 1.08688 0.0339320i 0.0391686 0.00122282i
\(771\) −1.97847 + 0.642844i −0.0712528 + 0.0231514i
\(772\)