Properties

Label 425.2.n.f.349.4
Level $425$
Weight $2$
Character 425.349
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(49,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 349.4
Character \(\chi\) \(=\) 425.349
Dual form 425.2.n.f.274.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.213325 + 0.213325i) q^{2} +(0.406032 - 0.980249i) q^{3} -1.90899i q^{4} +(0.295728 - 0.122495i) q^{6} +(2.31879 - 0.960473i) q^{7} +(0.833883 - 0.833883i) q^{8} +(1.32529 + 1.32529i) q^{9} +(2.25941 - 0.935880i) q^{11} +(-1.87128 - 0.775110i) q^{12} -5.61335 q^{13} +(0.699548 + 0.289762i) q^{14} -3.46219 q^{16} +(-3.06205 + 2.76113i) q^{17} +0.565436i q^{18} +(5.04243 - 5.04243i) q^{19} -2.66297i q^{21} +(0.681636 + 0.282343i) q^{22} +(-0.329416 - 0.795280i) q^{23} +(-0.478830 - 1.15600i) q^{24} +(-1.19747 - 1.19747i) q^{26} +(4.77798 - 1.97910i) q^{27} +(-1.83353 - 4.42653i) q^{28} +(1.43561 - 3.46587i) q^{29} +(-2.07626 - 0.860015i) q^{31} +(-2.40634 - 2.40634i) q^{32} -2.59479i q^{33} +(-1.24223 - 0.0641935i) q^{34} +(2.52997 - 2.52997i) q^{36} +(-1.95382 + 4.71693i) q^{37} +2.15135 q^{38} +(-2.27920 + 5.50249i) q^{39} +(4.72598 + 11.4095i) q^{41} +(0.568078 - 0.568078i) q^{42} +(-1.85272 + 1.85272i) q^{43} +(-1.78658 - 4.31319i) q^{44} +(0.0993804 - 0.239926i) q^{46} +2.30114 q^{47} +(-1.40576 + 3.39381i) q^{48} +(-0.495478 + 0.495478i) q^{49} +(1.46330 + 4.12268i) q^{51} +10.7158i q^{52} +(-1.96204 - 1.96204i) q^{53} +(1.44145 + 0.597069i) q^{54} +(1.13268 - 2.73452i) q^{56} +(-2.89544 - 6.99022i) q^{57} +(1.04561 - 0.433105i) q^{58} +(5.26206 + 5.26206i) q^{59} +(-0.346822 - 0.837303i) q^{61} +(-0.259455 - 0.626380i) q^{62} +(4.34599 + 1.80017i) q^{63} +5.89773i q^{64} +(0.553532 - 0.553532i) q^{66} -6.69889i q^{67} +(5.27096 + 5.84541i) q^{68} -0.913326 q^{69} +(0.222439 + 0.0921372i) q^{71} +2.21028 q^{72} +(5.96591 + 2.47116i) q^{73} +(-1.42304 + 0.589441i) q^{74} +(-9.62592 - 9.62592i) q^{76} +(4.34022 - 4.34022i) q^{77} +(-1.66003 + 0.687606i) q^{78} +(-13.5899 + 5.62912i) q^{79} +0.135560i q^{81} +(-1.42577 + 3.44210i) q^{82} +(9.82767 + 9.82767i) q^{83} -5.08358 q^{84} -0.790460 q^{86} +(-2.81451 - 2.81451i) q^{87} +(1.10367 - 2.66450i) q^{88} -0.395163i q^{89} +(-13.0162 + 5.39148i) q^{91} +(-1.51818 + 0.628850i) q^{92} +(-1.68606 + 1.68606i) q^{93} +(0.490889 + 0.490889i) q^{94} +(-3.33586 + 1.38176i) q^{96} +(8.27725 + 3.42855i) q^{97} -0.211396 q^{98} +(4.23471 + 1.75407i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} - 40 q^{12} - 16 q^{13} - 24 q^{16} + 8 q^{19} + 24 q^{22} - 8 q^{23} + 8 q^{24} + 16 q^{26} - 16 q^{27} + 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} + 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.213325 + 0.213325i 0.150843 + 0.150843i 0.778495 0.627651i \(-0.215984\pi\)
−0.627651 + 0.778495i \(0.715984\pi\)
\(3\) 0.406032 0.980249i 0.234423 0.565947i −0.762265 0.647265i \(-0.775913\pi\)
0.996688 + 0.0813177i \(0.0259128\pi\)
\(4\) 1.90899i 0.954493i
\(5\) 0 0
\(6\) 0.295728 0.122495i 0.120731 0.0500082i
\(7\) 2.31879 0.960473i 0.876420 0.363025i 0.101312 0.994855i \(-0.467696\pi\)
0.775107 + 0.631830i \(0.217696\pi\)
\(8\) 0.833883 0.833883i 0.294822 0.294822i
\(9\) 1.32529 + 1.32529i 0.441765 + 0.441765i
\(10\) 0 0
\(11\) 2.25941 0.935880i 0.681239 0.282179i −0.0151056 0.999886i \(-0.504808\pi\)
0.696345 + 0.717707i \(0.254808\pi\)
\(12\) −1.87128 0.775110i −0.540192 0.223755i
\(13\) −5.61335 −1.55686 −0.778432 0.627729i \(-0.783985\pi\)
−0.778432 + 0.627729i \(0.783985\pi\)
\(14\) 0.699548 + 0.289762i 0.186962 + 0.0774422i
\(15\) 0 0
\(16\) −3.46219 −0.865549
\(17\) −3.06205 + 2.76113i −0.742656 + 0.669673i
\(18\) 0.565436i 0.133275i
\(19\) 5.04243 5.04243i 1.15681 1.15681i 0.171655 0.985157i \(-0.445089\pi\)
0.985157 0.171655i \(-0.0549113\pi\)
\(20\) 0 0
\(21\) 2.66297i 0.581108i
\(22\) 0.681636 + 0.282343i 0.145325 + 0.0601957i
\(23\) −0.329416 0.795280i −0.0686880 0.165827i 0.885807 0.464053i \(-0.153605\pi\)
−0.954495 + 0.298226i \(0.903605\pi\)
\(24\) −0.478830 1.15600i −0.0977407 0.235967i
\(25\) 0 0
\(26\) −1.19747 1.19747i −0.234843 0.234843i
\(27\) 4.77798 1.97910i 0.919522 0.380879i
\(28\) −1.83353 4.42653i −0.346505 0.836536i
\(29\) 1.43561 3.46587i 0.266586 0.643597i −0.732732 0.680518i \(-0.761755\pi\)
0.999318 + 0.0369210i \(0.0117550\pi\)
\(30\) 0 0
\(31\) −2.07626 0.860015i −0.372907 0.154463i 0.188356 0.982101i \(-0.439684\pi\)
−0.561263 + 0.827638i \(0.689684\pi\)
\(32\) −2.40634 2.40634i −0.425385 0.425385i
\(33\) 2.59479i 0.451694i
\(34\) −1.24223 0.0641935i −0.213041 0.0110091i
\(35\) 0 0
\(36\) 2.52997 2.52997i 0.421661 0.421661i
\(37\) −1.95382 + 4.71693i −0.321206 + 0.775459i 0.677979 + 0.735081i \(0.262856\pi\)
−0.999184 + 0.0403776i \(0.987144\pi\)
\(38\) 2.15135 0.348995
\(39\) −2.27920 + 5.50249i −0.364965 + 0.881103i
\(40\) 0 0
\(41\) 4.72598 + 11.4095i 0.738074 + 1.78187i 0.613556 + 0.789651i \(0.289738\pi\)
0.124518 + 0.992217i \(0.460262\pi\)
\(42\) 0.568078 0.568078i 0.0876564 0.0876564i
\(43\) −1.85272 + 1.85272i −0.282536 + 0.282536i −0.834120 0.551583i \(-0.814024\pi\)
0.551583 + 0.834120i \(0.314024\pi\)
\(44\) −1.78658 4.31319i −0.269337 0.650238i
\(45\) 0 0
\(46\) 0.0993804 0.239926i 0.0146528 0.0353751i
\(47\) 2.30114 0.335655 0.167828 0.985816i \(-0.446325\pi\)
0.167828 + 0.985816i \(0.446325\pi\)
\(48\) −1.40576 + 3.39381i −0.202904 + 0.489855i
\(49\) −0.495478 + 0.495478i −0.0707826 + 0.0707826i
\(50\) 0 0
\(51\) 1.46330 + 4.12268i 0.204904 + 0.577291i
\(52\) 10.7158i 1.48602i
\(53\) −1.96204 1.96204i −0.269507 0.269507i 0.559394 0.828902i \(-0.311034\pi\)
−0.828902 + 0.559394i \(0.811034\pi\)
\(54\) 1.44145 + 0.597069i 0.196157 + 0.0812508i
\(55\) 0 0
\(56\) 1.13268 2.73452i 0.151360 0.365416i
\(57\) −2.89544 6.99022i −0.383511 0.925877i
\(58\) 1.04561 0.433105i 0.137295 0.0568695i
\(59\) 5.26206 + 5.26206i 0.685062 + 0.685062i 0.961136 0.276075i \(-0.0890337\pi\)
−0.276075 + 0.961136i \(0.589034\pi\)
\(60\) 0 0
\(61\) −0.346822 0.837303i −0.0444061 0.107206i 0.900120 0.435642i \(-0.143478\pi\)
−0.944526 + 0.328436i \(0.893478\pi\)
\(62\) −0.259455 0.626380i −0.0329508 0.0795504i
\(63\) 4.34599 + 1.80017i 0.547543 + 0.226800i
\(64\) 5.89773i 0.737216i
\(65\) 0 0
\(66\) 0.553532 0.553532i 0.0681351 0.0681351i
\(67\) 6.69889i 0.818399i −0.912445 0.409200i \(-0.865808\pi\)
0.912445 0.409200i \(-0.134192\pi\)
\(68\) 5.27096 + 5.84541i 0.639198 + 0.708860i
\(69\) −0.913326 −0.109952
\(70\) 0 0
\(71\) 0.222439 + 0.0921372i 0.0263986 + 0.0109347i 0.395844 0.918318i \(-0.370452\pi\)
−0.369445 + 0.929253i \(0.620452\pi\)
\(72\) 2.21028 0.260484
\(73\) 5.96591 + 2.47116i 0.698257 + 0.289228i 0.703436 0.710759i \(-0.251648\pi\)
−0.00517825 + 0.999987i \(0.501648\pi\)
\(74\) −1.42304 + 0.589441i −0.165425 + 0.0685211i
\(75\) 0 0
\(76\) −9.62592 9.62592i −1.10417 1.10417i
\(77\) 4.34022 4.34022i 0.494614 0.494614i
\(78\) −1.66003 + 0.687606i −0.187961 + 0.0778560i
\(79\) −13.5899 + 5.62912i −1.52898 + 0.633325i −0.979366 0.202093i \(-0.935226\pi\)
−0.549615 + 0.835418i \(0.685226\pi\)
\(80\) 0 0
\(81\) 0.135560i 0.0150623i
\(82\) −1.42577 + 3.44210i −0.157449 + 0.380117i
\(83\) 9.82767 + 9.82767i 1.07873 + 1.07873i 0.996624 + 0.0821031i \(0.0261637\pi\)
0.0821031 + 0.996624i \(0.473836\pi\)
\(84\) −5.08358 −0.554664
\(85\) 0 0
\(86\) −0.790460 −0.0852375
\(87\) −2.81451 2.81451i −0.301748 0.301748i
\(88\) 1.10367 2.66450i 0.117652 0.284037i
\(89\) 0.395163i 0.0418872i −0.999781 0.0209436i \(-0.993333\pi\)
0.999781 0.0209436i \(-0.00666704\pi\)
\(90\) 0 0
\(91\) −13.0162 + 5.39148i −1.36447 + 0.565181i
\(92\) −1.51818 + 0.628850i −0.158281 + 0.0655621i
\(93\) −1.68606 + 1.68606i −0.174836 + 0.174836i
\(94\) 0.490889 + 0.490889i 0.0506314 + 0.0506314i
\(95\) 0 0
\(96\) −3.33586 + 1.38176i −0.340465 + 0.141025i
\(97\) 8.27725 + 3.42855i 0.840427 + 0.348116i 0.761022 0.648726i \(-0.224698\pi\)
0.0794052 + 0.996842i \(0.474698\pi\)
\(98\) −0.211396 −0.0213542
\(99\) 4.23471 + 1.75407i 0.425604 + 0.176291i
\(100\) 0 0
\(101\) 15.2882 1.52124 0.760619 0.649199i \(-0.224896\pi\)
0.760619 + 0.649199i \(0.224896\pi\)
\(102\) −0.567311 + 1.19163i −0.0561721 + 0.117989i
\(103\) 14.7746i 1.45579i 0.685690 + 0.727894i \(0.259501\pi\)
−0.685690 + 0.727894i \(0.740499\pi\)
\(104\) −4.68088 + 4.68088i −0.458998 + 0.458998i
\(105\) 0 0
\(106\) 0.837105i 0.0813068i
\(107\) 1.35882 + 0.562841i 0.131362 + 0.0544119i 0.447396 0.894336i \(-0.352351\pi\)
−0.316034 + 0.948748i \(0.602351\pi\)
\(108\) −3.77808 9.12109i −0.363546 0.877677i
\(109\) −3.61166 8.71931i −0.345934 0.835158i −0.997091 0.0762157i \(-0.975716\pi\)
0.651157 0.758943i \(-0.274284\pi\)
\(110\) 0 0
\(111\) 3.83046 + 3.83046i 0.363571 + 0.363571i
\(112\) −8.02809 + 3.32535i −0.758584 + 0.314216i
\(113\) −5.72534 13.8222i −0.538595 1.30028i −0.925704 0.378249i \(-0.876526\pi\)
0.387109 0.922034i \(-0.373474\pi\)
\(114\) 0.873517 2.10886i 0.0818124 0.197513i
\(115\) 0 0
\(116\) −6.61630 2.74056i −0.614308 0.254455i
\(117\) −7.43935 7.43935i −0.687768 0.687768i
\(118\) 2.24505i 0.206674i
\(119\) −4.44825 + 9.34350i −0.407771 + 0.856517i
\(120\) 0 0
\(121\) −3.54909 + 3.54909i −0.322645 + 0.322645i
\(122\) 0.104632 0.252603i 0.00947291 0.0228696i
\(123\) 13.1031 1.18146
\(124\) −1.64176 + 3.96355i −0.147434 + 0.355937i
\(125\) 0 0
\(126\) 0.543087 + 1.31113i 0.0483820 + 0.116804i
\(127\) −4.21071 + 4.21071i −0.373640 + 0.373640i −0.868801 0.495161i \(-0.835109\pi\)
0.495161 + 0.868801i \(0.335109\pi\)
\(128\) −6.07081 + 6.07081i −0.536589 + 0.536589i
\(129\) 1.06386 + 2.56839i 0.0936677 + 0.226134i
\(130\) 0 0
\(131\) −1.60241 + 3.86856i −0.140003 + 0.337998i −0.978293 0.207228i \(-0.933556\pi\)
0.838290 + 0.545225i \(0.183556\pi\)
\(132\) −4.95341 −0.431139
\(133\) 6.84920 16.5354i 0.593901 1.43380i
\(134\) 1.42904 1.42904i 0.123450 0.123450i
\(135\) 0 0
\(136\) −0.250931 + 4.85585i −0.0215172 + 0.416386i
\(137\) 7.25998i 0.620262i 0.950694 + 0.310131i \(0.100373\pi\)
−0.950694 + 0.310131i \(0.899627\pi\)
\(138\) −0.194835 0.194835i −0.0165855 0.0165855i
\(139\) −9.60207 3.97731i −0.814437 0.337351i −0.0637140 0.997968i \(-0.520295\pi\)
−0.750723 + 0.660617i \(0.770295\pi\)
\(140\) 0 0
\(141\) 0.934336 2.25569i 0.0786853 0.189963i
\(142\) 0.0277966 + 0.0671069i 0.00233264 + 0.00563149i
\(143\) −12.6829 + 5.25343i −1.06060 + 0.439314i
\(144\) −4.58843 4.58843i −0.382369 0.382369i
\(145\) 0 0
\(146\) 0.745517 + 1.79984i 0.0616994 + 0.148956i
\(147\) 0.284512 + 0.686873i 0.0234661 + 0.0566523i
\(148\) 9.00455 + 3.72981i 0.740170 + 0.306588i
\(149\) 6.01765i 0.492985i 0.969145 + 0.246492i \(0.0792781\pi\)
−0.969145 + 0.246492i \(0.920722\pi\)
\(150\) 0 0
\(151\) 7.36684 7.36684i 0.599505 0.599505i −0.340676 0.940181i \(-0.610656\pi\)
0.940181 + 0.340676i \(0.110656\pi\)
\(152\) 8.40959i 0.682108i
\(153\) −7.71743 0.398806i −0.623917 0.0322416i
\(154\) 1.85175 0.149218
\(155\) 0 0
\(156\) 10.5042 + 4.35097i 0.841006 + 0.348356i
\(157\) 13.4073 1.07002 0.535008 0.844847i \(-0.320309\pi\)
0.535008 + 0.844847i \(0.320309\pi\)
\(158\) −4.09989 1.69823i −0.326170 0.135104i
\(159\) −2.71994 + 1.12664i −0.215706 + 0.0893482i
\(160\) 0 0
\(161\) −1.52769 1.52769i −0.120399 0.120399i
\(162\) −0.0289184 + 0.0289184i −0.00227204 + 0.00227204i
\(163\) 1.45523 0.602777i 0.113983 0.0472132i −0.324963 0.945727i \(-0.605352\pi\)
0.438946 + 0.898513i \(0.355352\pi\)
\(164\) 21.7806 9.02182i 1.70078 0.704486i
\(165\) 0 0
\(166\) 4.19297i 0.325438i
\(167\) 6.73711 16.2648i 0.521333 1.25861i −0.415742 0.909482i \(-0.636478\pi\)
0.937075 0.349127i \(-0.113522\pi\)
\(168\) −2.22061 2.22061i −0.171324 0.171324i
\(169\) 18.5098 1.42383
\(170\) 0 0
\(171\) 13.3654 1.02208
\(172\) 3.53681 + 3.53681i 0.269679 + 0.269679i
\(173\) −7.21087 + 17.4086i −0.548232 + 1.32355i 0.370560 + 0.928808i \(0.379166\pi\)
−0.918792 + 0.394741i \(0.870834\pi\)
\(174\) 1.20081i 0.0910333i
\(175\) 0 0
\(176\) −7.82253 + 3.24020i −0.589646 + 0.244239i
\(177\) 7.29469 3.02156i 0.548303 0.227114i
\(178\) 0.0842980 0.0842980i 0.00631840 0.00631840i
\(179\) −2.34324 2.34324i −0.175142 0.175142i 0.614092 0.789234i \(-0.289522\pi\)
−0.789234 + 0.614092i \(0.789522\pi\)
\(180\) 0 0
\(181\) −14.6575 + 6.07133i −1.08948 + 0.451278i −0.853826 0.520558i \(-0.825724\pi\)
−0.235656 + 0.971836i \(0.575724\pi\)
\(182\) −3.92681 1.62654i −0.291075 0.120567i
\(183\) −0.961587 −0.0710826
\(184\) −0.937865 0.388477i −0.0691404 0.0286389i
\(185\) 0 0
\(186\) −0.719356 −0.0527457
\(187\) −4.33435 + 9.10425i −0.316959 + 0.665769i
\(188\) 4.39284i 0.320380i
\(189\) 9.17824 9.17824i 0.667619 0.667619i
\(190\) 0 0
\(191\) 27.4943i 1.98941i −0.102748 0.994707i \(-0.532764\pi\)
0.102748 0.994707i \(-0.467236\pi\)
\(192\) 5.78124 + 2.39467i 0.417225 + 0.172820i
\(193\) −5.64889 13.6376i −0.406616 0.981658i −0.986021 0.166619i \(-0.946715\pi\)
0.579405 0.815040i \(-0.303285\pi\)
\(194\) 1.03435 + 2.49714i 0.0742618 + 0.179284i
\(195\) 0 0
\(196\) 0.945861 + 0.945861i 0.0675615 + 0.0675615i
\(197\) 0.347754 0.144044i 0.0247764 0.0102627i −0.370261 0.928928i \(-0.620732\pi\)
0.395037 + 0.918665i \(0.370732\pi\)
\(198\) 0.529181 + 1.27756i 0.0376072 + 0.0907919i
\(199\) −2.88162 + 6.95685i −0.204273 + 0.493158i −0.992503 0.122223i \(-0.960998\pi\)
0.788230 + 0.615381i \(0.210998\pi\)
\(200\) 0 0
\(201\) −6.56658 2.71996i −0.463171 0.191852i
\(202\) 3.26136 + 3.26136i 0.229469 + 0.229469i
\(203\) 9.41549i 0.660838i
\(204\) 7.87014 2.79343i 0.551020 0.195579i
\(205\) 0 0
\(206\) −3.15180 + 3.15180i −0.219596 + 0.219596i
\(207\) 0.617408 1.49055i 0.0429128 0.103601i
\(208\) 19.4345 1.34754
\(209\) 6.67383 16.1120i 0.461638 1.11449i
\(210\) 0 0
\(211\) 3.32647 + 8.03080i 0.229003 + 0.552863i 0.996057 0.0887204i \(-0.0282778\pi\)
−0.767053 + 0.641584i \(0.778278\pi\)
\(212\) −3.74551 + 3.74551i −0.257243 + 0.257243i
\(213\) 0.180635 0.180635i 0.0123769 0.0123769i
\(214\) 0.169802 + 0.409938i 0.0116074 + 0.0280228i
\(215\) 0 0
\(216\) 2.33394 5.63462i 0.158804 0.383387i
\(217\) −5.64043 −0.382897
\(218\) 1.08959 2.63050i 0.0737963 0.178160i
\(219\) 4.84471 4.84471i 0.327375 0.327375i
\(220\) 0 0
\(221\) 17.1884 15.4992i 1.15622 1.04259i
\(222\) 1.63426i 0.109684i
\(223\) −4.57010 4.57010i −0.306037 0.306037i 0.537333 0.843370i \(-0.319432\pi\)
−0.843370 + 0.537333i \(0.819432\pi\)
\(224\) −7.89101 3.26856i −0.527241 0.218390i
\(225\) 0 0
\(226\) 1.72726 4.16997i 0.114896 0.277382i
\(227\) 1.17124 + 2.82763i 0.0777381 + 0.187676i 0.957971 0.286866i \(-0.0926135\pi\)
−0.880233 + 0.474543i \(0.842614\pi\)
\(228\) −13.3442 + 5.52736i −0.883743 + 0.366058i
\(229\) −5.34518 5.34518i −0.353219 0.353219i 0.508087 0.861306i \(-0.330353\pi\)
−0.861306 + 0.508087i \(0.830353\pi\)
\(230\) 0 0
\(231\) −2.49222 6.01676i −0.163976 0.395874i
\(232\) −1.69300 4.08727i −0.111151 0.268342i
\(233\) −20.6467 8.55214i −1.35261 0.560270i −0.415593 0.909551i \(-0.636426\pi\)
−0.937018 + 0.349281i \(0.886426\pi\)
\(234\) 3.17400i 0.207491i
\(235\) 0 0
\(236\) 10.0452 10.0452i 0.653886 0.653886i
\(237\) 15.6071i 1.01379i
\(238\) −2.94212 + 1.04428i −0.190709 + 0.0676904i
\(239\) 3.45981 0.223797 0.111898 0.993720i \(-0.464307\pi\)
0.111898 + 0.993720i \(0.464307\pi\)
\(240\) 0 0
\(241\) −16.6541 6.89834i −1.07278 0.444361i −0.224810 0.974403i \(-0.572176\pi\)
−0.847972 + 0.530042i \(0.822176\pi\)
\(242\) −1.51422 −0.0973376
\(243\) 14.4668 + 5.99235i 0.928047 + 0.384410i
\(244\) −1.59840 + 0.662079i −0.102327 + 0.0423853i
\(245\) 0 0
\(246\) 2.79521 + 2.79521i 0.178216 + 0.178216i
\(247\) −28.3049 + 28.3049i −1.80100 + 1.80100i
\(248\) −2.44851 + 1.01421i −0.155481 + 0.0644022i
\(249\) 13.6239 5.64321i 0.863381 0.357624i
\(250\) 0 0
\(251\) 24.0478i 1.51788i 0.651159 + 0.758941i \(0.274283\pi\)
−0.651159 + 0.758941i \(0.725717\pi\)
\(252\) 3.43649 8.29643i 0.216479 0.522626i
\(253\) −1.48857 1.48857i −0.0935859 0.0935859i
\(254\) −1.79650 −0.112722
\(255\) 0 0
\(256\) 9.20534 0.575334
\(257\) −10.4664 10.4664i −0.652873 0.652873i 0.300811 0.953684i \(-0.402743\pi\)
−0.953684 + 0.300811i \(0.902743\pi\)
\(258\) −0.320953 + 0.774848i −0.0199816 + 0.0482399i
\(259\) 12.8142i 0.796233i
\(260\) 0 0
\(261\) 6.49591 2.69070i 0.402087 0.166550i
\(262\) −1.16709 + 0.483426i −0.0721032 + 0.0298661i
\(263\) 17.3357 17.3357i 1.06896 1.06896i 0.0715243 0.997439i \(-0.477214\pi\)
0.997439 0.0715243i \(-0.0227864\pi\)
\(264\) −2.16375 2.16375i −0.133170 0.133170i
\(265\) 0 0
\(266\) 4.98852 2.06631i 0.305866 0.126694i
\(267\) −0.387358 0.160449i −0.0237059 0.00981932i
\(268\) −12.7881 −0.781156
\(269\) −6.09269 2.52367i −0.371478 0.153871i 0.189131 0.981952i \(-0.439433\pi\)
−0.560609 + 0.828081i \(0.689433\pi\)
\(270\) 0 0
\(271\) −26.1956 −1.59127 −0.795634 0.605778i \(-0.792862\pi\)
−0.795634 + 0.605778i \(0.792862\pi\)
\(272\) 10.6014 9.55957i 0.642805 0.579634i
\(273\) 14.9482i 0.904707i
\(274\) −1.54873 + 1.54873i −0.0935624 + 0.0935624i
\(275\) 0 0
\(276\) 1.74353i 0.104948i
\(277\) 8.83695 + 3.66038i 0.530961 + 0.219931i 0.632024 0.774949i \(-0.282224\pi\)
−0.101063 + 0.994880i \(0.532224\pi\)
\(278\) −1.19990 2.89682i −0.0719653 0.173740i
\(279\) −1.61188 3.89143i −0.0965009 0.232974i
\(280\) 0 0
\(281\) 8.78037 + 8.78037i 0.523793 + 0.523793i 0.918715 0.394922i \(-0.129228\pi\)
−0.394922 + 0.918715i \(0.629228\pi\)
\(282\) 0.680511 0.281877i 0.0405238 0.0167855i
\(283\) −6.44566 15.5612i −0.383155 0.925017i −0.991352 0.131231i \(-0.958107\pi\)
0.608197 0.793786i \(-0.291893\pi\)
\(284\) 0.175889 0.424633i 0.0104371 0.0251973i
\(285\) 0 0
\(286\) −3.82626 1.58489i −0.226252 0.0937165i
\(287\) 21.9171 + 21.9171i 1.29372 + 1.29372i
\(288\) 6.37822i 0.375840i
\(289\) 1.75231 16.9094i 0.103077 0.994673i
\(290\) 0 0
\(291\) 6.72166 6.72166i 0.394031 0.394031i
\(292\) 4.71741 11.3888i 0.276066 0.666482i
\(293\) 20.8806 1.21986 0.609930 0.792456i \(-0.291198\pi\)
0.609930 + 0.792456i \(0.291198\pi\)
\(294\) −0.0858335 + 0.207220i −0.00500591 + 0.0120853i
\(295\) 0 0
\(296\) 2.30412 + 5.56263i 0.133924 + 0.323321i
\(297\) 8.94323 8.94323i 0.518939 0.518939i
\(298\) −1.28371 + 1.28371i −0.0743635 + 0.0743635i
\(299\) 1.84913 + 4.46419i 0.106938 + 0.258171i
\(300\) 0 0
\(301\) −2.51657 + 6.07554i −0.145053 + 0.350188i
\(302\) 3.14306 0.180863
\(303\) 6.20752 14.9863i 0.356613 0.860940i
\(304\) −17.4579 + 17.4579i −1.00128 + 1.00128i
\(305\) 0 0
\(306\) −1.56124 1.73139i −0.0892504 0.0989772i
\(307\) 29.9529i 1.70950i −0.519038 0.854751i \(-0.673710\pi\)
0.519038 0.854751i \(-0.326290\pi\)
\(308\) −8.28541 8.28541i −0.472105 0.472105i
\(309\) 14.4828 + 5.99898i 0.823899 + 0.341270i
\(310\) 0 0
\(311\) 0.0804873 0.194314i 0.00456402 0.0110185i −0.921581 0.388186i \(-0.873102\pi\)
0.926145 + 0.377167i \(0.123102\pi\)
\(312\) 2.68784 + 6.48902i 0.152169 + 0.367369i
\(313\) −29.9561 + 12.4082i −1.69322 + 0.701354i −0.999816 0.0191979i \(-0.993889\pi\)
−0.693402 + 0.720551i \(0.743889\pi\)
\(314\) 2.86010 + 2.86010i 0.161405 + 0.161405i
\(315\) 0 0
\(316\) 10.7459 + 25.9429i 0.604504 + 1.45940i
\(317\) −12.7966 30.8937i −0.718728 1.73516i −0.676943 0.736035i \(-0.736696\pi\)
−0.0417842 0.999127i \(-0.513304\pi\)
\(318\) −0.820571 0.339892i −0.0460154 0.0190602i
\(319\) 9.17441i 0.513668i
\(320\) 0 0
\(321\) 1.10345 1.10345i 0.0615886 0.0615886i
\(322\) 0.651789i 0.0363228i
\(323\) −1.51736 + 29.3630i −0.0844283 + 1.63380i
\(324\) 0.258783 0.0143768
\(325\) 0 0
\(326\) 0.439025 + 0.181850i 0.0243153 + 0.0100717i
\(327\) −10.0135 −0.553750
\(328\) 13.4551 + 5.57330i 0.742935 + 0.307734i
\(329\) 5.33585 2.21018i 0.294175 0.121851i
\(330\) 0 0
\(331\) 0.626030 + 0.626030i 0.0344097 + 0.0344097i 0.724102 0.689693i \(-0.242254\pi\)
−0.689693 + 0.724102i \(0.742254\pi\)
\(332\) 18.7609 18.7609i 1.02964 1.02964i
\(333\) −8.84071 + 3.66194i −0.484468 + 0.200673i
\(334\) 4.90688 2.03250i 0.268493 0.111213i
\(335\) 0 0
\(336\) 9.21973i 0.502977i
\(337\) −6.56551 + 15.8506i −0.357646 + 0.863434i 0.637984 + 0.770050i \(0.279769\pi\)
−0.995630 + 0.0933847i \(0.970231\pi\)
\(338\) 3.94859 + 3.94859i 0.214775 + 0.214775i
\(339\) −15.8739 −0.862150
\(340\) 0 0
\(341\) −5.49600 −0.297625
\(342\) 2.85117 + 2.85117i 0.154174 + 0.154174i
\(343\) −7.39633 + 17.8563i −0.399364 + 0.964151i
\(344\) 3.08990i 0.166596i
\(345\) 0 0
\(346\) −5.25194 + 2.17542i −0.282346 + 0.116951i
\(347\) −28.5572 + 11.8288i −1.53303 + 0.635003i −0.980150 0.198257i \(-0.936472\pi\)
−0.552882 + 0.833260i \(0.686472\pi\)
\(348\) −5.37287 + 5.37287i −0.288016 + 0.288016i
\(349\) −2.38415 2.38415i −0.127621 0.127621i 0.640411 0.768032i \(-0.278764\pi\)
−0.768032 + 0.640411i \(0.778764\pi\)
\(350\) 0 0
\(351\) −26.8205 + 11.1094i −1.43157 + 0.592976i
\(352\) −7.68896 3.18487i −0.409823 0.169754i
\(353\) 23.7918 1.26631 0.633155 0.774025i \(-0.281760\pi\)
0.633155 + 0.774025i \(0.281760\pi\)
\(354\) 2.20071 + 0.911565i 0.116967 + 0.0484491i
\(355\) 0 0
\(356\) −0.754360 −0.0399810
\(357\) 7.35282 + 8.15416i 0.389152 + 0.431564i
\(358\) 0.999743i 0.0528381i
\(359\) −22.4244 + 22.4244i −1.18351 + 1.18351i −0.204688 + 0.978827i \(0.565618\pi\)
−0.978827 + 0.204688i \(0.934382\pi\)
\(360\) 0 0
\(361\) 31.8521i 1.67643i
\(362\) −4.42197 1.83164i −0.232414 0.0962689i
\(363\) 2.03795 + 4.92004i 0.106964 + 0.258235i
\(364\) 10.2923 + 24.8477i 0.539461 + 1.30237i
\(365\) 0 0
\(366\) −0.205130 0.205130i −0.0107223 0.0107223i
\(367\) 4.17304 1.72853i 0.217831 0.0902286i −0.271099 0.962551i \(-0.587387\pi\)
0.488930 + 0.872323i \(0.337387\pi\)
\(368\) 1.14050 + 2.75341i 0.0594528 + 0.143532i
\(369\) −8.85767 + 21.3843i −0.461112 + 1.11322i
\(370\) 0 0
\(371\) −6.43405 2.66507i −0.334039 0.138364i
\(372\) 3.21866 + 3.21866i 0.166880 + 0.166880i
\(373\) 5.12748i 0.265491i 0.991150 + 0.132745i \(0.0423792\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(374\) −2.86679 + 1.01754i −0.148238 + 0.0526156i
\(375\) 0 0
\(376\) 1.91888 1.91888i 0.0989586 0.0989586i
\(377\) −8.05860 + 19.4552i −0.415039 + 1.00199i
\(378\) 3.91589 0.201412
\(379\) −2.11629 + 5.10917i −0.108706 + 0.262441i −0.968867 0.247584i \(-0.920364\pi\)
0.860160 + 0.510024i \(0.170364\pi\)
\(380\) 0 0
\(381\) 2.41786 + 5.83722i 0.123871 + 0.299050i
\(382\) 5.86521 5.86521i 0.300090 0.300090i
\(383\) 14.4493 14.4493i 0.738326 0.738326i −0.233928 0.972254i \(-0.575158\pi\)
0.972254 + 0.233928i \(0.0751580\pi\)
\(384\) 3.48596 + 8.41585i 0.177892 + 0.429469i
\(385\) 0 0
\(386\) 1.70420 4.11429i 0.0867413 0.209412i
\(387\) −4.91079 −0.249629
\(388\) 6.54505 15.8011i 0.332274 0.802181i
\(389\) 3.66726 3.66726i 0.185937 0.185937i −0.608000 0.793937i \(-0.708028\pi\)
0.793937 + 0.608000i \(0.208028\pi\)
\(390\) 0 0
\(391\) 3.20456 + 1.52563i 0.162062 + 0.0771543i
\(392\) 0.826343i 0.0417366i
\(393\) 3.14152 + 3.14152i 0.158469 + 0.158469i
\(394\) 0.104913 + 0.0434563i 0.00528543 + 0.00218930i
\(395\) 0 0
\(396\) 3.34850 8.08399i 0.168268 0.406236i
\(397\) −2.36251 5.70360i −0.118571 0.286255i 0.853440 0.521191i \(-0.174512\pi\)
−0.972011 + 0.234936i \(0.924512\pi\)
\(398\) −2.09879 + 0.869348i −0.105203 + 0.0435765i
\(399\) −13.4278 13.4278i −0.672233 0.672233i
\(400\) 0 0
\(401\) −3.63413 8.77356i −0.181480 0.438131i 0.806792 0.590835i \(-0.201202\pi\)
−0.988272 + 0.152705i \(0.951202\pi\)
\(402\) −0.820577 1.98105i −0.0409267 0.0988058i
\(403\) 11.6548 + 4.82757i 0.580566 + 0.240478i
\(404\) 29.1850i 1.45201i
\(405\) 0 0
\(406\) 2.00856 2.00856i 0.0996831 0.0996831i
\(407\) 12.4860i 0.618910i
\(408\) 4.65806 + 2.21761i 0.230608 + 0.109788i
\(409\) −14.3886 −0.711469 −0.355734 0.934587i \(-0.615769\pi\)
−0.355734 + 0.934587i \(0.615769\pi\)
\(410\) 0 0
\(411\) 7.11659 + 2.94779i 0.351035 + 0.145404i
\(412\) 28.2046 1.38954
\(413\) 17.2557 + 7.14753i 0.849096 + 0.351707i
\(414\) 0.449680 0.186264i 0.0221006 0.00915436i
\(415\) 0 0
\(416\) 13.5076 + 13.5076i 0.662266 + 0.662266i
\(417\) −7.79750 + 7.79750i −0.381845 + 0.381845i
\(418\) 4.86079 2.01340i 0.237749 0.0984789i
\(419\) −19.6078 + 8.12181i −0.957903 + 0.396776i −0.806196 0.591649i \(-0.798477\pi\)
−0.151707 + 0.988425i \(0.548477\pi\)
\(420\) 0 0
\(421\) 20.1672i 0.982887i −0.870909 0.491444i \(-0.836469\pi\)
0.870909 0.491444i \(-0.163531\pi\)
\(422\) −1.00355 + 2.42279i −0.0488521 + 0.117939i
\(423\) 3.04968 + 3.04968i 0.148281 + 0.148281i
\(424\) −3.27223 −0.158914
\(425\) 0 0
\(426\) 0.0770678 0.00373395
\(427\) −1.60842 1.60842i −0.0778367 0.0778367i
\(428\) 1.07446 2.59397i 0.0519358 0.125384i
\(429\) 14.5655i 0.703227i
\(430\) 0 0
\(431\) −18.4485 + 7.64163i −0.888635 + 0.368085i −0.779839 0.625980i \(-0.784699\pi\)
−0.108795 + 0.994064i \(0.534699\pi\)
\(432\) −16.5423 + 6.85204i −0.795891 + 0.329669i
\(433\) 12.8860 12.8860i 0.619263 0.619263i −0.326080 0.945342i \(-0.605728\pi\)
0.945342 + 0.326080i \(0.105728\pi\)
\(434\) −1.20324 1.20324i −0.0577575 0.0577575i
\(435\) 0 0
\(436\) −16.6450 + 6.89460i −0.797152 + 0.330191i
\(437\) −5.67120 2.34909i −0.271290 0.112372i
\(438\) 2.06699 0.0987648
\(439\) −13.6117 5.63815i −0.649651 0.269094i 0.0334251 0.999441i \(-0.489358\pi\)
−0.683077 + 0.730347i \(0.739358\pi\)
\(440\) 0 0
\(441\) −1.31331 −0.0625386
\(442\) 6.97307 + 0.360341i 0.331675 + 0.0171397i
\(443\) 23.3335i 1.10861i 0.832314 + 0.554305i \(0.187016\pi\)
−0.832314 + 0.554305i \(0.812984\pi\)
\(444\) 7.31228 7.31228i 0.347026 0.347026i
\(445\) 0 0
\(446\) 1.94983i 0.0923272i
\(447\) 5.89879 + 2.44336i 0.279003 + 0.115567i
\(448\) 5.66461 + 13.6756i 0.267628 + 0.646110i
\(449\) 0.655009 + 1.58133i 0.0309118 + 0.0746277i 0.938582 0.345057i \(-0.112141\pi\)
−0.907670 + 0.419685i \(0.862141\pi\)
\(450\) 0 0
\(451\) 21.3559 + 21.3559i 1.00561 + 1.00561i
\(452\) −26.3864 + 10.9296i −1.24111 + 0.514085i
\(453\) −4.23016 10.2125i −0.198750 0.479826i
\(454\) −0.353348 + 0.853058i −0.0165835 + 0.0400360i
\(455\) 0 0
\(456\) −8.24349 3.41457i −0.386037 0.159902i
\(457\) 9.34572 + 9.34572i 0.437174 + 0.437174i 0.891060 0.453886i \(-0.149963\pi\)
−0.453886 + 0.891060i \(0.649963\pi\)
\(458\) 2.28052i 0.106562i
\(459\) −9.16585 + 19.2527i −0.427825 + 0.898641i
\(460\) 0 0
\(461\) −20.7116 + 20.7116i −0.964634 + 0.964634i −0.999396 0.0347616i \(-0.988933\pi\)
0.0347616 + 0.999396i \(0.488933\pi\)
\(462\) 0.751871 1.81518i 0.0349802 0.0844497i
\(463\) −9.80371 −0.455617 −0.227808 0.973706i \(-0.573156\pi\)
−0.227808 + 0.973706i \(0.573156\pi\)
\(464\) −4.97037 + 11.9995i −0.230744 + 0.557064i
\(465\) 0 0
\(466\) −2.58007 6.22884i −0.119519 0.288545i
\(467\) 9.67459 9.67459i 0.447687 0.447687i −0.446898 0.894585i \(-0.647471\pi\)
0.894585 + 0.446898i \(0.147471\pi\)
\(468\) −14.2016 + 14.2016i −0.656469 + 0.656469i
\(469\) −6.43410 15.5333i −0.297099 0.717261i
\(470\) 0 0
\(471\) 5.44378 13.1424i 0.250836 0.605572i
\(472\) 8.77589 0.403943
\(473\) −2.45213 + 5.91997i −0.112749 + 0.272201i
\(474\) −3.32938 + 3.32938i −0.152923 + 0.152923i
\(475\) 0 0
\(476\) 17.8366 + 8.49165i 0.817539 + 0.389214i
\(477\) 5.20057i 0.238118i
\(478\) 0.738063 + 0.738063i 0.0337582 + 0.0337582i
\(479\) 10.1719 + 4.21334i 0.464766 + 0.192513i 0.602763 0.797920i \(-0.294066\pi\)
−0.137997 + 0.990433i \(0.544066\pi\)
\(480\) 0 0
\(481\) 10.9675 26.4778i 0.500074 1.20728i
\(482\) −2.08114 5.02431i −0.0947932 0.228851i
\(483\) −2.11781 + 0.877226i −0.0963637 + 0.0399151i
\(484\) 6.77516 + 6.77516i 0.307962 + 0.307962i
\(485\) 0 0
\(486\) 1.80781 + 4.36445i 0.0820041 + 0.197975i
\(487\) 3.86290 + 9.32586i 0.175045 + 0.422595i 0.986915 0.161243i \(-0.0515503\pi\)
−0.811870 + 0.583838i \(0.801550\pi\)
\(488\) −0.987423 0.409004i −0.0446985 0.0185147i
\(489\) 1.67124i 0.0755760i
\(490\) 0 0
\(491\) −12.0793 + 12.0793i −0.545132 + 0.545132i −0.925029 0.379897i \(-0.875959\pi\)
0.379897 + 0.925029i \(0.375959\pi\)
\(492\) 25.0136i 1.12770i
\(493\) 5.17382 + 14.5766i 0.233017 + 0.656497i
\(494\) −12.0763 −0.543338
\(495\) 0 0
\(496\) 7.18841 + 2.97754i 0.322769 + 0.133695i
\(497\) 0.604284 0.0271059
\(498\) 4.11016 + 1.70248i 0.184180 + 0.0762901i
\(499\) 28.9724 12.0008i 1.29698 0.537227i 0.375923 0.926651i \(-0.377326\pi\)
0.921059 + 0.389424i \(0.127326\pi\)
\(500\) 0 0
\(501\) −13.2081 13.2081i −0.590094 0.590094i
\(502\) −5.12999 + 5.12999i −0.228963 + 0.228963i
\(503\) −8.01498 + 3.31991i −0.357370 + 0.148028i −0.554143 0.832422i \(-0.686954\pi\)
0.196773 + 0.980449i \(0.436954\pi\)
\(504\) 5.12518 2.12292i 0.228293 0.0945623i
\(505\) 0 0
\(506\) 0.635099i 0.0282336i
\(507\) 7.51556 18.1442i 0.333778 0.805811i
\(508\) 8.03817 + 8.03817i 0.356636 + 0.356636i
\(509\) 14.1196 0.625840 0.312920 0.949780i \(-0.398693\pi\)
0.312920 + 0.949780i \(0.398693\pi\)
\(510\) 0 0
\(511\) 16.2072 0.716963
\(512\) 14.1053 + 14.1053i 0.623374 + 0.623374i
\(513\) 14.1131 34.0721i 0.623109 1.50432i
\(514\) 4.46546i 0.196963i
\(515\) 0 0
\(516\) 4.90301 2.03089i 0.215843 0.0894051i
\(517\) 5.19922 2.15359i 0.228662 0.0947147i
\(518\) −2.73358 + 2.73358i −0.120106 + 0.120106i
\(519\) 14.1369 + 14.1369i 0.620541 + 0.620541i
\(520\) 0 0
\(521\) −16.2808 + 6.74373i −0.713275 + 0.295448i −0.709659 0.704545i \(-0.751151\pi\)
−0.00361608 + 0.999993i \(0.501151\pi\)
\(522\) 1.95973 + 0.811747i 0.0857751 + 0.0355292i
\(523\) −26.3853 −1.15375 −0.576875 0.816833i \(-0.695728\pi\)
−0.576875 + 0.816833i \(0.695728\pi\)
\(524\) 7.38502 + 3.05898i 0.322616 + 0.133632i
\(525\) 0 0
\(526\) 7.39626 0.322492
\(527\) 8.73223 3.09942i 0.380382 0.135013i
\(528\) 8.98366i 0.390963i
\(529\) 15.7395 15.7395i 0.684326 0.684326i
\(530\) 0 0
\(531\) 13.9476i 0.605272i
\(532\) −31.5659 13.0750i −1.36856 0.566874i
\(533\) −26.5286 64.0457i −1.14908 2.77413i
\(534\) −0.0484053 0.116861i −0.00209470 0.00505706i
\(535\) 0 0
\(536\) −5.58609 5.58609i −0.241282 0.241282i
\(537\) −3.24839 + 1.34553i −0.140178 + 0.0580638i
\(538\) −0.761359 1.83808i −0.0328245 0.0792454i
\(539\) −0.655783 + 1.58320i −0.0282466 + 0.0681932i
\(540\) 0 0
\(541\) −4.07266 1.68695i −0.175097 0.0725277i 0.293413 0.955986i \(-0.405209\pi\)
−0.468510 + 0.883458i \(0.655209\pi\)
\(542\) −5.58816 5.58816i −0.240032 0.240032i
\(543\) 16.8331i 0.722379i
\(544\) 14.0125 + 0.724113i 0.600783 + 0.0310461i
\(545\) 0 0
\(546\) −3.18882 + 3.18882i −0.136469 + 0.136469i
\(547\) 8.67306 20.9386i 0.370833 0.895271i −0.622776 0.782400i \(-0.713995\pi\)
0.993610 0.112871i \(-0.0360046\pi\)
\(548\) 13.8592 0.592035
\(549\) 0.650032 1.56932i 0.0277427 0.0669768i
\(550\) 0 0
\(551\) −10.2374 24.7154i −0.436130 1.05291i
\(552\) −0.761607 + 0.761607i −0.0324162 + 0.0324162i
\(553\) −26.1055 + 26.1055i −1.11012 + 1.11012i
\(554\) 1.10429 + 2.66599i 0.0469167 + 0.113267i
\(555\) 0 0
\(556\) −7.59262 + 18.3302i −0.321999 + 0.777374i
\(557\) −11.4954 −0.487076 −0.243538 0.969891i \(-0.578308\pi\)
−0.243538 + 0.969891i \(0.578308\pi\)
\(558\) 0.486284 1.17399i 0.0205860 0.0496991i
\(559\) 10.4000 10.4000i 0.439871 0.439871i
\(560\) 0 0
\(561\) 7.16455 + 7.94537i 0.302487 + 0.335454i
\(562\) 3.74614i 0.158021i
\(563\) −9.57715 9.57715i −0.403629 0.403629i 0.475881 0.879510i \(-0.342129\pi\)
−0.879510 + 0.475881i \(0.842129\pi\)
\(564\) −4.30607 1.78363i −0.181318 0.0751045i
\(565\) 0 0
\(566\) 1.94457 4.69461i 0.0817364 0.197329i
\(567\) 0.130202 + 0.314336i 0.00546797 + 0.0132009i
\(568\) 0.262320 0.108656i 0.0110067 0.00455912i
\(569\) 11.2263 + 11.2263i 0.470632 + 0.470632i 0.902119 0.431487i \(-0.142011\pi\)
−0.431487 + 0.902119i \(0.642011\pi\)
\(570\) 0 0
\(571\) 1.35486 + 3.27093i 0.0566993 + 0.136884i 0.949691 0.313190i \(-0.101398\pi\)
−0.892991 + 0.450074i \(0.851398\pi\)
\(572\) 10.0287 + 24.2115i 0.419322 + 1.01233i
\(573\) −26.9512 11.1636i −1.12590 0.466364i
\(574\) 9.35092i 0.390300i
\(575\) 0 0
\(576\) −7.81622 + 7.81622i −0.325676 + 0.325676i
\(577\) 18.5078i 0.770492i 0.922814 + 0.385246i \(0.125883\pi\)
−0.922814 + 0.385246i \(0.874117\pi\)
\(578\) 3.98101 3.23339i 0.165588 0.134491i
\(579\) −15.6619 −0.650887
\(580\) 0 0
\(581\) 32.2275 + 13.3491i 1.33702 + 0.553813i
\(582\) 2.86779 0.118874
\(583\) −6.26931 2.59683i −0.259648 0.107550i
\(584\) 7.03554 2.91422i 0.291133 0.120591i
\(585\) 0 0
\(586\) 4.45436 + 4.45436i 0.184008 + 0.184008i
\(587\) 9.70579 9.70579i 0.400601 0.400601i −0.477844 0.878445i \(-0.658582\pi\)
0.878445 + 0.477844i \(0.158582\pi\)
\(588\) 1.31123 0.543129i 0.0540742 0.0223983i
\(589\) −14.8059 + 6.13282i −0.610068 + 0.252699i
\(590\) 0 0
\(591\) 0.399372i 0.0164280i
\(592\) 6.76450 16.3309i 0.278019 0.671197i
\(593\) 14.3711 + 14.3711i 0.590150 + 0.590150i 0.937672 0.347522i \(-0.112977\pi\)
−0.347522 + 0.937672i \(0.612977\pi\)
\(594\) 3.81563 0.156557
\(595\) 0 0
\(596\) 11.4876 0.470550
\(597\) 5.64942 + 5.64942i 0.231215 + 0.231215i
\(598\) −0.557858 + 1.34679i −0.0228125 + 0.0550742i
\(599\) 26.7277i 1.09206i −0.837764 0.546032i \(-0.816138\pi\)
0.837764 0.546032i \(-0.183862\pi\)
\(600\) 0 0
\(601\) 25.5537 10.5847i 1.04236 0.431758i 0.205199 0.978720i \(-0.434216\pi\)
0.837157 + 0.546962i \(0.184216\pi\)
\(602\) −1.83291 + 0.759216i −0.0747038 + 0.0309433i
\(603\) 8.87800 8.87800i 0.361540 0.361540i
\(604\) −14.0632 14.0632i −0.572223 0.572223i
\(605\) 0 0
\(606\) 4.52117 1.87273i 0.183660 0.0760744i
\(607\) −21.8207 9.03844i −0.885676 0.366859i −0.106981 0.994261i \(-0.534118\pi\)
−0.778696 + 0.627402i \(0.784118\pi\)
\(608\) −24.2676 −0.984180
\(609\) −9.22953 3.82300i −0.373999 0.154916i
\(610\) 0 0
\(611\) −12.9171 −0.522570
\(612\) −0.761315 + 14.7325i −0.0307744 + 0.595524i
\(613\) 12.0396i 0.486275i −0.969992 0.243137i \(-0.921823\pi\)
0.969992 0.243137i \(-0.0781766\pi\)
\(614\) 6.38969 6.38969i 0.257867 0.257867i
\(615\) 0 0
\(616\) 7.23847i 0.291646i
\(617\) 14.3643 + 5.94989i 0.578285 + 0.239534i 0.652602 0.757701i \(-0.273678\pi\)
−0.0743165 + 0.997235i \(0.523678\pi\)
\(618\) 1.80981 + 4.36928i 0.0728014 + 0.175758i
\(619\) −12.8172 30.9434i −0.515166 1.24372i −0.940842 0.338845i \(-0.889964\pi\)
0.425676 0.904876i \(-0.360036\pi\)
\(620\) 0 0
\(621\) −3.14788 3.14788i −0.126320 0.126320i
\(622\) 0.0586218 0.0242820i 0.00235052 0.000973618i
\(623\) −0.379543 0.916299i −0.0152061 0.0367107i
\(624\) 7.89105 19.0507i 0.315895 0.762637i
\(625\) 0 0
\(626\) −9.03735 3.74339i −0.361205 0.149616i
\(627\) −13.0840 13.0840i −0.522525 0.522525i
\(628\) 25.5942i 1.02132i
\(629\) −7.04138 19.8382i −0.280758 0.791002i
\(630\) 0 0
\(631\) −0.385100 + 0.385100i −0.0153306 + 0.0153306i −0.714731 0.699400i \(-0.753451\pi\)
0.699400 + 0.714731i \(0.253451\pi\)
\(632\) −6.63836 + 16.0264i −0.264060 + 0.637496i
\(633\) 9.22284 0.366575
\(634\) 3.86056 9.32021i 0.153322 0.370153i
\(635\) 0 0
\(636\) 2.15074 + 5.19233i 0.0852822 + 0.205889i
\(637\) 2.78130 2.78130i 0.110199 0.110199i
\(638\) 1.95713 1.95713i 0.0774835 0.0774835i
\(639\) 0.172688 + 0.416906i 0.00683144 + 0.0164926i
\(640\) 0 0
\(641\) 4.75450 11.4784i 0.187792 0.453369i −0.801742 0.597670i \(-0.796093\pi\)
0.989534 + 0.144301i \(0.0460933\pi\)
\(642\) 0.470786 0.0185805
\(643\) 14.6813 35.4438i 0.578975 1.39777i −0.314760 0.949171i \(-0.601924\pi\)
0.893734 0.448597i \(-0.148076\pi\)
\(644\) −2.91634 + 2.91634i −0.114920 + 0.114920i
\(645\) 0 0
\(646\) −6.58754 + 5.94016i −0.259183 + 0.233712i
\(647\) 19.6602i 0.772923i 0.922305 + 0.386462i \(0.126303\pi\)
−0.922305 + 0.386462i \(0.873697\pi\)
\(648\) 0.113041 + 0.113041i 0.00444069 + 0.00444069i
\(649\) 16.8138 + 6.96452i 0.660001 + 0.273381i
\(650\) 0 0
\(651\) −2.29020 + 5.52902i −0.0897599 + 0.216700i
\(652\) −1.15069 2.77802i −0.0450646 0.108796i
\(653\) 28.7578 11.9119i 1.12538 0.466147i 0.259171 0.965831i \(-0.416551\pi\)
0.866208 + 0.499684i \(0.166551\pi\)
\(654\) −2.13614 2.13614i −0.0835296 0.0835296i
\(655\) 0 0
\(656\) −16.3623 39.5020i −0.638839 1.54229i
\(657\) 4.63158 + 11.1816i 0.180695 + 0.436236i
\(658\) 1.60975 + 0.666782i 0.0627548 + 0.0259939i
\(659\) 4.15956i 0.162033i 0.996713 + 0.0810167i \(0.0258167\pi\)
−0.996713 + 0.0810167i \(0.974183\pi\)
\(660\) 0 0
\(661\) 4.85106 4.85106i 0.188685 0.188685i −0.606443 0.795127i \(-0.707404\pi\)
0.795127 + 0.606443i \(0.207404\pi\)
\(662\) 0.267095i 0.0103810i
\(663\) −8.21405 23.1421i −0.319007 0.898764i
\(664\) 16.3903 0.636066
\(665\) 0 0
\(666\) −2.66713 1.10476i −0.103349 0.0428086i
\(667\) −3.22925 −0.125037
\(668\) −31.0493 12.8610i −1.20133 0.497608i
\(669\) −6.33545 + 2.62423i −0.244943 + 0.101459i
\(670\) 0 0
\(671\) −1.56723 1.56723i −0.0605023 0.0605023i
\(672\) −6.40801 + 6.40801i −0.247195 + 0.247195i
\(673\) −15.9651 + 6.61298i −0.615411 + 0.254912i −0.668540 0.743676i \(-0.733081\pi\)
0.0531290 + 0.998588i \(0.483081\pi\)
\(674\) −4.78190 + 1.98073i −0.184192 + 0.0762948i
\(675\) 0 0
\(676\) 35.3348i 1.35903i
\(677\) −3.11269 + 7.51469i −0.119630 + 0.288813i −0.972339 0.233573i \(-0.924958\pi\)
0.852709 + 0.522386i \(0.174958\pi\)
\(678\) −3.38629 3.38629i −0.130050 0.130050i
\(679\) 22.4862 0.862942
\(680\) 0 0
\(681\) 3.24734 0.124438
\(682\) −1.17243 1.17243i −0.0448948 0.0448948i
\(683\) −11.1502 + 26.9190i −0.426652 + 1.03003i 0.553690 + 0.832723i \(0.313219\pi\)
−0.980342 + 0.197306i \(0.936781\pi\)
\(684\) 25.5143i 0.975566i
\(685\) 0 0
\(686\) −5.38702 + 2.23138i −0.205677 + 0.0851943i
\(687\) −7.40992 + 3.06929i −0.282706 + 0.117101i
\(688\) 6.41446 6.41446i 0.244549 0.244549i
\(689\) 11.0136 + 11.0136i 0.419587 + 0.419587i
\(690\) 0 0
\(691\) 34.5393 14.3066i 1.31394 0.544250i 0.387906 0.921699i \(-0.373198\pi\)
0.926031 + 0.377448i \(0.123198\pi\)
\(692\) 33.2327 + 13.7654i 1.26332 + 0.523283i
\(693\) 11.5041 0.437006
\(694\) −8.61534 3.56859i −0.327034 0.135462i
\(695\) 0 0
\(696\) −4.69395 −0.177924
\(697\) −45.9744 21.8875i −1.74140 0.829048i
\(698\) 1.01720i 0.0385015i
\(699\) −16.7665 + 16.7665i −0.634166 + 0.634166i
\(700\) 0 0
\(701\) 14.6423i 0.553031i −0.961009 0.276515i \(-0.910820\pi\)
0.961009 0.276515i \(-0.0891797\pi\)
\(702\) −8.09139 3.35156i −0.305390 0.126497i
\(703\) 13.9328 + 33.6368i 0.525486 + 1.26863i
\(704\) 5.51956 + 13.3254i 0.208026 + 0.502220i
\(705\) 0 0
\(706\) 5.07538 + 5.07538i 0.191014 + 0.191014i
\(707\) 35.4502 14.6840i 1.33324 0.552247i
\(708\) −5.76812 13.9255i −0.216779 0.523351i
\(709\) 10.8526 26.2006i 0.407579 0.983983i −0.578194 0.815899i \(-0.696242\pi\)
0.985773 0.168083i \(-0.0537578\pi\)
\(710\) 0 0
\(711\) −25.4708 10.5504i −0.955231 0.395670i
\(712\) −0.329520 0.329520i −0.0123493 0.0123493i
\(713\) 1.93451i 0.0724480i
\(714\) −0.170946 + 3.30802i −0.00639748 + 0.123800i
\(715\) 0 0
\(716\) −4.47321 + 4.47321i −0.167172 + 0.167172i
\(717\) 1.40480 3.39148i 0.0524631 0.126657i
\(718\) −9.56736 −0.357051
\(719\) 4.83536 11.6736i 0.180329 0.435352i −0.807706 0.589586i \(-0.799291\pi\)
0.988034 + 0.154234i \(0.0492910\pi\)
\(720\) 0 0
\(721\) 14.1906 + 34.2593i 0.528487 + 1.27588i
\(722\) 6.79485 6.79485i 0.252878 0.252878i
\(723\) −13.5242 + 13.5242i −0.502969 + 0.502969i
\(724\) 11.5901 + 27.9809i 0.430742 + 1.03990i
\(725\) 0 0
\(726\) −0.614822 + 1.48431i −0.0228182 + 0.0550879i
\(727\) 15.0242 0.557218 0.278609 0.960405i \(-0.410127\pi\)
0.278609 + 0.960405i \(0.410127\pi\)
\(728\) −6.35811 + 15.3498i −0.235647 + 0.568903i
\(729\) 11.4604 11.4604i 0.424460 0.424460i
\(730\) 0 0
\(731\) 0.557517 10.7887i 0.0206205 0.399035i
\(732\) 1.83566i 0.0678478i
\(733\) 1.24931 + 1.24931i 0.0461442 + 0.0461442i 0.729802 0.683658i \(-0.239612\pi\)
−0.683658 + 0.729802i \(0.739612\pi\)
\(734\) 1.25895 + 0.521475i 0.0464688 + 0.0192480i
\(735\) 0 0
\(736\) −1.12103 + 2.70640i −0.0413216 + 0.0997592i
\(737\) −6.26935 15.1356i −0.230935 0.557526i
\(738\) −6.45136 + 2.67224i −0.237478 + 0.0983665i
\(739\) 13.9406 + 13.9406i 0.512812 + 0.512812i 0.915387 0.402575i \(-0.131885\pi\)
−0.402575 + 0.915387i \(0.631885\pi\)
\(740\) 0 0
\(741\) 16.2532 + 39.2386i 0.597075 + 1.44147i
\(742\) −0.804017 1.94107i −0.0295164 0.0712589i
\(743\) 26.2027 + 10.8535i 0.961282 + 0.398176i 0.807460 0.589922i \(-0.200842\pi\)
0.153822 + 0.988099i \(0.450842\pi\)
\(744\) 2.81195i 0.103091i
\(745\) 0 0
\(746\) −1.09382 + 1.09382i −0.0400475 + 0.0400475i
\(747\) 26.0491i 0.953087i
\(748\) 17.3799 + 8.27422i 0.635472 + 0.302535i
\(749\) 3.69141 0.134881
\(750\) 0 0
\(751\) 16.5853 + 6.86987i 0.605207 + 0.250685i 0.664178 0.747575i \(-0.268782\pi\)
−0.0589704 + 0.998260i \(0.518782\pi\)
\(752\) −7.96698 −0.290526
\(753\) 23.5728 + 9.76418i 0.859041 + 0.355826i
\(754\) −5.86937 + 2.43117i −0.213750 + 0.0885381i
\(755\) 0 0
\(756\) −17.5211 17.5211i −0.637237 0.637237i
\(757\) 31.0649 31.0649i 1.12907 1.12907i 0.138743 0.990328i \(-0.455694\pi\)
0.990328 0.138743i \(-0.0443062\pi\)
\(758\) −1.54137 + 0.638456i −0.0559851 + 0.0231898i
\(759\) −2.06358 + 0.854764i −0.0749033 + 0.0310260i
\(760\) 0 0
\(761\) 13.2781i 0.481331i 0.970608 + 0.240666i \(0.0773657\pi\)
−0.970608 + 0.240666i \(0.922634\pi\)
\(762\) −0.729435 + 1.76101i −0.0264247 + 0.0637948i
\(763\) −16.7493 16.7493i −0.606367 0.606367i
\(764\) −52.4861 −1.89888
\(765\) 0 0
\(766\) 6.16480 0.222743
\(767\) −29.5378 29.5378i −1.06655 1.06655i
\(768\) 3.73767 9.02353i 0.134871 0.325609i
\(769\) 24.8906i 0.897578i 0.893638 + 0.448789i \(0.148144\pi\)
−0.893638 + 0.448789i \(0.851856\pi\)
\(770\) 0 0
\(771\) −14.5093 + 6.00995i −0.522540 + 0.216443i
\(772\) −26.0340 + 10.7836i −0.936985 + 0.388112i
\(773\) −37.9750 + 37.9750i −1.36587 + 1.36587i −0.499624 + 0.866242i \(0.666529\pi\)
−0.866242 + 0.499624i \(0.833471\pi\)
\(774\) −1.04759 1.04759i −0.0376549 0.0376549i
\(775\) 0 0
\(776\) 9.76127 4.04325i 0.350409 0.145144i
\(777\) 12.5611 + 5.20296i 0.450626 + 0.186655i
\(778\) 1.56463 0.0560949
\(779\) 81.3621 + 33.7013i 2.91510 + 1.20747i
\(780\) 0 0
\(781\) 0.588811 0.0210693
\(782\) 0.358158 + 1.00907i 0.0128077 + 0.0360841i
\(783\) 19.4011i 0.693339i
\(784\) 1.71544 1.71544i 0.0612658 0.0612658i
\(785\) 0 0
\(786\) 1.34033i 0.0478079i
\(787\) 47.5592 + 19.6997i 1.69530 + 0.702217i 0.999866 0.0163714i \(-0.00521140\pi\)
0.695436 + 0.718588i \(0.255211\pi\)
\(788\) −0.274979 0.663857i −0.00979571 0.0236489i
\(789\) −9.95443 24.0321i −0.354387 0.855566i
\(790\) 0 0
\(791\) −26.5517 26.5517i −0.944070 0.944070i
\(792\) 4.99394 2.06856i 0.177452 0.0735031i
\(793\) 1.94684 + 4.70008i 0.0691342 + 0.166905i
\(794\) 0.712737 1.72070i 0.0252941 0.0610654i
\(795\) 0 0
\(796\) 13.2805 + 5.50097i 0.470716 + 0.194977i
\(797\) 13.3772 + 13.3772i 0.473846 + 0.473846i 0.903157 0.429311i \(-0.141244\pi\)
−0.429311 + 0.903157i \(0.641244\pi\)
\(798\) 5.72898i 0.202804i
\(799\) −7.04620 + 6.35374i −0.249276 + 0.224779i
\(800\) 0 0
\(801\) 0.523707 0.523707i 0.0185043 0.0185043i
\(802\) 1.09637 2.64687i 0.0387141 0.0934642i
\(803\) 15.7922 0.557294
\(804\) −5.19237 + 12.5355i −0.183121 + 0.442093i
\(805\) 0 0
\(806\) 1.45641 + 3.51609i 0.0513000 + 0.123849i
\(807\) −4.94766 + 4.94766i −0.174166 + 0.174166i
\(808\) 12.7486 12.7486i 0.448495 0.448495i
\(809\) −11.5703 27.9333i −0.406791 0.982081i −0.985976 0.166885i \(-0.946629\pi\)
0.579185 0.815196i \(-0.303371\pi\)
\(810\) 0 0
\(811\) −6.57121 + 15.8643i −0.230746 + 0.557071i −0.996266 0.0863422i \(-0.972482\pi\)
0.765519 + 0.643413i \(0.222482\pi\)
\(812\) −17.9740 −0.630765
\(813\) −10.6362 + 25.6782i −0.373030 + 0.900573i
\(814\) −2.66358 + 2.66358i −0.0933586 + 0.0933586i
\(815\) 0 0
\(816\) −5.06624 14.2735i −0.177354 0.499673i
\(817\) 18.6844i 0.653683i
\(818\) −3.06944 3.06944i −0.107320 0.107320i
\(819\) −24.3956 10.1050i −0.852450 0.353096i
\(820\) 0 0
\(821\) −16.7555 + 40.4514i −0.584771 + 1.41176i 0.303672 + 0.952777i \(0.401787\pi\)
−0.888443 + 0.458986i \(0.848213\pi\)
\(822\) 0.889309 + 2.14698i 0.0310182 + 0.0748846i
\(823\) 23.3460 9.67025i 0.813792 0.337084i 0.0633260 0.997993i \(-0.479829\pi\)
0.750466 + 0.660909i \(0.229829\pi\)
\(824\) 12.3203 + 12.3203i 0.429199 + 0.429199i
\(825\) 0 0
\(826\) 2.15632 + 5.20581i 0.0750278 + 0.181133i
\(827\) −8.44496 20.3879i −0.293660 0.708958i −0.999999 0.00108492i \(-0.999655\pi\)
0.706339 0.707874i \(-0.250345\pi\)
\(828\) −2.84544 1.17862i −0.0988860 0.0409599i
\(829\) 20.9555i 0.727816i 0.931435 + 0.363908i \(0.118558\pi\)
−0.931435 + 0.363908i \(0.881442\pi\)
\(830\) 0 0
\(831\) 7.17617 7.17617i 0.248939 0.248939i
\(832\) 33.1060i 1.14774i
\(833\) 0.149099 2.88526i 0.00516597 0.0999684i
\(834\) −3.32680 −0.115198
\(835\) 0 0
\(836\) −30.7576 12.7402i −1.06378 0.440630i
\(837\) −11.6224 −0.401728
\(838\) −5.91541 2.45024i −0.204344 0.0846422i
\(839\) −18.6855 + 7.73980i −0.645096 + 0.267207i −0.681152 0.732142i \(-0.738521\pi\)
0.0360558 + 0.999350i \(0.488521\pi\)
\(840\) 0 0
\(841\) 10.5548 + 10.5548i 0.363958 + 0.363958i
\(842\) 4.30216 4.30216i 0.148262 0.148262i
\(843\) 12.1721 5.04183i 0.419228 0.173650i
\(844\) 15.3307 6.35018i 0.527704 0.218582i
\(845\) 0 0
\(846\) 1.30115i 0.0447343i
\(847\) −4.82078 + 11.6384i −0.165644 + 0.399900i
\(848\) 6.79298 + 6.79298i 0.233272 + 0.233272i
\(849\) −17.8710 −0.613331
\(850\) 0 0
\(851\) 4.39490 0.150655
\(852\) −0.344829 0.344829i −0.0118137 0.0118137i
\(853\) 4.39863 10.6192i 0.150606 0.363595i −0.830513 0.556999i \(-0.811953\pi\)
0.981119 + 0.193404i \(0.0619527\pi\)
\(854\) 0.686230i 0.0234823i
\(855\) 0 0
\(856\) 1.60244 0.663753i 0.0547703 0.0226866i
\(857\) 25.9484 10.7482i 0.886380 0.367151i 0.107412 0.994215i \(-0.465744\pi\)
0.778968 + 0.627064i \(0.215744\pi\)
\(858\) −3.10717 + 3.10717i −0.106077 + 0.106077i
\(859\) 2.22749 + 2.22749i 0.0760011 + 0.0760011i 0.744086 0.668084i \(-0.232885\pi\)
−0.668084 + 0.744086i \(0.732885\pi\)
\(860\) 0 0
\(861\) 30.3833 12.5852i 1.03546 0.428901i
\(862\) −5.56568 2.30538i −0.189568 0.0785216i
\(863\) −34.5368 −1.17565 −0.587823 0.808989i \(-0.700015\pi\)
−0.587823 + 0.808989i \(0.700015\pi\)
\(864\) −16.2598 6.73504i −0.553171 0.229131i
\(865\) 0 0
\(866\) 5.49781 0.186823
\(867\) −15.8640 8.58348i −0.538769 0.291510i
\(868\) 10.7675i 0.365473i
\(869\) −25.4370 + 25.4370i −0.862892 + 0.862892i
\(870\) 0 0
\(871\) 37.6032i 1.27414i
\(872\) −10.2826 4.25919i −0.348212 0.144234i
\(873\) 6.42595 + 15.5136i 0.217486 + 0.525057i
\(874\) −0.708688 1.71093i −0.0239717 0.0578729i
\(875\) 0 0
\(876\) −9.24848 9.24848i −0.312477 0.312477i
\(877\) 14.6203 6.05591i 0.493691 0.204493i −0.121926 0.992539i \(-0.538907\pi\)
0.615617 + 0.788046i \(0.288907\pi\)
\(878\) −1.70096 4.10647i −0.0574045 0.138587i
\(879\) 8.47821 20.4682i 0.285963 0.690376i
\(880\) 0 0
\(881\) 29.1623 + 12.0794i 0.982504 + 0.406967i 0.815353 0.578965i \(-0.196543\pi\)
0.167152 + 0.985931i \(0.446543\pi\)
\(882\) −0.280162 0.280162i −0.00943353 0.00943353i
\(883\) 20.2779i 0.682406i 0.939990 + 0.341203i \(0.110834\pi\)
−0.939990 + 0.341203i \(0.889166\pi\)
\(884\) −29.5878 32.8124i −0.995144 1.10360i
\(885\) 0 0
\(886\) −4.97762 + 4.97762i −0.167226 + 0.167226i
\(887\) −18.6899 + 45.1215i −0.627547 + 1.51503i 0.215115 + 0.976589i \(0.430987\pi\)
−0.842662 + 0.538443i \(0.819013\pi\)
\(888\) 6.38831 0.214378
\(889\) −5.71946 + 13.8080i −0.191825 + 0.463106i
\(890\) 0 0
\(891\) 0.126868 + 0.306287i 0.00425024 + 0.0102610i
\(892\) −8.72426 + 8.72426i −0.292110 + 0.292110i
\(893\) 11.6033 11.6033i 0.388290 0.388290i
\(894\) 0.737129 + 1.77959i 0.0246533 + 0.0595183i
\(895\) 0 0
\(896\) −8.24607 + 19.9078i −0.275482 + 0.665072i
\(897\) 5.12682 0.171180
\(898\) −0.197608 + 0.477067i −0.00659425 + 0.0159199i
\(899\) −5.96141 + 5.96141i −0.198824 + 0.198824i
\(900\) 0 0
\(901\) 11.4253 + 0.590416i 0.380633 + 0.0196696i
\(902\) 9.11148i 0.303379i
\(903\) 4.93373 + 4.93373i 0.164184 + 0.164184i
\(904\) −16.3004 6.75183i −0.542142 0.224563i
\(905\) 0 0
\(906\) 1.27618 3.08098i 0.0423984 0.102359i
\(907\) −15.9603 38.5317i −0.529955 1.27942i −0.931552 0.363608i \(-0.881545\pi\)
0.401598 0.915816i \(-0.368455\pi\)
\(908\) 5.39790 2.23588i 0.179136 0.0742004i
\(909\) 20.2614 + 20.2614i 0.672029 + 0.672029i
\(910\) 0 0
\(911\) 2.44973 + 5.91417i 0.0811632 + 0.195945i 0.959252 0.282553i \(-0.0911813\pi\)
−0.878088 + 0.478498i \(0.841181\pi\)
\(912\) 10.0246 + 24.2015i 0.331947 + 0.801392i
\(913\) 31.4023 + 13.0073i 1.03926 + 0.430478i
\(914\) 3.98735i 0.131890i
\(915\) 0 0
\(916\) −10.2039 + 10.2039i −0.337145 + 0.337145i
\(917\) 10.5094i 0.347052i
\(918\) −6.06239 + 2.15178i −0.200089 + 0.0710195i
\(919\) 23.6812 0.781170 0.390585 0.920567i \(-0.372273\pi\)
0.390585 + 0.920567i \(0.372273\pi\)
\(920\) 0 0
\(921\) −29.3613 12.1618i −0.967488 0.400746i
\(922\) −8.83658 −0.291017
\(923\) −1.24863 0.517199i −0.0410991 0.0170238i
\(924\) −11.4859 + 4.75762i −0.377859 + 0.156514i
\(925\) 0 0
\(926\) −2.09137 2.09137i −0.0687268 0.0687268i
\(927\) −19.5807 + 19.5807i −0.643116 + 0.643116i
\(928\) −11.7946 + 4.88550i −0.387178 + 0.160374i
\(929\) −50.7164 + 21.0074i −1.66395 + 0.689232i −0.998369 0.0570920i \(-0.981817\pi\)
−0.665583 + 0.746324i \(0.731817\pi\)
\(930\) 0 0
\(931\) 4.99683i 0.163764i
\(932\) −16.3259 + 39.4142i −0.534773 + 1.29106i
\(933\) −0.157795 0.157795i −0.00516598 0.00516598i
\(934\) 4.12766 0.135061
\(935\) 0 0
\(936\) −12.4071 −0.405539
\(937\) 4.78966 + 4.78966i 0.156471 + 0.156471i 0.781001 0.624530i \(-0.214709\pi\)
−0.624530 + 0.781001i \(0.714709\pi\)
\(938\) 1.94108 4.68619i 0.0633786 0.153010i
\(939\) 34.4025i 1.12268i
\(940\) 0 0
\(941\) −23.2992 + 9.65084i −0.759532 + 0.314608i −0.728624 0.684914i \(-0.759840\pi\)
−0.0309078 + 0.999522i \(0.509840\pi\)
\(942\) 3.96490 1.64232i 0.129184 0.0535096i
\(943\) 7.51696 7.51696i 0.244786 0.244786i
\(944\) −18.2183 18.2183i −0.592954 0.592954i
\(945\) 0 0
\(946\) −1.78598 + 0.739776i −0.0580671 + 0.0240522i
\(947\) 22.6362 + 9.37621i 0.735577 + 0.304686i 0.718841 0.695174i \(-0.244673\pi\)
0.0167354 + 0.999860i \(0.494673\pi\)
\(948\) 29.7937 0.967654
\(949\) −33.4888 13.8715i −1.08709 0.450288i
\(950\) 0 0
\(951\) −35.4793 −1.15050
\(952\) 4.08206 + 11.5007i 0.132300 + 0.372740i
\(953\) 30.3936i 0.984545i −0.870441 0.492272i \(-0.836166\pi\)
0.870441 0.492272i \(-0.163834\pi\)
\(954\) 1.10941 1.10941i 0.0359185 0.0359185i
\(955\) 0 0
\(956\) 6.60473i 0.213612i
\(957\) −8.99320 3.72511i −0.290709 0.120416i
\(958\) 1.27111 + 3.06873i 0.0410677 + 0.0991462i
\(959\) 6.97302 + 16.8344i 0.225171 + 0.543610i
\(960\) 0 0
\(961\) −18.3491 18.3491i −0.591906 0.591906i
\(962\) 7.98801 3.30874i 0.257544 0.106678i
\(963\) 1.05491 + 2.54677i 0.0339939 + 0.0820684i
\(964\) −13.1688 + 31.7923i −0.424139 + 1.02396i
\(965\) 0 0
\(966\) −0.638915 0.264647i −0.0205568 0.00851489i
\(967\) −31.0785 31.0785i −0.999416 0.999416i 0.000584066 1.00000i \(-0.499814\pi\)
−1.00000 0.000584066i \(0.999814\pi\)
\(968\) 5.91906i 0.190246i
\(969\) 28.1669 + 13.4097i 0.904852 + 0.430782i
\(970\) 0 0
\(971\) 29.9769 29.9769i 0.962005 0.962005i −0.0372988 0.999304i \(-0.511875\pi\)
0.999304 + 0.0372988i \(0.0118753\pi\)
\(972\) 11.4393 27.6169i 0.366916 0.885814i
\(973\) −26.0853 −0.836255
\(974\) −1.16538 + 2.81349i −0.0373413 + 0.0901500i
\(975\) 0 0
\(976\) 1.20077 + 2.89891i 0.0384356 + 0.0927918i
\(977\) −16.7792 + 16.7792i −0.536813 + 0.536813i −0.922591 0.385778i \(-0.873933\pi\)
0.385778 + 0.922591i \(0.373933\pi\)
\(978\) 0.356517 0.356517i 0.0114001 0.0114001i
\(979\) −0.369825 0.892837i −0.0118197 0.0285352i
\(980\) 0 0
\(981\) 6.76915 16.3422i 0.216122 0.521765i
\(982\) −5.15363 −0.164459
\(983\) −10.7391 + 25.9264i −0.342524 + 0.826925i 0.654935 + 0.755685i \(0.272696\pi\)
−0.997459 + 0.0712405i \(0.977304\pi\)
\(984\) 10.9264 10.9264i 0.348322 0.348322i
\(985\) 0 0
\(986\) −2.00585 + 4.21325i −0.0638791 + 0.134177i
\(987\) 6.12786i 0.195052i
\(988\) 54.0337 + 54.0337i 1.71904 + 1.71904i
\(989\) 2.08374 + 0.863114i 0.0662591 + 0.0274454i
\(990\) 0 0
\(991\) 17.0472 41.1557i 0.541523 1.30735i −0.382124 0.924111i \(-0.624807\pi\)
0.923648 0.383242i \(-0.125193\pi\)
\(992\) 2.92670 + 7.06567i 0.0929227 + 0.224335i
\(993\) 0.867854 0.359477i 0.0275405 0.0114076i
\(994\) 0.128909 + 0.128909i 0.00408874 + 0.00408874i
\(995\) 0 0
\(996\) −10.7728 26.0079i −0.341349 0.824090i
\(997\) −7.86332 18.9837i −0.249034 0.601221i 0.749089 0.662470i \(-0.230492\pi\)
−0.998123 + 0.0612487i \(0.980492\pi\)
\(998\) 8.74058 + 3.62047i 0.276678 + 0.114604i
\(999\) 26.4042i 0.835392i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.f.349.4 24
5.2 odd 4 425.2.m.b.26.3 24
5.3 odd 4 85.2.l.a.26.4 24
5.4 even 2 425.2.n.c.349.3 24
15.8 even 4 765.2.be.b.451.3 24
17.2 even 8 425.2.n.c.274.3 24
85.2 odd 8 425.2.m.b.376.3 24
85.19 even 8 inner 425.2.n.f.274.4 24
85.23 even 16 1445.2.a.p.1.7 12
85.28 even 16 1445.2.a.q.1.7 12
85.53 odd 8 85.2.l.a.36.4 yes 24
85.57 even 16 7225.2.a.bs.1.6 12
85.58 even 16 1445.2.d.j.866.11 24
85.62 even 16 7225.2.a.bq.1.6 12
85.78 even 16 1445.2.d.j.866.12 24
255.53 even 8 765.2.be.b.631.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.4 24 5.3 odd 4
85.2.l.a.36.4 yes 24 85.53 odd 8
425.2.m.b.26.3 24 5.2 odd 4
425.2.m.b.376.3 24 85.2 odd 8
425.2.n.c.274.3 24 17.2 even 8
425.2.n.c.349.3 24 5.4 even 2
425.2.n.f.274.4 24 85.19 even 8 inner
425.2.n.f.349.4 24 1.1 even 1 trivial
765.2.be.b.451.3 24 15.8 even 4
765.2.be.b.631.3 24 255.53 even 8
1445.2.a.p.1.7 12 85.23 even 16
1445.2.a.q.1.7 12 85.28 even 16
1445.2.d.j.866.11 24 85.58 even 16
1445.2.d.j.866.12 24 85.78 even 16
7225.2.a.bq.1.6 12 85.62 even 16
7225.2.a.bs.1.6 12 85.57 even 16