Properties

Label 425.2.p.a
Level $425$
Weight $2$
Character orbit 425.p
Analytic conductor $3.394$
Analytic rank $0$
Dimension $168$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(16,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.p (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(42\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 168 q - 8 q^{2} - 44 q^{4} - 4 q^{8} + 28 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 168 q - 8 q^{2} - 44 q^{4} - 4 q^{8} + 28 q^{9} - 18 q^{13} - 10 q^{15} - 28 q^{16} + 2 q^{17} - 60 q^{18} - 8 q^{19} + 32 q^{21} + 6 q^{25} + 52 q^{26} - 54 q^{30} + 44 q^{32} - 24 q^{33} + 26 q^{35} + 34 q^{36} - 18 q^{38} + 80 q^{42} - 8 q^{43} - 40 q^{47} - 84 q^{49} - 82 q^{50} - 36 q^{51} - 30 q^{52} - 42 q^{53} - 18 q^{55} - 18 q^{59} + 28 q^{60} - 16 q^{64} - 140 q^{66} - 62 q^{67} + 144 q^{68} + 44 q^{69} + 4 q^{70} - 6 q^{72} + 72 q^{76} + 48 q^{77} - 28 q^{81} - 14 q^{83} + 24 q^{84} + 62 q^{85} + 82 q^{86} + 48 q^{87} + 90 q^{89} - 224 q^{93} + 26 q^{94} - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1 −2.13901 1.55408i −0.355974 + 0.115663i 1.54215 + 4.74625i 0.624287 2.14715i 0.941180 + 0.305808i 1.16016i 2.44332 7.51977i −2.31371 + 1.68101i −4.67220 + 3.62258i
16.2 −2.13901 1.55408i 0.355974 0.115663i 1.54215 + 4.74625i −0.624287 + 2.14715i −0.941180 0.305808i 1.16016i 2.44332 7.51977i −2.31371 + 1.68101i 4.67220 3.62258i
16.3 −2.10617 1.53022i −2.96838 + 0.964486i 1.47633 + 4.54369i 1.79897 + 1.32805i 7.72779 + 2.51091i 1.45026i 2.23447 6.87699i 5.45401 3.96257i −1.75672 5.54991i
16.4 −2.10617 1.53022i 2.96838 0.964486i 1.47633 + 4.54369i −1.79897 1.32805i −7.72779 2.51091i 1.45026i 2.23447 6.87699i 5.45401 3.96257i 1.75672 + 5.54991i
16.5 −1.89741 1.37855i −1.99244 + 0.647384i 1.08173 + 3.32921i −2.23138 + 0.144731i 4.67293 + 1.51833i 5.09964i 1.08751 3.34701i 1.12368 0.816399i 4.43335 + 2.80145i
16.6 −1.89741 1.37855i 1.99244 0.647384i 1.08173 + 3.32921i 2.23138 0.144731i −4.67293 1.51833i 5.09964i 1.08751 3.34701i 1.12368 0.816399i −4.43335 2.80145i
16.7 −1.58733 1.15326i −2.60850 + 0.847551i 0.571562 + 1.75909i −0.656872 2.13741i 5.11798 + 1.66293i 2.38074i −0.0911795 + 0.280622i 3.65885 2.65831i −1.42232 + 4.15031i
16.8 −1.58733 1.15326i 2.60850 0.847551i 0.571562 + 1.75909i 0.656872 + 2.13741i −5.11798 1.66293i 2.38074i −0.0911795 + 0.280622i 3.65885 2.65831i 1.42232 4.15031i
16.9 −1.46623 1.06528i −0.575810 + 0.187092i 0.396985 + 1.22179i −0.705078 + 2.12200i 1.04358 + 0.339079i 1.66418i −0.400621 + 1.23299i −2.13050 + 1.54790i 3.29433 2.36024i
16.10 −1.46623 1.06528i 0.575810 0.187092i 0.396985 + 1.22179i 0.705078 2.12200i −1.04358 0.339079i 1.66418i −0.400621 + 1.23299i −2.13050 + 1.54790i −3.29433 + 2.36024i
16.11 −1.46406 1.06370i −1.47315 + 0.478654i 0.393974 + 1.21253i 2.22243 0.246559i 2.66592 + 0.866209i 0.242729i −0.405475 + 1.24792i −0.486001 + 0.353100i −3.51604 2.00303i
16.12 −1.46406 1.06370i 1.47315 0.478654i 0.393974 + 1.21253i −2.22243 + 0.246559i −2.66592 0.866209i 0.242729i −0.405475 + 1.24792i −0.486001 + 0.353100i 3.51604 + 2.00303i
16.13 −1.17358 0.852653i −1.92956 + 0.626952i 0.0322299 + 0.0991936i −1.60043 + 1.56161i 2.79906 + 0.909470i 3.65292i −0.849779 + 2.61535i 0.903084 0.656129i 3.20974 0.468058i
16.14 −1.17358 0.852653i 1.92956 0.626952i 0.0322299 + 0.0991936i 1.60043 1.56161i −2.79906 0.909470i 3.65292i −0.849779 + 2.61535i 0.903084 0.656129i −3.20974 + 0.468058i
16.15 −0.770053 0.559477i −1.26213 + 0.410091i −0.338066 1.04046i −1.81036 1.31248i 1.20134 + 0.390341i 2.51296i −0.910052 + 2.80085i −1.00225 + 0.728178i 0.659768 + 2.02353i
16.16 −0.770053 0.559477i 1.26213 0.410091i −0.338066 1.04046i 1.81036 + 1.31248i −1.20134 0.390341i 2.51296i −0.910052 + 2.80085i −1.00225 + 0.728178i −0.659768 2.02353i
16.17 −0.484961 0.352344i −0.406117 + 0.131955i −0.506994 1.56037i 1.58222 + 1.58005i 0.243445 + 0.0790999i 1.28394i −0.674391 + 2.07556i −2.27953 + 1.65618i −0.210594 1.32375i
16.18 −0.484961 0.352344i 0.406117 0.131955i −0.506994 1.56037i −1.58222 1.58005i −0.243445 0.0790999i 1.28394i −0.674391 + 2.07556i −2.27953 + 1.65618i 0.210594 + 1.32375i
16.19 −0.372964 0.270974i −2.68354 + 0.871936i −0.552359 1.69999i 1.94832 1.09729i 1.23714 + 0.401971i 3.02747i −0.539562 + 1.66060i 4.01408 2.91640i −1.02399 0.118696i
16.20 −0.372964 0.270974i 2.68354 0.871936i −0.552359 1.69999i −1.94832 + 1.09729i −1.23714 0.401971i 3.02747i −0.539562 + 1.66060i 4.01408 2.91640i 1.02399 + 0.118696i
See next 80 embeddings (of 168 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.42
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner
25.d even 5 1 inner
425.p even 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.2.p.a 168
17.b even 2 1 inner 425.2.p.a 168
25.d even 5 1 inner 425.2.p.a 168
425.p even 10 1 inner 425.2.p.a 168
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.2.p.a 168 1.a even 1 1 trivial
425.2.p.a 168 17.b even 2 1 inner
425.2.p.a 168 25.d even 5 1 inner
425.2.p.a 168 425.p even 10 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(425, [\chi])\).