Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [425,2,Mod(16,425)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([2, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("425.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.p (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.39364208590\) |
Analytic rank: | \(0\) |
Dimension: | \(168\) |
Relative dimension: | \(42\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −2.13901 | − | 1.55408i | −0.355974 | + | 0.115663i | 1.54215 | + | 4.74625i | 0.624287 | − | 2.14715i | 0.941180 | + | 0.305808i | 1.16016i | 2.44332 | − | 7.51977i | −2.31371 | + | 1.68101i | −4.67220 | + | 3.62258i | ||
16.2 | −2.13901 | − | 1.55408i | 0.355974 | − | 0.115663i | 1.54215 | + | 4.74625i | −0.624287 | + | 2.14715i | −0.941180 | − | 0.305808i | − | 1.16016i | 2.44332 | − | 7.51977i | −2.31371 | + | 1.68101i | 4.67220 | − | 3.62258i | |
16.3 | −2.10617 | − | 1.53022i | −2.96838 | + | 0.964486i | 1.47633 | + | 4.54369i | 1.79897 | + | 1.32805i | 7.72779 | + | 2.51091i | − | 1.45026i | 2.23447 | − | 6.87699i | 5.45401 | − | 3.96257i | −1.75672 | − | 5.54991i | |
16.4 | −2.10617 | − | 1.53022i | 2.96838 | − | 0.964486i | 1.47633 | + | 4.54369i | −1.79897 | − | 1.32805i | −7.72779 | − | 2.51091i | 1.45026i | 2.23447 | − | 6.87699i | 5.45401 | − | 3.96257i | 1.75672 | + | 5.54991i | ||
16.5 | −1.89741 | − | 1.37855i | −1.99244 | + | 0.647384i | 1.08173 | + | 3.32921i | −2.23138 | + | 0.144731i | 4.67293 | + | 1.51833i | 5.09964i | 1.08751 | − | 3.34701i | 1.12368 | − | 0.816399i | 4.43335 | + | 2.80145i | ||
16.6 | −1.89741 | − | 1.37855i | 1.99244 | − | 0.647384i | 1.08173 | + | 3.32921i | 2.23138 | − | 0.144731i | −4.67293 | − | 1.51833i | − | 5.09964i | 1.08751 | − | 3.34701i | 1.12368 | − | 0.816399i | −4.43335 | − | 2.80145i | |
16.7 | −1.58733 | − | 1.15326i | −2.60850 | + | 0.847551i | 0.571562 | + | 1.75909i | −0.656872 | − | 2.13741i | 5.11798 | + | 1.66293i | − | 2.38074i | −0.0911795 | + | 0.280622i | 3.65885 | − | 2.65831i | −1.42232 | + | 4.15031i | |
16.8 | −1.58733 | − | 1.15326i | 2.60850 | − | 0.847551i | 0.571562 | + | 1.75909i | 0.656872 | + | 2.13741i | −5.11798 | − | 1.66293i | 2.38074i | −0.0911795 | + | 0.280622i | 3.65885 | − | 2.65831i | 1.42232 | − | 4.15031i | ||
16.9 | −1.46623 | − | 1.06528i | −0.575810 | + | 0.187092i | 0.396985 | + | 1.22179i | −0.705078 | + | 2.12200i | 1.04358 | + | 0.339079i | − | 1.66418i | −0.400621 | + | 1.23299i | −2.13050 | + | 1.54790i | 3.29433 | − | 2.36024i | |
16.10 | −1.46623 | − | 1.06528i | 0.575810 | − | 0.187092i | 0.396985 | + | 1.22179i | 0.705078 | − | 2.12200i | −1.04358 | − | 0.339079i | 1.66418i | −0.400621 | + | 1.23299i | −2.13050 | + | 1.54790i | −3.29433 | + | 2.36024i | ||
16.11 | −1.46406 | − | 1.06370i | −1.47315 | + | 0.478654i | 0.393974 | + | 1.21253i | 2.22243 | − | 0.246559i | 2.66592 | + | 0.866209i | − | 0.242729i | −0.405475 | + | 1.24792i | −0.486001 | + | 0.353100i | −3.51604 | − | 2.00303i | |
16.12 | −1.46406 | − | 1.06370i | 1.47315 | − | 0.478654i | 0.393974 | + | 1.21253i | −2.22243 | + | 0.246559i | −2.66592 | − | 0.866209i | 0.242729i | −0.405475 | + | 1.24792i | −0.486001 | + | 0.353100i | 3.51604 | + | 2.00303i | ||
16.13 | −1.17358 | − | 0.852653i | −1.92956 | + | 0.626952i | 0.0322299 | + | 0.0991936i | −1.60043 | + | 1.56161i | 2.79906 | + | 0.909470i | − | 3.65292i | −0.849779 | + | 2.61535i | 0.903084 | − | 0.656129i | 3.20974 | − | 0.468058i | |
16.14 | −1.17358 | − | 0.852653i | 1.92956 | − | 0.626952i | 0.0322299 | + | 0.0991936i | 1.60043 | − | 1.56161i | −2.79906 | − | 0.909470i | 3.65292i | −0.849779 | + | 2.61535i | 0.903084 | − | 0.656129i | −3.20974 | + | 0.468058i | ||
16.15 | −0.770053 | − | 0.559477i | −1.26213 | + | 0.410091i | −0.338066 | − | 1.04046i | −1.81036 | − | 1.31248i | 1.20134 | + | 0.390341i | 2.51296i | −0.910052 | + | 2.80085i | −1.00225 | + | 0.728178i | 0.659768 | + | 2.02353i | ||
16.16 | −0.770053 | − | 0.559477i | 1.26213 | − | 0.410091i | −0.338066 | − | 1.04046i | 1.81036 | + | 1.31248i | −1.20134 | − | 0.390341i | − | 2.51296i | −0.910052 | + | 2.80085i | −1.00225 | + | 0.728178i | −0.659768 | − | 2.02353i | |
16.17 | −0.484961 | − | 0.352344i | −0.406117 | + | 0.131955i | −0.506994 | − | 1.56037i | 1.58222 | + | 1.58005i | 0.243445 | + | 0.0790999i | 1.28394i | −0.674391 | + | 2.07556i | −2.27953 | + | 1.65618i | −0.210594 | − | 1.32375i | ||
16.18 | −0.484961 | − | 0.352344i | 0.406117 | − | 0.131955i | −0.506994 | − | 1.56037i | −1.58222 | − | 1.58005i | −0.243445 | − | 0.0790999i | − | 1.28394i | −0.674391 | + | 2.07556i | −2.27953 | + | 1.65618i | 0.210594 | + | 1.32375i | |
16.19 | −0.372964 | − | 0.270974i | −2.68354 | + | 0.871936i | −0.552359 | − | 1.69999i | 1.94832 | − | 1.09729i | 1.23714 | + | 0.401971i | 3.02747i | −0.539562 | + | 1.66060i | 4.01408 | − | 2.91640i | −1.02399 | − | 0.118696i | ||
16.20 | −0.372964 | − | 0.270974i | 2.68354 | − | 0.871936i | −0.552359 | − | 1.69999i | −1.94832 | + | 1.09729i | −1.23714 | − | 0.401971i | − | 3.02747i | −0.539562 | + | 1.66060i | 4.01408 | − | 2.91640i | 1.02399 | + | 0.118696i | |
See next 80 embeddings (of 168 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.b | even | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
425.p | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 425.2.p.a | ✓ | 168 |
17.b | even | 2 | 1 | inner | 425.2.p.a | ✓ | 168 |
25.d | even | 5 | 1 | inner | 425.2.p.a | ✓ | 168 |
425.p | even | 10 | 1 | inner | 425.2.p.a | ✓ | 168 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
425.2.p.a | ✓ | 168 | 1.a | even | 1 | 1 | trivial |
425.2.p.a | ✓ | 168 | 17.b | even | 2 | 1 | inner |
425.2.p.a | ✓ | 168 | 25.d | even | 5 | 1 | inner |
425.2.p.a | ✓ | 168 | 425.p | even | 10 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(425, [\chi])\).