Properties

Label 425.2.n.f.399.4
Level $425$
Weight $2$
Character 425.399
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 399.4
Character \(\chi\) \(=\) 425.399
Dual form 425.2.n.f.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.680853 + 0.680853i) q^{2} +(2.44733 + 1.01372i) q^{3} -1.07288i q^{4} +(0.976080 + 2.35647i) q^{6} +(1.18426 + 2.85906i) q^{7} +(2.09218 - 2.09218i) q^{8} +(2.84049 + 2.84049i) q^{9} +(-2.34612 - 5.66403i) q^{11} +(1.08760 - 2.62569i) q^{12} +1.16017 q^{13} +(-1.14029 + 2.75291i) q^{14} +0.703170 q^{16} +(-3.92649 + 1.25804i) q^{17} +3.86791i q^{18} +(-3.83665 + 3.83665i) q^{19} +8.19759i q^{21} +(2.25901 - 5.45373i) q^{22} +(-2.88015 + 1.19300i) q^{23} +(7.24113 - 2.99938i) q^{24} +(0.789908 + 0.789908i) q^{26} +(1.03101 + 2.48908i) q^{27} +(3.06743 - 1.27057i) q^{28} +(4.61660 + 1.91226i) q^{29} +(-1.42666 + 3.44426i) q^{31} +(-3.70560 - 3.70560i) q^{32} -16.2401i q^{33} +(-3.52990 - 1.81682i) q^{34} +(3.04750 - 3.04750i) q^{36} +(-0.366518 - 0.151817i) q^{37} -5.22439 q^{38} +(2.83933 + 1.17609i) q^{39} +(1.57303 - 0.651568i) q^{41} +(-5.58135 + 5.58135i) q^{42} +(0.0189720 - 0.0189720i) q^{43} +(-6.07683 + 2.51710i) q^{44} +(-2.77321 - 1.14870i) q^{46} +5.43715 q^{47} +(1.72089 + 0.712817i) q^{48} +(-1.82202 + 1.82202i) q^{49} +(-10.8847 - 0.901513i) q^{51} -1.24473i q^{52} +(0.244014 + 0.244014i) q^{53} +(-0.992732 + 2.39667i) q^{54} +(8.45936 + 3.50398i) q^{56} +(-13.2788 + 5.50028i) q^{57} +(1.84126 + 4.44519i) q^{58} +(-2.87128 - 2.87128i) q^{59} +(-11.4953 + 4.76149i) q^{61} +(-3.31638 + 1.37369i) q^{62} +(-4.75726 + 11.4850i) q^{63} -6.45228i q^{64} +(11.0571 - 11.0571i) q^{66} -5.62508i q^{67} +(1.34973 + 4.21265i) q^{68} -8.25804 q^{69} +(4.12510 - 9.95888i) q^{71} +11.8856 q^{72} +(-0.633083 + 1.52840i) q^{73} +(-0.146180 - 0.352909i) q^{74} +(4.11627 + 4.11627i) q^{76} +(13.4154 - 13.4154i) q^{77} +(1.13242 + 2.73391i) q^{78} +(-2.01785 - 4.87153i) q^{79} -4.91441i q^{81} +(1.51462 + 0.627376i) q^{82} +(8.78638 + 8.78638i) q^{83} +8.79502 q^{84} +0.0258342 q^{86} +(9.35987 + 9.35987i) q^{87} +(-16.7587 - 6.94167i) q^{88} -3.22930i q^{89} +(1.37395 + 3.31701i) q^{91} +(1.27994 + 3.09005i) q^{92} +(-6.98302 + 6.98302i) q^{93} +(3.70190 + 3.70190i) q^{94} +(-5.31240 - 12.8253i) q^{96} +(-4.94995 + 11.9502i) q^{97} -2.48105 q^{98} +(9.42450 - 22.7528i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} - 40 q^{12} - 16 q^{13} - 24 q^{16} + 8 q^{19} + 24 q^{22} - 8 q^{23} + 8 q^{24} + 16 q^{26} - 16 q^{27} + 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} + 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.680853 + 0.680853i 0.481435 + 0.481435i 0.905590 0.424154i \(-0.139429\pi\)
−0.424154 + 0.905590i \(0.639429\pi\)
\(3\) 2.44733 + 1.01372i 1.41297 + 0.585271i 0.953083 0.302708i \(-0.0978907\pi\)
0.459885 + 0.887979i \(0.347891\pi\)
\(4\) 1.07288i 0.536440i
\(5\) 0 0
\(6\) 0.976080 + 2.35647i 0.398483 + 0.962023i
\(7\) 1.18426 + 2.85906i 0.447609 + 1.08062i 0.973215 + 0.229896i \(0.0738387\pi\)
−0.525606 + 0.850728i \(0.676161\pi\)
\(8\) 2.09218 2.09218i 0.739697 0.739697i
\(9\) 2.84049 + 2.84049i 0.946830 + 0.946830i
\(10\) 0 0
\(11\) −2.34612 5.66403i −0.707382 1.70777i −0.706442 0.707771i \(-0.749701\pi\)
−0.000939675 1.00000i \(-0.500299\pi\)
\(12\) 1.08760 2.62569i 0.313962 0.757972i
\(13\) 1.16017 0.321775 0.160887 0.986973i \(-0.448564\pi\)
0.160887 + 0.986973i \(0.448564\pi\)
\(14\) −1.14029 + 2.75291i −0.304756 + 0.735746i
\(15\) 0 0
\(16\) 0.703170 0.175793
\(17\) −3.92649 + 1.25804i −0.952314 + 0.305120i
\(18\) 3.86791i 0.911675i
\(19\) −3.83665 + 3.83665i −0.880188 + 0.880188i −0.993553 0.113365i \(-0.963837\pi\)
0.113365 + 0.993553i \(0.463837\pi\)
\(20\) 0 0
\(21\) 8.19759i 1.78886i
\(22\) 2.25901 5.45373i 0.481623 1.16274i
\(23\) −2.88015 + 1.19300i −0.600552 + 0.248757i −0.662183 0.749342i \(-0.730370\pi\)
0.0616306 + 0.998099i \(0.480370\pi\)
\(24\) 7.24113 2.99938i 1.47809 0.612245i
\(25\) 0 0
\(26\) 0.789908 + 0.789908i 0.154914 + 0.154914i
\(27\) 1.03101 + 2.48908i 0.198418 + 0.479025i
\(28\) 3.06743 1.27057i 0.579690 0.240115i
\(29\) 4.61660 + 1.91226i 0.857282 + 0.355098i 0.767644 0.640877i \(-0.221429\pi\)
0.0896380 + 0.995974i \(0.471429\pi\)
\(30\) 0 0
\(31\) −1.42666 + 3.44426i −0.256236 + 0.618608i −0.998683 0.0512962i \(-0.983665\pi\)
0.742448 + 0.669904i \(0.233665\pi\)
\(32\) −3.70560 3.70560i −0.655064 0.655064i
\(33\) 16.2401i 2.82703i
\(34\) −3.52990 1.81682i −0.605373 0.311582i
\(35\) 0 0
\(36\) 3.04750 3.04750i 0.507917 0.507917i
\(37\) −0.366518 0.151817i −0.0602551 0.0249585i 0.352352 0.935867i \(-0.385382\pi\)
−0.412607 + 0.910909i \(0.635382\pi\)
\(38\) −5.22439 −0.847508
\(39\) 2.83933 + 1.17609i 0.454657 + 0.188325i
\(40\) 0 0
\(41\) 1.57303 0.651568i 0.245665 0.101758i −0.256453 0.966557i \(-0.582554\pi\)
0.502119 + 0.864799i \(0.332554\pi\)
\(42\) −5.58135 + 5.58135i −0.861221 + 0.861221i
\(43\) 0.0189720 0.0189720i 0.00289320 0.00289320i −0.705659 0.708552i \(-0.749349\pi\)
0.708552 + 0.705659i \(0.249349\pi\)
\(44\) −6.07683 + 2.51710i −0.916116 + 0.379468i
\(45\) 0 0
\(46\) −2.77321 1.14870i −0.408888 0.169367i
\(47\) 5.43715 0.793090 0.396545 0.918015i \(-0.370209\pi\)
0.396545 + 0.918015i \(0.370209\pi\)
\(48\) 1.72089 + 0.712817i 0.248389 + 0.102886i
\(49\) −1.82202 + 1.82202i −0.260288 + 0.260288i
\(50\) 0 0
\(51\) −10.8847 0.901513i −1.52417 0.126237i
\(52\) 1.24473i 0.172613i
\(53\) 0.244014 + 0.244014i 0.0335179 + 0.0335179i 0.723667 0.690149i \(-0.242455\pi\)
−0.690149 + 0.723667i \(0.742455\pi\)
\(54\) −0.992732 + 2.39667i −0.135094 + 0.326145i
\(55\) 0 0
\(56\) 8.45936 + 3.50398i 1.13043 + 0.468239i
\(57\) −13.2788 + 5.50028i −1.75883 + 0.728530i
\(58\) 1.84126 + 4.44519i 0.241769 + 0.583683i
\(59\) −2.87128 2.87128i −0.373808 0.373808i 0.495054 0.868862i \(-0.335148\pi\)
−0.868862 + 0.495054i \(0.835148\pi\)
\(60\) 0 0
\(61\) −11.4953 + 4.76149i −1.47182 + 0.609646i −0.967273 0.253740i \(-0.918339\pi\)
−0.504544 + 0.863386i \(0.668339\pi\)
\(62\) −3.31638 + 1.37369i −0.421181 + 0.174459i
\(63\) −4.75726 + 11.4850i −0.599358 + 1.44698i
\(64\) 6.45228i 0.806534i
\(65\) 0 0
\(66\) 11.0571 11.0571i 1.36103 1.36103i
\(67\) 5.62508i 0.687213i −0.939114 0.343607i \(-0.888351\pi\)
0.939114 0.343607i \(-0.111649\pi\)
\(68\) 1.34973 + 4.21265i 0.163678 + 0.510859i
\(69\) −8.25804 −0.994152
\(70\) 0 0
\(71\) 4.12510 9.95888i 0.489560 1.18190i −0.465383 0.885110i \(-0.654083\pi\)
0.954942 0.296792i \(-0.0959167\pi\)
\(72\) 11.8856 1.40073
\(73\) −0.633083 + 1.52840i −0.0740968 + 0.178886i −0.956588 0.291443i \(-0.905865\pi\)
0.882491 + 0.470329i \(0.155865\pi\)
\(74\) −0.146180 0.352909i −0.0169931 0.0410249i
\(75\) 0 0
\(76\) 4.11627 + 4.11627i 0.472168 + 0.472168i
\(77\) 13.4154 13.4154i 1.52883 1.52883i
\(78\) 1.13242 + 2.73391i 0.128222 + 0.309554i
\(79\) −2.01785 4.87153i −0.227026 0.548090i 0.768787 0.639505i \(-0.220861\pi\)
−0.995813 + 0.0914157i \(0.970861\pi\)
\(80\) 0 0
\(81\) 4.91441i 0.546045i
\(82\) 1.51462 + 0.627376i 0.167262 + 0.0692821i
\(83\) 8.78638 + 8.78638i 0.964430 + 0.964430i 0.999389 0.0349583i \(-0.0111299\pi\)
−0.0349583 + 0.999389i \(0.511130\pi\)
\(84\) 8.79502 0.959616
\(85\) 0 0
\(86\) 0.0258342 0.00278577
\(87\) 9.35987 + 9.35987i 1.00348 + 1.00348i
\(88\) −16.7587 6.94167i −1.78648 0.739984i
\(89\) 3.22930i 0.342305i −0.985245 0.171152i \(-0.945251\pi\)
0.985245 0.171152i \(-0.0547490\pi\)
\(90\) 0 0
\(91\) 1.37395 + 3.31701i 0.144029 + 0.347717i
\(92\) 1.27994 + 3.09005i 0.133443 + 0.322160i
\(93\) −6.98302 + 6.98302i −0.724106 + 0.724106i
\(94\) 3.70190 + 3.70190i 0.381822 + 0.381822i
\(95\) 0 0
\(96\) −5.31240 12.8253i −0.542195 1.30897i
\(97\) −4.94995 + 11.9502i −0.502592 + 1.21336i 0.445476 + 0.895294i \(0.353035\pi\)
−0.948067 + 0.318070i \(0.896965\pi\)
\(98\) −2.48105 −0.250624
\(99\) 9.42450 22.7528i 0.947198 2.28674i
\(100\) 0 0
\(101\) 1.46947 0.146218 0.0731088 0.997324i \(-0.476708\pi\)
0.0731088 + 0.997324i \(0.476708\pi\)
\(102\) −6.79710 8.02469i −0.673013 0.794563i
\(103\) 9.80978i 0.966586i −0.875459 0.483293i \(-0.839441\pi\)
0.875459 0.483293i \(-0.160559\pi\)
\(104\) 2.42729 2.42729i 0.238016 0.238016i
\(105\) 0 0
\(106\) 0.332275i 0.0322734i
\(107\) 1.10497 2.66763i 0.106821 0.257889i −0.861426 0.507882i \(-0.830428\pi\)
0.968248 + 0.249993i \(0.0804284\pi\)
\(108\) 2.67049 1.10615i 0.256968 0.106440i
\(109\) −5.32460 + 2.20552i −0.510004 + 0.211251i −0.622820 0.782365i \(-0.714013\pi\)
0.112816 + 0.993616i \(0.464013\pi\)
\(110\) 0 0
\(111\) −0.743091 0.743091i −0.0705311 0.0705311i
\(112\) 0.832738 + 2.01041i 0.0786864 + 0.189966i
\(113\) 8.33379 3.45197i 0.783977 0.324734i 0.0454578 0.998966i \(-0.485525\pi\)
0.738519 + 0.674232i \(0.235525\pi\)
\(114\) −12.7858 5.29606i −1.19750 0.496021i
\(115\) 0 0
\(116\) 2.05162 4.95306i 0.190489 0.459880i
\(117\) 3.29547 + 3.29547i 0.304666 + 0.304666i
\(118\) 3.90983i 0.359929i
\(119\) −8.24682 9.73624i −0.755984 0.892519i
\(120\) 0 0
\(121\) −18.7988 + 18.7988i −1.70898 + 1.70898i
\(122\) −11.0684 4.58470i −1.00209 0.415079i
\(123\) 4.51022 0.406673
\(124\) 3.69528 + 1.53063i 0.331846 + 0.137455i
\(125\) 0 0
\(126\) −11.0586 + 4.58062i −0.985179 + 0.408074i
\(127\) 9.89892 9.89892i 0.878387 0.878387i −0.114980 0.993368i \(-0.536681\pi\)
0.993368 + 0.114980i \(0.0366805\pi\)
\(128\) −3.01815 + 3.01815i −0.266770 + 0.266770i
\(129\) 0.0656629 0.0271985i 0.00578129 0.00239469i
\(130\) 0 0
\(131\) 11.7059 + 4.84875i 1.02275 + 0.423638i 0.830091 0.557628i \(-0.188288\pi\)
0.192661 + 0.981265i \(0.438288\pi\)
\(132\) −17.4236 −1.51653
\(133\) −15.5128 6.42563i −1.34513 0.557173i
\(134\) 3.82985 3.82985i 0.330849 0.330849i
\(135\) 0 0
\(136\) −5.58287 + 10.8470i −0.478728 + 0.930119i
\(137\) 2.97888i 0.254503i 0.991870 + 0.127251i \(0.0406155\pi\)
−0.991870 + 0.127251i \(0.959384\pi\)
\(138\) −5.62251 5.62251i −0.478620 0.478620i
\(139\) −7.51640 + 18.1462i −0.637533 + 1.53914i 0.192423 + 0.981312i \(0.438365\pi\)
−0.829956 + 0.557829i \(0.811635\pi\)
\(140\) 0 0
\(141\) 13.3065 + 5.51174i 1.12061 + 0.464172i
\(142\) 9.58911 3.97194i 0.804700 0.333318i
\(143\) −2.72191 6.57127i −0.227617 0.549517i
\(144\) 1.99735 + 1.99735i 0.166446 + 0.166446i
\(145\) 0 0
\(146\) −1.47165 + 0.609578i −0.121795 + 0.0504490i
\(147\) −6.30610 + 2.61207i −0.520118 + 0.215440i
\(148\) −0.162881 + 0.393229i −0.0133887 + 0.0323232i
\(149\) 2.95573i 0.242143i −0.992644 0.121072i \(-0.961367\pi\)
0.992644 0.121072i \(-0.0386330\pi\)
\(150\) 0 0
\(151\) 15.5848 15.5848i 1.26828 1.26828i 0.321298 0.946978i \(-0.395881\pi\)
0.946978 0.321298i \(-0.104119\pi\)
\(152\) 16.0539i 1.30214i
\(153\) −14.7266 7.57971i −1.19058 0.612783i
\(154\) 18.2678 1.47206
\(155\) 0 0
\(156\) 1.26180 3.04626i 0.101025 0.243896i
\(157\) 12.8666 1.02686 0.513432 0.858130i \(-0.328374\pi\)
0.513432 + 0.858130i \(0.328374\pi\)
\(158\) 1.94293 4.69065i 0.154571 0.373168i
\(159\) 0.349821 + 0.844544i 0.0277426 + 0.0669767i
\(160\) 0 0
\(161\) −6.82171 6.82171i −0.537626 0.537626i
\(162\) 3.34599 3.34599i 0.262886 0.262886i
\(163\) 7.38291 + 17.8239i 0.578274 + 1.39608i 0.894361 + 0.447347i \(0.147631\pi\)
−0.316087 + 0.948730i \(0.602369\pi\)
\(164\) −0.699055 1.68767i −0.0545870 0.131785i
\(165\) 0 0
\(166\) 11.9645i 0.928622i
\(167\) −17.4236 7.21707i −1.34828 0.558474i −0.412464 0.910974i \(-0.635332\pi\)
−0.935812 + 0.352500i \(0.885332\pi\)
\(168\) 17.1508 + 17.1508i 1.32321 + 1.32321i
\(169\) −11.6540 −0.896461
\(170\) 0 0
\(171\) −21.7960 −1.66678
\(172\) −0.0203546 0.0203546i −0.00155203 0.00155203i
\(173\) 20.8584 + 8.63985i 1.58584 + 0.656876i 0.989325 0.145728i \(-0.0465524\pi\)
0.596513 + 0.802603i \(0.296552\pi\)
\(174\) 12.7454i 0.966225i
\(175\) 0 0
\(176\) −1.64972 3.98278i −0.124352 0.300213i
\(177\) −4.11630 9.93763i −0.309400 0.746958i
\(178\) 2.19867 2.19867i 0.164798 0.164798i
\(179\) 1.38641 + 1.38641i 0.103625 + 0.103625i 0.757018 0.653393i \(-0.226655\pi\)
−0.653393 + 0.757018i \(0.726655\pi\)
\(180\) 0 0
\(181\) 0.272363 + 0.657542i 0.0202446 + 0.0488747i 0.933679 0.358112i \(-0.116579\pi\)
−0.913434 + 0.406987i \(0.866579\pi\)
\(182\) −1.32294 + 3.19386i −0.0980627 + 0.236744i
\(183\) −32.9595 −2.43644
\(184\) −3.52982 + 8.52174i −0.260222 + 0.628231i
\(185\) 0 0
\(186\) −9.50882 −0.697220
\(187\) 16.3376 + 19.2883i 1.19472 + 1.41050i
\(188\) 5.83341i 0.425445i
\(189\) −5.89546 + 5.89546i −0.428832 + 0.428832i
\(190\) 0 0
\(191\) 5.26341i 0.380847i 0.981702 + 0.190423i \(0.0609861\pi\)
−0.981702 + 0.190423i \(0.939014\pi\)
\(192\) 6.54079 15.7909i 0.472041 1.13961i
\(193\) 13.7936 5.71352i 0.992888 0.411268i 0.173704 0.984798i \(-0.444426\pi\)
0.819184 + 0.573530i \(0.194426\pi\)
\(194\) −11.5065 + 4.76617i −0.826122 + 0.342191i
\(195\) 0 0
\(196\) 1.95481 + 1.95481i 0.139629 + 0.139629i
\(197\) 2.42244 + 5.84828i 0.172592 + 0.416673i 0.986379 0.164490i \(-0.0525978\pi\)
−0.813787 + 0.581163i \(0.802598\pi\)
\(198\) 21.9080 9.07458i 1.55693 0.644902i
\(199\) 13.7796 + 5.70769i 0.976809 + 0.404607i 0.813243 0.581925i \(-0.197700\pi\)
0.163566 + 0.986532i \(0.447700\pi\)
\(200\) 0 0
\(201\) 5.70225 13.7664i 0.402206 0.971010i
\(202\) 1.00049 + 1.00049i 0.0703943 + 0.0703943i
\(203\) 15.4638i 1.08534i
\(204\) −0.967215 + 11.6780i −0.0677186 + 0.817624i
\(205\) 0 0
\(206\) 6.67901 6.67901i 0.465349 0.465349i
\(207\) −11.5697 4.79234i −0.804152 0.333091i
\(208\) 0.815800 0.0565656
\(209\) 30.7322 + 12.7297i 2.12579 + 0.880531i
\(210\) 0 0
\(211\) 12.3788 5.12746i 0.852190 0.352989i 0.0865417 0.996248i \(-0.472418\pi\)
0.765648 + 0.643260i \(0.222418\pi\)
\(212\) 0.261797 0.261797i 0.0179803 0.0179803i
\(213\) 20.1910 20.1910i 1.38346 1.38346i
\(214\) 2.56858 1.06394i 0.175585 0.0727295i
\(215\) 0 0
\(216\) 7.36467 + 3.05055i 0.501102 + 0.207563i
\(217\) −11.5369 −0.783176
\(218\) −5.12690 2.12363i −0.347238 0.143830i
\(219\) −3.09873 + 3.09873i −0.209393 + 0.209393i
\(220\) 0 0
\(221\) −4.55542 + 1.45955i −0.306430 + 0.0981797i
\(222\) 1.01187i 0.0679123i
\(223\) −1.49410 1.49410i −0.100053 0.100053i 0.655309 0.755361i \(-0.272539\pi\)
−0.755361 + 0.655309i \(0.772539\pi\)
\(224\) 6.20614 14.9830i 0.414665 1.00109i
\(225\) 0 0
\(226\) 8.02437 + 3.32380i 0.533773 + 0.221096i
\(227\) −13.4512 + 5.57168i −0.892789 + 0.369805i −0.781443 0.623976i \(-0.785516\pi\)
−0.111346 + 0.993782i \(0.535516\pi\)
\(228\) 5.90114 + 14.2466i 0.390812 + 0.943505i
\(229\) 1.87412 + 1.87412i 0.123845 + 0.123845i 0.766313 0.642468i \(-0.222089\pi\)
−0.642468 + 0.766313i \(0.722089\pi\)
\(230\) 0 0
\(231\) 46.4314 19.2325i 3.05496 1.26541i
\(232\) 13.6595 5.65797i 0.896793 0.371464i
\(233\) −1.20133 + 2.90028i −0.0787021 + 0.190004i −0.958333 0.285653i \(-0.907790\pi\)
0.879631 + 0.475657i \(0.157790\pi\)
\(234\) 4.48745i 0.293354i
\(235\) 0 0
\(236\) −3.08053 + 3.08053i −0.200526 + 0.200526i
\(237\) 13.9678i 0.907305i
\(238\) 1.01408 12.2438i 0.0657328 0.793648i
\(239\) −13.7090 −0.886760 −0.443380 0.896334i \(-0.646221\pi\)
−0.443380 + 0.896334i \(0.646221\pi\)
\(240\) 0 0
\(241\) −4.77884 + 11.5371i −0.307832 + 0.743173i 0.691943 + 0.721952i \(0.256755\pi\)
−0.999775 + 0.0212201i \(0.993245\pi\)
\(242\) −25.5985 −1.64553
\(243\) 8.07486 19.4944i 0.518003 1.25057i
\(244\) 5.10851 + 12.3330i 0.327039 + 0.789541i
\(245\) 0 0
\(246\) 3.07080 + 3.07080i 0.195787 + 0.195787i
\(247\) −4.45119 + 4.45119i −0.283222 + 0.283222i
\(248\) 4.22118 + 10.1908i 0.268045 + 0.647119i
\(249\) 12.5963 + 30.4101i 0.798257 + 1.92716i
\(250\) 0 0
\(251\) 17.4413i 1.10088i 0.834874 + 0.550441i \(0.185541\pi\)
−0.834874 + 0.550441i \(0.814459\pi\)
\(252\) 12.3221 + 5.10396i 0.776217 + 0.321519i
\(253\) 13.5143 + 13.5143i 0.849640 + 0.849640i
\(254\) 13.4794 0.845774
\(255\) 0 0
\(256\) −17.0144 −1.06340
\(257\) −4.86561 4.86561i −0.303508 0.303508i 0.538876 0.842385i \(-0.318849\pi\)
−0.842385 + 0.538876i \(0.818849\pi\)
\(258\) 0.0632249 + 0.0261886i 0.00393621 + 0.00163043i
\(259\) 1.22769i 0.0762848i
\(260\) 0 0
\(261\) 7.68166 + 18.5452i 0.475483 + 1.14792i
\(262\) 4.66872 + 11.2713i 0.288435 + 0.696343i
\(263\) 4.41100 4.41100i 0.271994 0.271994i −0.557909 0.829902i \(-0.688396\pi\)
0.829902 + 0.557909i \(0.188396\pi\)
\(264\) −33.9771 33.9771i −2.09115 2.09115i
\(265\) 0 0
\(266\) −6.18705 14.9369i −0.379352 0.915838i
\(267\) 3.27360 7.90316i 0.200341 0.483666i
\(268\) −6.03504 −0.368648
\(269\) −0.493996 + 1.19261i −0.0301194 + 0.0727148i −0.938224 0.346030i \(-0.887530\pi\)
0.908104 + 0.418744i \(0.137530\pi\)
\(270\) 0 0
\(271\) −10.2849 −0.624764 −0.312382 0.949957i \(-0.601127\pi\)
−0.312382 + 0.949957i \(0.601127\pi\)
\(272\) −2.76099 + 0.884617i −0.167410 + 0.0536378i
\(273\) 9.51063i 0.575610i
\(274\) −2.02818 + 2.02818i −0.122527 + 0.122527i
\(275\) 0 0
\(276\) 8.85989i 0.533302i
\(277\) −9.71258 + 23.4482i −0.583572 + 1.40887i 0.305982 + 0.952037i \(0.401015\pi\)
−0.889554 + 0.456831i \(0.848985\pi\)
\(278\) −17.4724 + 7.23733i −1.04793 + 0.434066i
\(279\) −13.8358 + 5.73098i −0.828328 + 0.343105i
\(280\) 0 0
\(281\) −4.16880 4.16880i −0.248690 0.248690i 0.571743 0.820433i \(-0.306267\pi\)
−0.820433 + 0.571743i \(0.806267\pi\)
\(282\) 5.30710 + 12.8125i 0.316033 + 0.762971i
\(283\) −17.0606 + 7.06675i −1.01415 + 0.420075i −0.826967 0.562250i \(-0.809936\pi\)
−0.187183 + 0.982325i \(0.559936\pi\)
\(284\) −10.6847 4.42574i −0.634019 0.262619i
\(285\) 0 0
\(286\) 2.62085 6.32728i 0.154974 0.374140i
\(287\) 3.72575 + 3.72575i 0.219924 + 0.219924i
\(288\) 21.0514i 1.24047i
\(289\) 13.8347 9.87937i 0.813804 0.581139i
\(290\) 0 0
\(291\) −24.2284 + 24.2284i −1.42029 + 1.42029i
\(292\) 1.63979 + 0.679222i 0.0959613 + 0.0397485i
\(293\) −8.31894 −0.485998 −0.242999 0.970027i \(-0.578131\pi\)
−0.242999 + 0.970027i \(0.578131\pi\)
\(294\) −6.07196 2.51509i −0.354124 0.146683i
\(295\) 0 0
\(296\) −1.08445 + 0.449193i −0.0630322 + 0.0261088i
\(297\) 11.6794 11.6794i 0.677706 0.677706i
\(298\) 2.01242 2.01242i 0.116576 0.116576i
\(299\) −3.34148 + 1.38408i −0.193243 + 0.0800437i
\(300\) 0 0
\(301\) 0.0767098 + 0.0317742i 0.00442148 + 0.00183144i
\(302\) 21.2220 1.22119
\(303\) 3.59628 + 1.48963i 0.206601 + 0.0855768i
\(304\) −2.69782 + 2.69782i −0.154731 + 0.154731i
\(305\) 0 0
\(306\) −4.86599 15.1873i −0.278170 0.868201i
\(307\) 12.2369i 0.698398i −0.937049 0.349199i \(-0.886454\pi\)
0.937049 0.349199i \(-0.113546\pi\)
\(308\) −14.3931 14.3931i −0.820124 0.820124i
\(309\) 9.94435 24.0078i 0.565715 1.36576i
\(310\) 0 0
\(311\) −30.1525 12.4896i −1.70979 0.708218i −0.999993 0.00381046i \(-0.998787\pi\)
−0.709796 0.704407i \(-0.751213\pi\)
\(312\) 8.40098 3.47980i 0.475612 0.197005i
\(313\) 5.13906 + 12.4068i 0.290477 + 0.701273i 0.999994 0.00341475i \(-0.00108695\pi\)
−0.709517 + 0.704688i \(0.751087\pi\)
\(314\) 8.76024 + 8.76024i 0.494369 + 0.494369i
\(315\) 0 0
\(316\) −5.22656 + 2.16491i −0.294017 + 0.121786i
\(317\) 9.12199 3.77845i 0.512342 0.212219i −0.111507 0.993764i \(-0.535568\pi\)
0.623849 + 0.781545i \(0.285568\pi\)
\(318\) −0.336833 + 0.813186i −0.0188886 + 0.0456012i
\(319\) 30.6350i 1.71523i
\(320\) 0 0
\(321\) 5.40844 5.40844i 0.301870 0.301870i
\(322\) 9.28915i 0.517664i
\(323\) 10.2379 19.8912i 0.569653 1.10678i
\(324\) −5.27257 −0.292920
\(325\) 0 0
\(326\) −7.10879 + 17.1621i −0.393719 + 0.950523i
\(327\) −15.2668 −0.844258
\(328\) 1.92785 4.65425i 0.106448 0.256988i
\(329\) 6.43902 + 15.5452i 0.354995 + 0.857033i
\(330\) 0 0
\(331\) −3.99024 3.99024i −0.219323 0.219323i 0.588890 0.808213i \(-0.299565\pi\)
−0.808213 + 0.588890i \(0.799565\pi\)
\(332\) 9.42673 9.42673i 0.517359 0.517359i
\(333\) −0.609856 1.47232i −0.0334199 0.0806828i
\(334\) −6.94911 16.7766i −0.380238 0.917977i
\(335\) 0 0
\(336\) 5.76430i 0.314468i
\(337\) 15.3295 + 6.34969i 0.835051 + 0.345890i 0.758900 0.651207i \(-0.225737\pi\)
0.0761510 + 0.997096i \(0.475737\pi\)
\(338\) −7.93465 7.93465i −0.431588 0.431588i
\(339\) 23.8949 1.29779
\(340\) 0 0
\(341\) 22.8555 1.23770
\(342\) −14.8398 14.8398i −0.802446 0.802446i
\(343\) 12.6464 + 5.23832i 0.682843 + 0.282843i
\(344\) 0.0793854i 0.00428017i
\(345\) 0 0
\(346\) 8.31906 + 20.0840i 0.447235 + 1.07972i
\(347\) 3.53762 + 8.54057i 0.189909 + 0.458482i 0.989942 0.141475i \(-0.0451845\pi\)
−0.800032 + 0.599957i \(0.795184\pi\)
\(348\) 10.0420 10.0420i 0.538309 0.538309i
\(349\) 19.0405 + 19.0405i 1.01921 + 1.01921i 0.999812 + 0.0194030i \(0.00617656\pi\)
0.0194030 + 0.999812i \(0.493823\pi\)
\(350\) 0 0
\(351\) 1.19615 + 2.88777i 0.0638460 + 0.154138i
\(352\) −12.2949 + 29.6824i −0.655319 + 1.58208i
\(353\) −22.9722 −1.22269 −0.611343 0.791366i \(-0.709370\pi\)
−0.611343 + 0.791366i \(0.709370\pi\)
\(354\) 3.96347 9.56866i 0.210656 0.508568i
\(355\) 0 0
\(356\) −3.46465 −0.183626
\(357\) −10.3129 32.1878i −0.545816 1.70356i
\(358\) 1.88788i 0.0997775i
\(359\) 24.1187 24.1187i 1.27293 1.27293i 0.328394 0.944541i \(-0.393493\pi\)
0.944541 0.328394i \(-0.106507\pi\)
\(360\) 0 0
\(361\) 10.4398i 0.549463i
\(362\) −0.262250 + 0.633128i −0.0137836 + 0.0332765i
\(363\) −65.0637 + 26.9503i −3.41496 + 1.41452i
\(364\) 3.55876 1.47408i 0.186529 0.0772630i
\(365\) 0 0
\(366\) −22.4406 22.4406i −1.17299 1.17299i
\(367\) 3.54981 + 8.57000i 0.185299 + 0.447351i 0.989044 0.147623i \(-0.0471624\pi\)
−0.803745 + 0.594974i \(0.797162\pi\)
\(368\) −2.02523 + 0.838880i −0.105573 + 0.0437296i
\(369\) 6.31894 + 2.61739i 0.328951 + 0.136256i
\(370\) 0 0
\(371\) −0.408674 + 0.986627i −0.0212173 + 0.0512231i
\(372\) 7.49194 + 7.49194i 0.388439 + 0.388439i
\(373\) 3.06857i 0.158884i −0.996839 0.0794422i \(-0.974686\pi\)
0.996839 0.0794422i \(-0.0253139\pi\)
\(374\) −2.00897 + 24.2560i −0.103881 + 1.25425i
\(375\) 0 0
\(376\) 11.3755 11.3755i 0.586646 0.586646i
\(377\) 5.35607 + 2.21856i 0.275851 + 0.114261i
\(378\) −8.02788 −0.412910
\(379\) −33.7529 13.9809i −1.73377 0.718151i −0.999215 0.0396029i \(-0.987391\pi\)
−0.734556 0.678549i \(-0.762609\pi\)
\(380\) 0 0
\(381\) 34.2607 14.1912i 1.75523 0.727039i
\(382\) −3.58361 + 3.58361i −0.183353 + 0.183353i
\(383\) 6.59130 6.59130i 0.336800 0.336800i −0.518362 0.855161i \(-0.673458\pi\)
0.855161 + 0.518362i \(0.173458\pi\)
\(384\) −10.4460 + 4.32687i −0.533069 + 0.220804i
\(385\) 0 0
\(386\) 13.2815 + 5.50138i 0.676011 + 0.280013i
\(387\) 0.107779 0.00547873
\(388\) 12.8212 + 5.31071i 0.650897 + 0.269610i
\(389\) −23.4493 + 23.4493i −1.18892 + 1.18892i −0.211559 + 0.977365i \(0.567854\pi\)
−0.977365 + 0.211559i \(0.932146\pi\)
\(390\) 0 0
\(391\) 9.80804 8.30763i 0.496014 0.420135i
\(392\) 7.62397i 0.385069i
\(393\) 23.7330 + 23.7330i 1.19717 + 1.19717i
\(394\) −2.33250 + 5.63114i −0.117509 + 0.283693i
\(395\) 0 0
\(396\) −24.4110 10.1114i −1.22670 0.508115i
\(397\) 8.15361 3.37734i 0.409218 0.169504i −0.168572 0.985689i \(-0.553915\pi\)
0.577790 + 0.816186i \(0.303915\pi\)
\(398\) 5.49577 + 13.2680i 0.275478 + 0.665063i
\(399\) −31.4513 31.4513i −1.57453 1.57453i
\(400\) 0 0
\(401\) 18.0332 7.46960i 0.900535 0.373014i 0.116109 0.993236i \(-0.462958\pi\)
0.784426 + 0.620223i \(0.212958\pi\)
\(402\) 13.2553 5.49053i 0.661115 0.273843i
\(403\) −1.65518 + 3.99595i −0.0824501 + 0.199052i
\(404\) 1.57656i 0.0784369i
\(405\) 0 0
\(406\) −10.5286 + 10.5286i −0.522523 + 0.522523i
\(407\) 2.43215i 0.120557i
\(408\) −24.6589 + 20.8867i −1.22080 + 1.03404i
\(409\) −10.4152 −0.514998 −0.257499 0.966279i \(-0.582898\pi\)
−0.257499 + 0.966279i \(0.582898\pi\)
\(410\) 0 0
\(411\) −3.01974 + 7.29031i −0.148953 + 0.359604i
\(412\) −10.5247 −0.518515
\(413\) 4.80881 11.6095i 0.236626 0.571266i
\(414\) −4.61440 11.1402i −0.226786 0.547509i
\(415\) 0 0
\(416\) −4.29914 4.29914i −0.210783 0.210783i
\(417\) −36.7903 + 36.7903i −1.80163 + 1.80163i
\(418\) 12.2570 + 29.5911i 0.599512 + 1.44735i
\(419\) −13.5166 32.6320i −0.660329 1.59418i −0.797288 0.603599i \(-0.793733\pi\)
0.136958 0.990577i \(-0.456267\pi\)
\(420\) 0 0
\(421\) 15.0205i 0.732052i −0.930605 0.366026i \(-0.880718\pi\)
0.930605 0.366026i \(-0.119282\pi\)
\(422\) 11.9192 + 4.93708i 0.580216 + 0.240333i
\(423\) 15.4442 + 15.4442i 0.750922 + 0.750922i
\(424\) 1.02104 0.0495861
\(425\) 0 0
\(426\) 27.4942 1.33210
\(427\) −27.2268 27.2268i −1.31760 1.31760i
\(428\) −2.86204 1.18550i −0.138342 0.0573031i
\(429\) 18.8413i 0.909668i
\(430\) 0 0
\(431\) −8.93633 21.5742i −0.430448 1.03919i −0.979143 0.203171i \(-0.934875\pi\)
0.548695 0.836022i \(-0.315125\pi\)
\(432\) 0.724977 + 1.75025i 0.0348805 + 0.0842090i
\(433\) −12.9455 + 12.9455i −0.622120 + 0.622120i −0.946073 0.323953i \(-0.894988\pi\)
0.323953 + 0.946073i \(0.394988\pi\)
\(434\) −7.85493 7.85493i −0.377049 0.377049i
\(435\) 0 0
\(436\) 2.36626 + 5.71265i 0.113323 + 0.273586i
\(437\) 6.47302 15.6272i 0.309646 0.747552i
\(438\) −4.21956 −0.201618
\(439\) −7.75689 + 18.7268i −0.370216 + 0.893780i 0.623497 + 0.781826i \(0.285711\pi\)
−0.993713 + 0.111955i \(0.964289\pi\)
\(440\) 0 0
\(441\) −10.3509 −0.492898
\(442\) −4.09530 2.10783i −0.194794 0.100259i
\(443\) 29.3849i 1.39612i −0.716041 0.698058i \(-0.754048\pi\)
0.716041 0.698058i \(-0.245952\pi\)
\(444\) −0.797247 + 0.797247i −0.0378357 + 0.0378357i
\(445\) 0 0
\(446\) 2.03453i 0.0963376i
\(447\) 2.99628 7.23366i 0.141719 0.342140i
\(448\) 18.4475 7.64119i 0.871561 0.361012i
\(449\) 30.1572 12.4915i 1.42321 0.589512i 0.467543 0.883970i \(-0.345139\pi\)
0.955664 + 0.294459i \(0.0951394\pi\)
\(450\) 0 0
\(451\) −7.38101 7.38101i −0.347558 0.347558i
\(452\) −3.70355 8.94115i −0.174200 0.420557i
\(453\) 53.9399 22.3426i 2.53432 1.04975i
\(454\) −12.9518 5.36481i −0.607858 0.251783i
\(455\) 0 0
\(456\) −16.2742 + 39.2893i −0.762107 + 1.83989i
\(457\) −5.97585 5.97585i −0.279538 0.279538i 0.553386 0.832925i \(-0.313335\pi\)
−0.832925 + 0.553386i \(0.813335\pi\)
\(458\) 2.55199i 0.119247i
\(459\) −7.17963 8.47631i −0.335116 0.395640i
\(460\) 0 0
\(461\) 27.0527 27.0527i 1.25997 1.25997i 0.308863 0.951106i \(-0.400051\pi\)
0.951106 0.308863i \(-0.0999486\pi\)
\(462\) 44.7075 + 18.5184i 2.07998 + 0.861556i
\(463\) −27.1761 −1.26298 −0.631491 0.775383i \(-0.717557\pi\)
−0.631491 + 0.775383i \(0.717557\pi\)
\(464\) 3.24626 + 1.34464i 0.150704 + 0.0624235i
\(465\) 0 0
\(466\) −2.79259 + 1.15673i −0.129364 + 0.0535845i
\(467\) −2.43616 + 2.43616i −0.112732 + 0.112732i −0.761223 0.648491i \(-0.775401\pi\)
0.648491 + 0.761223i \(0.275401\pi\)
\(468\) 3.53564 3.53564i 0.163435 0.163435i
\(469\) 16.0825 6.66158i 0.742619 0.307603i
\(470\) 0 0
\(471\) 31.4888 + 13.0431i 1.45093 + 0.600994i
\(472\) −12.0144 −0.553009
\(473\) −0.151968 0.0629473i −0.00698751 0.00289432i
\(474\) 9.51000 9.51000i 0.436809 0.436809i
\(475\) 0 0
\(476\) −10.4458 + 8.84784i −0.478783 + 0.405540i
\(477\) 1.38624i 0.0634714i
\(478\) −9.33380 9.33380i −0.426918 0.426918i
\(479\) −5.87776 + 14.1902i −0.268562 + 0.648365i −0.999416 0.0341684i \(-0.989122\pi\)
0.730855 + 0.682533i \(0.239122\pi\)
\(480\) 0 0
\(481\) −0.425224 0.176134i −0.0193886 0.00803101i
\(482\) −11.1088 + 4.60141i −0.505991 + 0.209588i
\(483\) −9.77969 23.6103i −0.444992 1.07430i
\(484\) 20.1689 + 20.1689i 0.916767 + 0.916767i
\(485\) 0 0
\(486\) 18.7706 7.77505i 0.851453 0.352683i
\(487\) 24.3068 10.0682i 1.10145 0.456234i 0.243463 0.969910i \(-0.421717\pi\)
0.857984 + 0.513676i \(0.171717\pi\)
\(488\) −14.0882 + 34.0120i −0.637744 + 1.53965i
\(489\) 51.1052i 2.31106i
\(490\) 0 0
\(491\) −20.5320 + 20.5320i −0.926596 + 0.926596i −0.997484 0.0708885i \(-0.977417\pi\)
0.0708885 + 0.997484i \(0.477417\pi\)
\(492\) 4.83893i 0.218156i
\(493\) −20.5328 1.70060i −0.924749 0.0765911i
\(494\) −6.06120 −0.272706
\(495\) 0 0
\(496\) −1.00319 + 2.42190i −0.0450443 + 0.108747i
\(497\) 33.3583 1.49632
\(498\) −12.1286 + 29.2810i −0.543495 + 1.31211i
\(499\) −12.4718 30.1097i −0.558316 1.34789i −0.911098 0.412189i \(-0.864764\pi\)
0.352782 0.935706i \(-0.385236\pi\)
\(500\) 0 0
\(501\) −35.3252 35.3252i −1.57821 1.57821i
\(502\) −11.8749 + 11.8749i −0.530004 + 0.530004i
\(503\) −9.00803 21.7473i −0.401648 0.969665i −0.987266 0.159077i \(-0.949148\pi\)
0.585618 0.810587i \(-0.300852\pi\)
\(504\) 14.0757 + 33.9818i 0.626982 + 1.51367i
\(505\) 0 0
\(506\) 18.4026i 0.818093i
\(507\) −28.5212 11.8139i −1.26667 0.524672i
\(508\) −10.6204 10.6204i −0.471202 0.471202i
\(509\) −17.5818 −0.779300 −0.389650 0.920963i \(-0.627404\pi\)
−0.389650 + 0.920963i \(0.627404\pi\)
\(510\) 0 0
\(511\) −5.11953 −0.226474
\(512\) −5.54798 5.54798i −0.245189 0.245189i
\(513\) −13.5054 5.59412i −0.596278 0.246986i
\(514\) 6.62553i 0.292239i
\(515\) 0 0
\(516\) −0.0291807 0.0704484i −0.00128461 0.00310132i
\(517\) −12.7562 30.7962i −0.561018 1.35442i
\(518\) 0.835874 0.835874i 0.0367262 0.0367262i
\(519\) 42.2892 + 42.2892i 1.85629 + 1.85629i
\(520\) 0 0
\(521\) −7.84734 18.9452i −0.343798 0.830002i −0.997325 0.0730986i \(-0.976711\pi\)
0.653527 0.756904i \(-0.273289\pi\)
\(522\) −7.39645 + 17.8566i −0.323734 + 0.781563i
\(523\) 9.19853 0.402224 0.201112 0.979568i \(-0.435545\pi\)
0.201112 + 0.979568i \(0.435545\pi\)
\(524\) 5.20213 12.5591i 0.227256 0.548645i
\(525\) 0 0
\(526\) 6.00648 0.261895
\(527\) 1.26875 15.3187i 0.0552675 0.667291i
\(528\) 11.4195i 0.496972i
\(529\) −9.39144 + 9.39144i −0.408324 + 0.408324i
\(530\) 0 0
\(531\) 16.3117i 0.707866i
\(532\) −6.89393 + 16.6434i −0.298890 + 0.721583i
\(533\) 1.82498 0.755933i 0.0790488 0.0327431i
\(534\) 7.60972 3.15205i 0.329305 0.136403i
\(535\) 0 0
\(536\) −11.7687 11.7687i −0.508329 0.508329i
\(537\) 1.98757 + 4.79843i 0.0857702 + 0.207068i
\(538\) −1.14833 + 0.475654i −0.0495080 + 0.0205069i
\(539\) 14.5946 + 6.04530i 0.628636 + 0.260390i
\(540\) 0 0
\(541\) −5.46780 + 13.2004i −0.235079 + 0.567531i −0.996761 0.0804201i \(-0.974374\pi\)
0.761682 + 0.647951i \(0.224374\pi\)
\(542\) −7.00251 7.00251i −0.300784 0.300784i
\(543\) 1.88532i 0.0809070i
\(544\) 19.2118 + 9.88821i 0.823699 + 0.423954i
\(545\) 0 0
\(546\) −6.47534 + 6.47534i −0.277119 + 0.277119i
\(547\) 21.8969 + 9.06998i 0.936243 + 0.387805i 0.798043 0.602600i \(-0.205869\pi\)
0.138199 + 0.990404i \(0.455869\pi\)
\(548\) 3.19598 0.136525
\(549\) −46.1771 19.1272i −1.97079 0.816329i
\(550\) 0 0
\(551\) −25.0490 + 10.3756i −1.06712 + 0.442017i
\(552\) −17.2773 + 17.2773i −0.735371 + 0.735371i
\(553\) 11.5383 11.5383i 0.490660 0.490660i
\(554\) −22.5776 + 9.35196i −0.959231 + 0.397327i
\(555\) 0 0
\(556\) 19.4687 + 8.06419i 0.825656 + 0.341998i
\(557\) −0.399812 −0.0169406 −0.00847028 0.999964i \(-0.502696\pi\)
−0.00847028 + 0.999964i \(0.502696\pi\)
\(558\) −13.3221 5.51819i −0.563969 0.233604i
\(559\) 0.0220108 0.0220108i 0.000930957 0.000930957i
\(560\) 0 0
\(561\) 20.4307 + 63.7665i 0.862584 + 2.69222i
\(562\) 5.67668i 0.239456i
\(563\) 6.55034 + 6.55034i 0.276064 + 0.276064i 0.831536 0.555472i \(-0.187462\pi\)
−0.555472 + 0.831536i \(0.687462\pi\)
\(564\) 5.91343 14.2763i 0.249001 0.601140i
\(565\) 0 0
\(566\) −16.4272 6.80437i −0.690487 0.286009i
\(567\) 14.0506 5.81995i 0.590070 0.244415i
\(568\) −12.2053 29.4662i −0.512123 1.23637i
\(569\) −4.07046 4.07046i −0.170643 0.170643i 0.616619 0.787262i \(-0.288502\pi\)
−0.787262 + 0.616619i \(0.788502\pi\)
\(570\) 0 0
\(571\) −12.9331 + 5.35705i −0.541232 + 0.224186i −0.636515 0.771265i \(-0.719625\pi\)
0.0952826 + 0.995450i \(0.469625\pi\)
\(572\) −7.05018 + 2.92028i −0.294783 + 0.122103i
\(573\) −5.33561 + 12.8813i −0.222899 + 0.538125i
\(574\) 5.07337i 0.211759i
\(575\) 0 0
\(576\) 18.3276 18.3276i 0.763651 0.763651i
\(577\) 18.4417i 0.767736i −0.923388 0.383868i \(-0.874592\pi\)
0.923388 0.383868i \(-0.125408\pi\)
\(578\) 16.1458 + 2.69298i 0.671575 + 0.112013i
\(579\) 39.5495 1.64362
\(580\) 0 0
\(581\) −14.7154 + 35.5262i −0.610499 + 1.47388i
\(582\) −32.9919 −1.36756
\(583\) 0.809616 1.95459i 0.0335309 0.0809507i
\(584\) 1.87316 + 4.52220i 0.0775118 + 0.187130i
\(585\) 0 0
\(586\) −5.66397 5.66397i −0.233977 0.233977i
\(587\) 2.85082 2.85082i 0.117666 0.117666i −0.645822 0.763488i \(-0.723485\pi\)
0.763488 + 0.645822i \(0.223485\pi\)
\(588\) 2.80244 + 6.76568i 0.115571 + 0.279012i
\(589\) −7.74084 18.6880i −0.318956 0.770027i
\(590\) 0 0
\(591\) 16.7684i 0.689758i
\(592\) −0.257724 0.106753i −0.0105924 0.00438752i
\(593\) 4.61328 + 4.61328i 0.189445 + 0.189445i 0.795456 0.606011i \(-0.207231\pi\)
−0.606011 + 0.795456i \(0.707231\pi\)
\(594\) 15.9039 0.652544
\(595\) 0 0
\(596\) −3.17114 −0.129895
\(597\) 27.9372 + 27.9372i 1.14339 + 1.14339i
\(598\) −3.21741 1.33269i −0.131570 0.0544979i
\(599\) 6.81189i 0.278326i 0.990269 + 0.139163i \(0.0444413\pi\)
−0.990269 + 0.139163i \(0.955559\pi\)
\(600\) 0 0
\(601\) 14.6029 + 35.2545i 0.595664 + 1.43806i 0.877961 + 0.478732i \(0.158904\pi\)
−0.282297 + 0.959327i \(0.591096\pi\)
\(602\) 0.0305945 + 0.0738616i 0.00124694 + 0.00301038i
\(603\) 15.9780 15.9780i 0.650674 0.650674i
\(604\) −16.7207 16.7207i −0.680354 0.680354i
\(605\) 0 0
\(606\) 1.43432 + 3.46275i 0.0582652 + 0.140665i
\(607\) 10.3924 25.0895i 0.421816 1.01835i −0.559996 0.828495i \(-0.689197\pi\)
0.981812 0.189858i \(-0.0608027\pi\)
\(608\) 28.4342 1.15316
\(609\) −15.6759 + 37.8450i −0.635220 + 1.53356i
\(610\) 0 0
\(611\) 6.30805 0.255196
\(612\) −8.13212 + 15.7999i −0.328721 + 0.638672i
\(613\) 2.48591i 0.100405i −0.998739 0.0502025i \(-0.984013\pi\)
0.998739 0.0502025i \(-0.0159867\pi\)
\(614\) 8.33154 8.33154i 0.336233 0.336233i
\(615\) 0 0
\(616\) 56.1349i 2.26174i
\(617\) −16.5297 + 39.9062i −0.665460 + 1.60656i 0.123661 + 0.992325i \(0.460536\pi\)
−0.789121 + 0.614238i \(0.789464\pi\)
\(618\) 23.1164 9.57513i 0.929878 0.385168i
\(619\) 1.27211 0.526923i 0.0511302 0.0211788i −0.356972 0.934115i \(-0.616191\pi\)
0.408102 + 0.912936i \(0.366191\pi\)
\(620\) 0 0
\(621\) −5.93894 5.93894i −0.238321 0.238321i
\(622\) −12.0258 29.0329i −0.482192 1.16411i
\(623\) 9.23276 3.82434i 0.369903 0.153219i
\(624\) 1.99653 + 0.826992i 0.0799253 + 0.0331062i
\(625\) 0 0
\(626\) −4.94825 + 11.9461i −0.197772 + 0.477464i
\(627\) 62.3075 + 62.3075i 2.48832 + 2.48832i
\(628\) 13.8043i 0.550851i
\(629\) 1.63012 + 0.135012i 0.0649971 + 0.00538330i
\(630\) 0 0
\(631\) 22.9351 22.9351i 0.913032 0.913032i −0.0834781 0.996510i \(-0.526603\pi\)
0.996510 + 0.0834781i \(0.0266029\pi\)
\(632\) −14.4138 5.97040i −0.573351 0.237490i
\(633\) 35.4928 1.41071
\(634\) 8.78330 + 3.63816i 0.348829 + 0.144490i
\(635\) 0 0
\(636\) 0.906094 0.375316i 0.0359289 0.0148823i
\(637\) −2.11386 + 2.11386i −0.0837542 + 0.0837542i
\(638\) 20.8579 20.8579i 0.825773 0.825773i
\(639\) 40.0054 16.5708i 1.58259 0.655530i
\(640\) 0 0
\(641\) 20.6017 + 8.53352i 0.813719 + 0.337054i 0.750437 0.660942i \(-0.229843\pi\)
0.0632825 + 0.997996i \(0.479843\pi\)
\(642\) 7.36471 0.290662
\(643\) 10.8335 + 4.48736i 0.427230 + 0.176964i 0.585929 0.810363i \(-0.300730\pi\)
−0.158699 + 0.987327i \(0.550730\pi\)
\(644\) −7.31887 + 7.31887i −0.288404 + 0.288404i
\(645\) 0 0
\(646\) 20.5135 6.57249i 0.807094 0.258591i
\(647\) 37.3217i 1.46727i −0.679544 0.733634i \(-0.737823\pi\)
0.679544 0.733634i \(-0.262177\pi\)
\(648\) −10.2818 10.2818i −0.403908 0.403908i
\(649\) −9.52665 + 22.9994i −0.373954 + 0.902804i
\(650\) 0 0
\(651\) −28.2346 11.6952i −1.10660 0.458370i
\(652\) 19.1229 7.92097i 0.748911 0.310209i
\(653\) 0.671889 + 1.62208i 0.0262931 + 0.0634771i 0.936481 0.350719i \(-0.114063\pi\)
−0.910188 + 0.414196i \(0.864063\pi\)
\(654\) −10.3945 10.3945i −0.406456 0.406456i
\(655\) 0 0
\(656\) 1.10610 0.458164i 0.0431861 0.0178883i
\(657\) −6.13967 + 2.54313i −0.239531 + 0.0992171i
\(658\) −6.19994 + 14.9680i −0.241699 + 0.583513i
\(659\) 6.02834i 0.234831i −0.993083 0.117415i \(-0.962539\pi\)
0.993083 0.117415i \(-0.0374609\pi\)
\(660\) 0 0
\(661\) 22.6415 22.6415i 0.880652 0.880652i −0.112949 0.993601i \(-0.536030\pi\)
0.993601 + 0.112949i \(0.0360296\pi\)
\(662\) 5.43353i 0.211180i
\(663\) −12.6282 1.04591i −0.490438 0.0406199i
\(664\) 36.7653 1.42677
\(665\) 0 0
\(666\) 0.587213 1.41766i 0.0227540 0.0549331i
\(667\) −15.5778 −0.603176
\(668\) −7.74305 + 18.6934i −0.299588 + 0.723269i
\(669\) −2.14197 5.17116i −0.0828132 0.199929i
\(670\) 0 0
\(671\) 53.9385 + 53.9385i 2.08227 + 2.08227i
\(672\) 30.3770 30.3770i 1.17182 1.17182i
\(673\) 15.1505 + 36.5765i 0.584009 + 1.40992i 0.889150 + 0.457615i \(0.151296\pi\)
−0.305142 + 0.952307i \(0.598704\pi\)
\(674\) 6.11393 + 14.7603i 0.235500 + 0.568547i
\(675\) 0 0
\(676\) 12.5033i 0.480897i
\(677\) 6.46223 + 2.67674i 0.248364 + 0.102876i 0.503393 0.864058i \(-0.332085\pi\)
−0.255029 + 0.966933i \(0.582085\pi\)
\(678\) 16.2689 + 16.2689i 0.624803 + 0.624803i
\(679\) −40.0286 −1.53616
\(680\) 0 0
\(681\) −38.5677 −1.47792
\(682\) 15.5613 + 15.5613i 0.595871 + 0.595871i
\(683\) −34.3826 14.2417i −1.31561 0.544945i −0.389097 0.921197i \(-0.627213\pi\)
−0.926518 + 0.376251i \(0.877213\pi\)
\(684\) 23.3844i 0.894126i
\(685\) 0 0
\(686\) 5.04383 + 12.1769i 0.192574 + 0.464915i
\(687\) 2.68676 + 6.48641i 0.102506 + 0.247472i
\(688\) 0.0133405 0.0133405i 0.000508602 0.000508602i
\(689\) 0.283098 + 0.283098i 0.0107852 + 0.0107852i
\(690\) 0 0
\(691\) −5.98831 14.4571i −0.227806 0.549972i 0.768104 0.640325i \(-0.221200\pi\)
−0.995910 + 0.0903530i \(0.971200\pi\)
\(692\) 9.26952 22.3786i 0.352374 0.850706i
\(693\) 76.2127 2.89508
\(694\) −3.40627 + 8.22347i −0.129300 + 0.312158i
\(695\) 0 0
\(696\) 39.1650 1.48455
\(697\) −5.35677 + 4.53731i −0.202902 + 0.171863i
\(698\) 25.9276i 0.981372i
\(699\) −5.88013 + 5.88013i −0.222407 + 0.222407i
\(700\) 0 0
\(701\) 6.08551i 0.229847i 0.993374 + 0.114923i \(0.0366622\pi\)
−0.993374 + 0.114923i \(0.963338\pi\)
\(702\) −1.15174 + 2.78055i −0.0434697 + 0.104945i
\(703\) 1.98867 0.823733i 0.0750040 0.0310677i
\(704\) −36.5459 + 15.1378i −1.37738 + 0.570528i
\(705\) 0 0
\(706\) −15.6407 15.6407i −0.588644 0.588644i
\(707\) 1.74024 + 4.20130i 0.0654483 + 0.158006i
\(708\) −10.6619 + 4.41630i −0.400698 + 0.165975i
\(709\) −18.2079 7.54197i −0.683813 0.283245i 0.0136069 0.999907i \(-0.495669\pi\)
−0.697420 + 0.716663i \(0.745669\pi\)
\(710\) 0 0
\(711\) 8.10584 19.5692i 0.303993 0.733903i
\(712\) −6.75626 6.75626i −0.253202 0.253202i
\(713\) 11.6220i 0.435247i
\(714\) 14.8936 28.9367i 0.557377 1.08293i
\(715\) 0 0
\(716\) 1.48745 1.48745i 0.0555886 0.0555886i
\(717\) −33.5504 13.8970i −1.25296 0.518995i
\(718\) 32.8425 1.22567
\(719\) 14.7049 + 6.09095i 0.548399 + 0.227154i 0.639640 0.768675i \(-0.279083\pi\)
−0.0912412 + 0.995829i \(0.529083\pi\)
\(720\) 0 0
\(721\) 28.0468 11.6174i 1.04452 0.432653i
\(722\) 7.10797 7.10797i 0.264531 0.264531i
\(723\) −23.3908 + 23.3908i −0.869914 + 0.869914i
\(724\) 0.705464 0.292213i 0.0262184 0.0108600i
\(725\) 0 0
\(726\) −62.6479 25.9496i −2.32508 0.963081i
\(727\) −22.2643 −0.825736 −0.412868 0.910791i \(-0.635473\pi\)
−0.412868 + 0.910791i \(0.635473\pi\)
\(728\) 9.81433 + 4.06523i 0.363743 + 0.150667i
\(729\) 29.0987 29.0987i 1.07773 1.07773i
\(730\) 0 0
\(731\) −0.0506257 + 0.0983607i −0.00187246 + 0.00363800i
\(732\) 35.3616i 1.30700i
\(733\) −4.01178 4.01178i −0.148178 0.148178i 0.629125 0.777304i \(-0.283413\pi\)
−0.777304 + 0.629125i \(0.783413\pi\)
\(734\) −3.41801 + 8.25181i −0.126161 + 0.304580i
\(735\) 0 0
\(736\) 15.0934 + 6.25191i 0.556352 + 0.230449i
\(737\) −31.8607 + 13.1971i −1.17360 + 0.486122i
\(738\) 2.52021 + 6.08432i 0.0927702 + 0.223967i
\(739\) 28.1411 + 28.1411i 1.03519 + 1.03519i 0.999358 + 0.0358281i \(0.0114069\pi\)
0.0358281 + 0.999358i \(0.488593\pi\)
\(740\) 0 0
\(741\) −15.4058 + 6.38128i −0.565946 + 0.234422i
\(742\) −0.949994 + 0.393501i −0.0348754 + 0.0144459i
\(743\) −4.07556 + 9.83928i −0.149518 + 0.360968i −0.980838 0.194826i \(-0.937586\pi\)
0.831320 + 0.555794i \(0.187586\pi\)
\(744\) 29.2195i 1.07124i
\(745\) 0 0
\(746\) 2.08924 2.08924i 0.0764926 0.0764926i
\(747\) 49.9153i 1.82630i
\(748\) 20.6940 17.5283i 0.756647 0.640897i
\(749\) 8.93549 0.326496
\(750\) 0 0
\(751\) 6.93403 16.7402i 0.253026 0.610860i −0.745419 0.666596i \(-0.767751\pi\)
0.998446 + 0.0557362i \(0.0177506\pi\)
\(752\) 3.82324 0.139419
\(753\) −17.6805 + 42.6846i −0.644314 + 1.55551i
\(754\) 2.13618 + 5.15720i 0.0777952 + 0.187814i
\(755\) 0 0
\(756\) 6.32512 + 6.32512i 0.230042 + 0.230042i
\(757\) −12.0753 + 12.0753i −0.438885 + 0.438885i −0.891637 0.452752i \(-0.850442\pi\)
0.452752 + 0.891637i \(0.350442\pi\)
\(758\) −13.4618 32.4997i −0.488955 1.18044i
\(759\) 19.3744 + 46.7738i 0.703245 + 1.69778i
\(760\) 0 0
\(761\) 31.9719i 1.15898i −0.814979 0.579491i \(-0.803251\pi\)
0.814979 0.579491i \(-0.196749\pi\)
\(762\) 32.9886 + 13.6643i 1.19505 + 0.495006i
\(763\) −12.6114 12.6114i −0.456565 0.456565i
\(764\) 5.64701 0.204301
\(765\) 0 0
\(766\) 8.97540 0.324294
\(767\) −3.33118 3.33118i −0.120282 0.120282i
\(768\) −41.6399 17.2478i −1.50255 0.622376i
\(769\) 34.9147i 1.25906i −0.776977 0.629529i \(-0.783248\pi\)
0.776977 0.629529i \(-0.216752\pi\)
\(770\) 0 0
\(771\) −6.97541 16.8401i −0.251213 0.606482i
\(772\) −6.12991 14.7989i −0.220620 0.532625i
\(773\) 3.17604 3.17604i 0.114234 0.114234i −0.647679 0.761913i \(-0.724260\pi\)
0.761913 + 0.647679i \(0.224260\pi\)
\(774\) 0.0733818 + 0.0733818i 0.00263765 + 0.00263765i
\(775\) 0 0
\(776\) 14.6459 + 35.3582i 0.525756 + 1.26929i
\(777\) 1.24453 3.00456i 0.0446472 0.107788i
\(778\) −31.9310 −1.14478
\(779\) −3.53531 + 8.53499i −0.126666 + 0.305798i
\(780\) 0 0
\(781\) −66.0854 −2.36472
\(782\) 12.3341 + 1.02156i 0.441067 + 0.0365308i
\(783\) 13.4627i 0.481117i
\(784\) −1.28119 + 1.28119i −0.0457568 + 0.0457568i
\(785\) 0 0
\(786\) 32.3174i 1.15272i
\(787\) 3.31075 7.99286i 0.118016 0.284915i −0.853823 0.520564i \(-0.825722\pi\)
0.971838 + 0.235649i \(0.0757217\pi\)
\(788\) 6.27451 2.59899i 0.223520 0.0925850i
\(789\) 15.2667 6.32367i 0.543508 0.225129i
\(790\) 0 0
\(791\) 19.7388 + 19.7388i 0.701831 + 0.701831i
\(792\) −27.8851 67.3206i −0.990854 2.39213i
\(793\) −13.3365 + 5.52416i −0.473593 + 0.196169i
\(794\) 7.85087 + 3.25194i 0.278617 + 0.115407i
\(795\) 0 0
\(796\) 6.12366 14.7838i 0.217048 0.523999i
\(797\) 13.4447 + 13.4447i 0.476236 + 0.476236i 0.903926 0.427689i \(-0.140672\pi\)
−0.427689 + 0.903926i \(0.640672\pi\)
\(798\) 42.8274i 1.51607i
\(799\) −21.3489 + 6.84016i −0.755271 + 0.241987i
\(800\) 0 0
\(801\) 9.17279 9.17279i 0.324104 0.324104i
\(802\) 17.3636 + 7.19226i 0.613132 + 0.253967i
\(803\) 10.1422 0.357910
\(804\) −14.7697 6.11783i −0.520888 0.215759i
\(805\) 0 0
\(806\) −3.84758 + 1.59372i −0.135525 + 0.0561364i
\(807\) −2.41794 + 2.41794i −0.0851156 + 0.0851156i
\(808\) 3.07439 3.07439i 0.108157 0.108157i
\(809\) 20.9455 8.67589i 0.736403 0.305028i 0.0172227 0.999852i \(-0.494518\pi\)
0.719180 + 0.694824i \(0.244518\pi\)
\(810\) 0 0
\(811\) −22.2809 9.22904i −0.782388 0.324076i −0.0445090 0.999009i \(-0.514172\pi\)
−0.737879 + 0.674933i \(0.764172\pi\)
\(812\) 16.5908 0.582222
\(813\) −25.1706 10.4260i −0.882772 0.365656i
\(814\) −1.65593 + 1.65593i −0.0580405 + 0.0580405i
\(815\) 0 0
\(816\) −7.65382 0.633917i −0.267937 0.0221915i
\(817\) 0.145578i 0.00509311i
\(818\) −7.09121 7.09121i −0.247938 0.247938i
\(819\) −5.51925 + 13.3246i −0.192858 + 0.465601i
\(820\) 0 0
\(821\) −0.105957 0.0438888i −0.00369792 0.00153173i 0.380834 0.924644i \(-0.375637\pi\)
−0.384532 + 0.923112i \(0.625637\pi\)
\(822\) −7.01962 + 2.90762i −0.244838 + 0.101415i
\(823\) 12.9581 + 31.2835i 0.451689 + 1.09047i 0.971680 + 0.236302i \(0.0759356\pi\)
−0.519990 + 0.854172i \(0.674064\pi\)
\(824\) −20.5238 20.5238i −0.714981 0.714981i
\(825\) 0 0
\(826\) 11.1785 4.63027i 0.388948 0.161108i
\(827\) 18.9992 7.86974i 0.660668 0.273658i −0.0270516 0.999634i \(-0.508612\pi\)
0.687720 + 0.725976i \(0.258612\pi\)
\(828\) −5.14160 + 12.4129i −0.178683 + 0.431379i
\(829\) 26.7935i 0.930576i −0.885159 0.465288i \(-0.845951\pi\)
0.885159 0.465288i \(-0.154049\pi\)
\(830\) 0 0
\(831\) −47.5398 + 47.5398i −1.64914 + 1.64914i
\(832\) 7.48577i 0.259522i
\(833\) 4.86197 9.44631i 0.168457 0.327295i
\(834\) −50.0975 −1.73473
\(835\) 0 0
\(836\) 13.6574 32.9719i 0.472352 1.14036i
\(837\) −10.0440 −0.347170
\(838\) 13.0147 31.4204i 0.449587 1.08540i
\(839\) −5.29374 12.7802i −0.182760 0.441222i 0.805773 0.592224i \(-0.201750\pi\)
−0.988533 + 0.151002i \(0.951750\pi\)
\(840\) 0 0
\(841\) −2.84980 2.84980i −0.0982690 0.0982690i
\(842\) 10.2267 10.2267i 0.352436 0.352436i
\(843\) −5.97645 14.4284i −0.205840 0.496942i
\(844\) −5.50114 13.2809i −0.189357 0.457149i
\(845\) 0 0
\(846\) 21.0304i 0.723041i
\(847\) −76.0098 31.4843i −2.61173 1.08181i
\(848\) 0.171583 + 0.171583i 0.00589219 + 0.00589219i
\(849\) −48.9168 −1.67882
\(850\) 0 0
\(851\) 1.23674 0.0423950
\(852\) −21.6625 21.6625i −0.742145 0.742145i
\(853\) −11.8086 4.89128i −0.404319 0.167474i 0.171250 0.985228i \(-0.445219\pi\)
−0.575569 + 0.817753i \(0.695219\pi\)
\(854\) 37.0749i 1.26868i
\(855\) 0 0
\(856\) −3.26936 7.89294i −0.111744 0.269775i
\(857\) 2.41686 + 5.83483i 0.0825585 + 0.199314i 0.959768 0.280794i \(-0.0905977\pi\)
−0.877210 + 0.480107i \(0.840598\pi\)
\(858\) 12.8282 12.8282i 0.437946 0.437946i
\(859\) −24.8431 24.8431i −0.847636 0.847636i 0.142202 0.989838i \(-0.454582\pi\)
−0.989838 + 0.142202i \(0.954582\pi\)
\(860\) 0 0
\(861\) 5.34129 + 12.8950i 0.182031 + 0.439461i
\(862\) 8.60453 20.7732i 0.293072 0.707537i
\(863\) −44.2102 −1.50493 −0.752466 0.658632i \(-0.771136\pi\)
−0.752466 + 0.658632i \(0.771136\pi\)
\(864\) 5.40303 13.0441i 0.183815 0.443768i
\(865\) 0 0
\(866\) −17.6279 −0.599022
\(867\) 43.8729 10.1536i 1.49000 0.344836i
\(868\) 12.3777i 0.420127i
\(869\) −22.8584 + 22.8584i −0.775417 + 0.775417i
\(870\) 0 0
\(871\) 6.52608i 0.221128i
\(872\) −6.52566 + 15.7543i −0.220987 + 0.533510i
\(873\) −48.0049 + 19.8843i −1.62472 + 0.672980i
\(874\) 15.0470 6.23268i 0.508973 0.210824i
\(875\) 0 0
\(876\) 3.32456 + 3.32456i 0.112327 + 0.112327i
\(877\) 9.03414 + 21.8103i 0.305061 + 0.736483i 0.999851 + 0.0172700i \(0.00549748\pi\)
−0.694790 + 0.719213i \(0.744503\pi\)
\(878\) −18.0315 + 7.46888i −0.608533 + 0.252063i
\(879\) −20.3592 8.43306i −0.686699 0.284440i
\(880\) 0 0
\(881\) −12.6524 + 30.5457i −0.426271 + 1.02911i 0.554189 + 0.832391i \(0.313029\pi\)
−0.980460 + 0.196719i \(0.936971\pi\)
\(882\) −7.04741 7.04741i −0.237298 0.237298i
\(883\) 58.1141i 1.95569i 0.209320 + 0.977847i \(0.432875\pi\)
−0.209320 + 0.977847i \(0.567125\pi\)
\(884\) 1.56592 + 4.88741i 0.0526675 + 0.164381i
\(885\) 0 0
\(886\) 20.0068 20.0068i 0.672140 0.672140i
\(887\) −25.8776 10.7189i −0.868885 0.359904i −0.0967091 0.995313i \(-0.530832\pi\)
−0.772176 + 0.635409i \(0.780832\pi\)
\(888\) −3.10936 −0.104343
\(889\) 40.0246 + 16.5787i 1.34238 + 0.556033i
\(890\) 0 0
\(891\) −27.8354 + 11.5298i −0.932520 + 0.386262i
\(892\) −1.60299 + 1.60299i −0.0536721 + 0.0536721i
\(893\) −20.8605 + 20.8605i −0.698069 + 0.698069i
\(894\) 6.96508 2.88503i 0.232947 0.0964899i
\(895\) 0 0
\(896\) −12.2034 5.05480i −0.407686 0.168869i
\(897\) −9.58077 −0.319893
\(898\) 29.0375 + 12.0277i 0.968994 + 0.401371i
\(899\) −13.1727 + 13.1727i −0.439333 + 0.439333i
\(900\) 0 0
\(901\) −1.26510 0.651138i −0.0421465 0.0216926i
\(902\) 10.0508i 0.334654i
\(903\) 0.155524 + 0.155524i 0.00517552 + 0.00517552i
\(904\) 10.2136 24.6579i 0.339701 0.820110i
\(905\) 0 0
\(906\) 51.9372 + 21.5131i 1.72550 + 0.714724i
\(907\) −46.1204 + 19.1037i −1.53140 + 0.634328i −0.979836 0.199802i \(-0.935970\pi\)
−0.551568 + 0.834130i \(0.685970\pi\)
\(908\) 5.97774 + 14.4315i 0.198378 + 0.478928i
\(909\) 4.17401 + 4.17401i 0.138443 + 0.138443i
\(910\) 0 0
\(911\) −20.2142 + 8.37302i −0.669728 + 0.277410i −0.691526 0.722352i \(-0.743061\pi\)
0.0217976 + 0.999762i \(0.493061\pi\)
\(912\) −9.33729 + 3.86763i −0.309189 + 0.128070i
\(913\) 29.1525 70.3802i 0.964805 2.32925i
\(914\) 8.13734i 0.269159i
\(915\) 0 0
\(916\) 2.01070 2.01070i 0.0664354 0.0664354i
\(917\) 39.2102i 1.29483i
\(918\) 0.882850 10.6594i 0.0291384 0.351812i
\(919\) 11.0529 0.364600 0.182300 0.983243i \(-0.441646\pi\)
0.182300 + 0.983243i \(0.441646\pi\)
\(920\) 0 0
\(921\) 12.4048 29.9478i 0.408752 0.986814i
\(922\) 36.8378 1.21319
\(923\) 4.78584 11.5540i 0.157528 0.380306i
\(924\) −20.6342 49.8153i −0.678815 1.63880i
\(925\) 0 0
\(926\) −18.5029 18.5029i −0.608045 0.608045i
\(927\) 27.8646 27.8646i 0.915193 0.915193i
\(928\) −10.0212 24.1934i −0.328963 0.794186i
\(929\) −12.6796 30.6112i −0.416003 1.00432i −0.983494 0.180941i \(-0.942086\pi\)
0.567491 0.823380i \(-0.307914\pi\)
\(930\) 0 0
\(931\) 13.9809i 0.458206i
\(932\) 3.11165 + 1.28889i 0.101925 + 0.0422189i
\(933\) −61.1322 61.1322i −2.00138 2.00138i
\(934\) −3.31733 −0.108546
\(935\) 0 0
\(936\) 13.7894 0.450721
\(937\) 41.2820 + 41.2820i 1.34862 + 1.34862i 0.887159 + 0.461465i \(0.152676\pi\)
0.461465 + 0.887159i \(0.347324\pi\)
\(938\) 15.4853 + 6.41424i 0.505614 + 0.209432i
\(939\) 35.5731i 1.16088i
\(940\) 0 0
\(941\) −2.33416 5.63515i −0.0760913 0.183701i 0.881257 0.472638i \(-0.156698\pi\)
−0.957348 + 0.288937i \(0.906698\pi\)
\(942\) 12.5588 + 30.3196i 0.409188 + 0.987867i
\(943\) −3.75323 + 3.75323i −0.122222 + 0.122222i
\(944\) −2.01900 2.01900i −0.0657127 0.0657127i
\(945\) 0 0
\(946\) −0.0606101 0.146326i −0.00197061 0.00475746i
\(947\) −18.0429 + 43.5595i −0.586317 + 1.41549i 0.300683 + 0.953724i \(0.402785\pi\)
−0.887000 + 0.461770i \(0.847215\pi\)
\(948\) −14.9857 −0.486714
\(949\) −0.734487 + 1.77321i −0.0238425 + 0.0575608i
\(950\) 0 0
\(951\) 26.1548 0.848129
\(952\) −37.6237 3.11614i −1.21939 0.100995i
\(953\) 26.8459i 0.869625i −0.900521 0.434812i \(-0.856815\pi\)
0.900521 0.434812i \(-0.143185\pi\)
\(954\) −0.943823 + 0.943823i −0.0305574 + 0.0305574i
\(955\) 0 0
\(956\) 14.7081i 0.475694i
\(957\) 31.0553 74.9740i 1.00387 2.42357i
\(958\) −13.6633 + 5.65952i −0.441441 + 0.182851i
\(959\) −8.51680 + 3.52778i −0.275022 + 0.113918i
\(960\) 0 0
\(961\) 12.0927 + 12.0927i 0.390088 + 0.390088i
\(962\) −0.169594 0.409436i −0.00546793 0.0132008i
\(963\) 10.7160 4.43872i 0.345319 0.143036i
\(964\) 12.3780 + 5.12712i 0.398667 + 0.165133i
\(965\) 0 0
\(966\) 9.41658 22.7336i 0.302974 0.731443i
\(967\) −24.1223 24.1223i −0.775722 0.775722i 0.203378 0.979100i \(-0.434808\pi\)
−0.979100 + 0.203378i \(0.934808\pi\)
\(968\) 78.6610i 2.52826i
\(969\) 45.2197 38.3021i 1.45267 1.23044i
\(970\) 0 0
\(971\) −16.2292 + 16.2292i −0.520821 + 0.520821i −0.917819 0.396999i \(-0.870052\pi\)
0.396999 + 0.917819i \(0.370052\pi\)
\(972\) −20.9152 8.66335i −0.670855 0.277877i
\(973\) −60.7825 −1.94860
\(974\) 23.4043 + 9.69439i 0.749923 + 0.310628i
\(975\) 0 0
\(976\) −8.08312 + 3.34814i −0.258734 + 0.107171i
\(977\) −14.0530 + 14.0530i −0.449595 + 0.449595i −0.895220 0.445625i \(-0.852982\pi\)
0.445625 + 0.895220i \(0.352982\pi\)
\(978\) −34.7951 + 34.7951i −1.11263 + 1.11263i
\(979\) −18.2908 + 7.57632i −0.584578 + 0.242140i
\(980\) 0 0
\(981\) −21.3892 8.85971i −0.682906 0.282869i
\(982\) −27.9585 −0.892192
\(983\) 54.5743 + 22.6054i 1.74065 + 0.721001i 0.998723 + 0.0505223i \(0.0160886\pi\)
0.741928 + 0.670479i \(0.233911\pi\)
\(984\) 9.43619 9.43619i 0.300815 0.300815i
\(985\) 0 0
\(986\) −12.8219 15.1376i −0.408333 0.482081i
\(987\) 44.5715i 1.41873i
\(988\) 4.77559 + 4.77559i 0.151932 + 0.151932i
\(989\) −0.0320086 + 0.0772755i −0.00101781 + 0.00245722i
\(990\) 0 0
\(991\) −9.78771 4.05420i −0.310917 0.128786i 0.221768 0.975099i \(-0.428817\pi\)
−0.532685 + 0.846313i \(0.678817\pi\)
\(992\) 18.0497 7.47643i 0.573078 0.237377i
\(993\) −5.72046 13.8104i −0.181533 0.438261i
\(994\) 22.7121 + 22.7121i 0.720383 + 0.720383i
\(995\) 0 0
\(996\) 32.6264 13.5143i 1.03381 0.428217i
\(997\) −37.6817 + 15.6083i −1.19339 + 0.494319i −0.888858 0.458182i \(-0.848501\pi\)
−0.304534 + 0.952501i \(0.598501\pi\)
\(998\) 12.0088 28.9917i 0.380131 0.917718i
\(999\) 1.06882i 0.0338159i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.f.399.4 24
5.2 odd 4 425.2.m.b.76.3 24
5.3 odd 4 85.2.l.a.76.4 yes 24
5.4 even 2 425.2.n.c.399.3 24
15.8 even 4 765.2.be.b.586.3 24
17.15 even 8 425.2.n.c.49.3 24
85.7 even 16 7225.2.a.bs.1.7 12
85.23 even 16 1445.2.d.j.866.14 24
85.27 even 16 7225.2.a.bq.1.7 12
85.28 even 16 1445.2.d.j.866.13 24
85.32 odd 8 425.2.m.b.151.3 24
85.49 even 8 inner 425.2.n.f.49.4 24
85.58 even 16 1445.2.a.p.1.6 12
85.78 even 16 1445.2.a.q.1.6 12
85.83 odd 8 85.2.l.a.66.4 24
255.83 even 8 765.2.be.b.406.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.4 24 85.83 odd 8
85.2.l.a.76.4 yes 24 5.3 odd 4
425.2.m.b.76.3 24 5.2 odd 4
425.2.m.b.151.3 24 85.32 odd 8
425.2.n.c.49.3 24 17.15 even 8
425.2.n.c.399.3 24 5.4 even 2
425.2.n.f.49.4 24 85.49 even 8 inner
425.2.n.f.399.4 24 1.1 even 1 trivial
765.2.be.b.406.3 24 255.83 even 8
765.2.be.b.586.3 24 15.8 even 4
1445.2.a.p.1.6 12 85.58 even 16
1445.2.a.q.1.6 12 85.78 even 16
1445.2.d.j.866.13 24 85.28 even 16
1445.2.d.j.866.14 24 85.23 even 16
7225.2.a.bq.1.7 12 85.27 even 16
7225.2.a.bs.1.7 12 85.7 even 16