Properties

Label 425.2.n.f.349.2
Level $425$
Weight $2$
Character 425.349
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 349.2
Character \(\chi\) \(=\) 425.349
Dual form 425.2.n.f.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.27691 - 1.27691i) q^{2} +(0.263254 - 0.635552i) q^{3} +1.26102i q^{4} +(-1.14770 + 0.475393i) q^{6} +(-4.01142 + 1.66158i) q^{7} +(-0.943613 + 0.943613i) q^{8} +(1.78670 + 1.78670i) q^{9} +(0.0485041 - 0.0200910i) q^{11} +(0.801445 + 0.331970i) q^{12} +3.02508 q^{13} +(7.24394 + 3.00054i) q^{14} +4.93187 q^{16} +(2.69314 + 3.12202i) q^{17} -4.56292i q^{18} +(-5.52988 + 5.52988i) q^{19} +2.98689i q^{21} +(-0.0875901 - 0.0362810i) q^{22} +(-0.398744 - 0.962654i) q^{23} +(0.351305 + 0.848125i) q^{24} +(-3.86277 - 3.86277i) q^{26} +(3.51255 - 1.45495i) q^{27} +(-2.09529 - 5.05848i) q^{28} +(0.161016 - 0.388726i) q^{29} +(-1.27892 - 0.529745i) q^{31} +(-4.41035 - 4.41035i) q^{32} -0.0361159i q^{33} +(0.547638 - 7.42546i) q^{34} +(-2.25306 + 2.25306i) q^{36} +(-0.128945 + 0.311301i) q^{37} +14.1224 q^{38} +(0.796365 - 1.92260i) q^{39} +(2.52291 + 6.09084i) q^{41} +(3.81400 - 3.81400i) q^{42} +(-7.06729 + 7.06729i) q^{43} +(0.0253352 + 0.0611647i) q^{44} +(-0.720064 + 1.73839i) q^{46} +6.13168 q^{47} +(1.29834 - 3.13446i) q^{48} +(8.38087 - 8.38087i) q^{49} +(2.69319 - 0.889748i) q^{51} +3.81469i q^{52} +(8.52974 + 8.52974i) q^{53} +(-6.34307 - 2.62739i) q^{54} +(2.21733 - 5.35312i) q^{56} +(2.05876 + 4.97030i) q^{57} +(-0.701974 + 0.290767i) q^{58} +(-3.60468 - 3.60468i) q^{59} +(-2.28486 - 5.51614i) q^{61} +(0.956630 + 2.30951i) q^{62} +(-10.1359 - 4.19844i) q^{63} +1.39954i q^{64} +(-0.0461170 + 0.0461170i) q^{66} +0.916040i q^{67} +(-3.93693 + 3.39611i) q^{68} -0.716788 q^{69} +(3.86169 + 1.59956i) q^{71} -3.37190 q^{72} +(-4.98025 - 2.06289i) q^{73} +(0.562156 - 0.232853i) q^{74} +(-6.97330 - 6.97330i) q^{76} +(-0.161187 + 0.161187i) q^{77} +(-3.47188 + 1.43810i) q^{78} +(-9.22305 + 3.82031i) q^{79} +4.96488i q^{81} +(4.55595 - 10.9990i) q^{82} +(4.61746 + 4.61746i) q^{83} -3.76653 q^{84} +18.0487 q^{86} +(-0.204668 - 0.204668i) q^{87} +(-0.0268109 + 0.0647272i) q^{88} +10.2159i q^{89} +(-12.1349 + 5.02642i) q^{91} +(1.21393 - 0.502825i) q^{92} +(-0.673362 + 0.673362i) q^{93} +(-7.82963 - 7.82963i) q^{94} +(-3.96405 + 1.64196i) q^{96} +(-17.7605 - 7.35663i) q^{97} -21.4033 q^{98} +(0.122559 + 0.0507655i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} - 40 q^{12} - 16 q^{13} - 24 q^{16} + 8 q^{19} + 24 q^{22} - 8 q^{23} + 8 q^{24} + 16 q^{26} - 16 q^{27} + 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} + 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.27691 1.27691i −0.902915 0.902915i 0.0927724 0.995687i \(-0.470427\pi\)
−0.995687 + 0.0927724i \(0.970427\pi\)
\(3\) 0.263254 0.635552i 0.151990 0.366936i −0.829484 0.558530i \(-0.811366\pi\)
0.981474 + 0.191594i \(0.0613656\pi\)
\(4\) 1.26102i 0.630511i
\(5\) 0 0
\(6\) −1.14770 + 0.475393i −0.468546 + 0.194078i
\(7\) −4.01142 + 1.66158i −1.51617 + 0.628020i −0.976821 0.214060i \(-0.931331\pi\)
−0.539353 + 0.842080i \(0.681331\pi\)
\(8\) −0.943613 + 0.943613i −0.333617 + 0.333617i
\(9\) 1.78670 + 1.78670i 0.595565 + 0.595565i
\(10\) 0 0
\(11\) 0.0485041 0.0200910i 0.0146245 0.00605768i −0.375359 0.926879i \(-0.622481\pi\)
0.389984 + 0.920822i \(0.372481\pi\)
\(12\) 0.801445 + 0.331970i 0.231357 + 0.0958313i
\(13\) 3.02508 0.839006 0.419503 0.907754i \(-0.362204\pi\)
0.419503 + 0.907754i \(0.362204\pi\)
\(14\) 7.24394 + 3.00054i 1.93602 + 0.801928i
\(15\) 0 0
\(16\) 4.93187 1.23297
\(17\) 2.69314 + 3.12202i 0.653183 + 0.757200i
\(18\) 4.56292i 1.07549i
\(19\) −5.52988 + 5.52988i −1.26864 + 1.26864i −0.321851 + 0.946790i \(0.604305\pi\)
−0.946790 + 0.321851i \(0.895695\pi\)
\(20\) 0 0
\(21\) 2.98689i 0.651792i
\(22\) −0.0875901 0.0362810i −0.0186743 0.00773514i
\(23\) −0.398744 0.962654i −0.0831439 0.200727i 0.876840 0.480782i \(-0.159647\pi\)
−0.959984 + 0.280055i \(0.909647\pi\)
\(24\) 0.351305 + 0.848125i 0.0717098 + 0.173123i
\(25\) 0 0
\(26\) −3.86277 3.86277i −0.757551 0.757551i
\(27\) 3.51255 1.45495i 0.675991 0.280005i
\(28\) −2.09529 5.05848i −0.395973 0.955964i
\(29\) 0.161016 0.388726i 0.0298999 0.0721847i −0.908224 0.418484i \(-0.862562\pi\)
0.938124 + 0.346299i \(0.112562\pi\)
\(30\) 0 0
\(31\) −1.27892 0.529745i −0.229701 0.0951451i 0.264865 0.964286i \(-0.414673\pi\)
−0.494565 + 0.869141i \(0.664673\pi\)
\(32\) −4.41035 4.41035i −0.779647 0.779647i
\(33\) 0.0361159i 0.00628698i
\(34\) 0.547638 7.42546i 0.0939192 1.27346i
\(35\) 0 0
\(36\) −2.25306 + 2.25306i −0.375510 + 0.375510i
\(37\) −0.128945 + 0.311301i −0.0211984 + 0.0511775i −0.934124 0.356948i \(-0.883817\pi\)
0.912926 + 0.408125i \(0.133817\pi\)
\(38\) 14.1224 2.29095
\(39\) 0.796365 1.92260i 0.127520 0.307862i
\(40\) 0 0
\(41\) 2.52291 + 6.09084i 0.394012 + 0.951230i 0.989057 + 0.147537i \(0.0471345\pi\)
−0.595044 + 0.803693i \(0.702865\pi\)
\(42\) 3.81400 3.81400i 0.588513 0.588513i
\(43\) −7.06729 + 7.06729i −1.07775 + 1.07775i −0.0810414 + 0.996711i \(0.525825\pi\)
−0.996711 + 0.0810414i \(0.974175\pi\)
\(44\) 0.0253352 + 0.0611647i 0.00381943 + 0.00922092i
\(45\) 0 0
\(46\) −0.720064 + 1.73839i −0.106168 + 0.256311i
\(47\) 6.13168 0.894398 0.447199 0.894435i \(-0.352422\pi\)
0.447199 + 0.894435i \(0.352422\pi\)
\(48\) 1.29834 3.13446i 0.187399 0.452420i
\(49\) 8.38087 8.38087i 1.19727 1.19727i
\(50\) 0 0
\(51\) 2.69319 0.889748i 0.377122 0.124590i
\(52\) 3.81469i 0.529002i
\(53\) 8.52974 + 8.52974i 1.17165 + 1.17165i 0.981816 + 0.189834i \(0.0607949\pi\)
0.189834 + 0.981816i \(0.439205\pi\)
\(54\) −6.34307 2.62739i −0.863183 0.357542i
\(55\) 0 0
\(56\) 2.21733 5.35312i 0.296304 0.715340i
\(57\) 2.05876 + 4.97030i 0.272690 + 0.658332i
\(58\) −0.701974 + 0.290767i −0.0921737 + 0.0381796i
\(59\) −3.60468 3.60468i −0.469290 0.469290i 0.432395 0.901684i \(-0.357669\pi\)
−0.901684 + 0.432395i \(0.857669\pi\)
\(60\) 0 0
\(61\) −2.28486 5.51614i −0.292547 0.706270i 0.707453 0.706760i \(-0.249844\pi\)
−1.00000 0.000490243i \(0.999844\pi\)
\(62\) 0.956630 + 2.30951i 0.121492 + 0.293308i
\(63\) −10.1359 4.19844i −1.27701 0.528954i
\(64\) 1.39954i 0.174943i
\(65\) 0 0
\(66\) −0.0461170 + 0.0461170i −0.00567661 + 0.00567661i
\(67\) 0.916040i 0.111912i 0.998433 + 0.0559561i \(0.0178207\pi\)
−0.998433 + 0.0559561i \(0.982179\pi\)
\(68\) −3.93693 + 3.39611i −0.477423 + 0.411839i
\(69\) −0.716788 −0.0862912
\(70\) 0 0
\(71\) 3.86169 + 1.59956i 0.458298 + 0.189833i 0.599875 0.800094i \(-0.295217\pi\)
−0.141577 + 0.989927i \(0.545217\pi\)
\(72\) −3.37190 −0.397382
\(73\) −4.98025 2.06289i −0.582895 0.241443i 0.0716959 0.997427i \(-0.477159\pi\)
−0.654590 + 0.755984i \(0.727159\pi\)
\(74\) 0.562156 0.232853i 0.0653493 0.0270686i
\(75\) 0 0
\(76\) −6.97330 6.97330i −0.799892 0.799892i
\(77\) −0.161187 + 0.161187i −0.0183690 + 0.0183690i
\(78\) −3.47188 + 1.43810i −0.393113 + 0.162833i
\(79\) −9.22305 + 3.82031i −1.03767 + 0.429819i −0.835477 0.549526i \(-0.814808\pi\)
−0.202198 + 0.979345i \(0.564808\pi\)
\(80\) 0 0
\(81\) 4.96488i 0.551653i
\(82\) 4.55595 10.9990i 0.503120 1.21464i
\(83\) 4.61746 + 4.61746i 0.506833 + 0.506833i 0.913553 0.406720i \(-0.133328\pi\)
−0.406720 + 0.913553i \(0.633328\pi\)
\(84\) −3.76653 −0.410962
\(85\) 0 0
\(86\) 18.0487 1.94624
\(87\) −0.204668 0.204668i −0.0219427 0.0219427i
\(88\) −0.0268109 + 0.0647272i −0.00285805 + 0.00689994i
\(89\) 10.2159i 1.08289i 0.840738 + 0.541443i \(0.182122\pi\)
−0.840738 + 0.541443i \(0.817878\pi\)
\(90\) 0 0
\(91\) −12.1349 + 5.02642i −1.27208 + 0.526912i
\(92\) 1.21393 0.502825i 0.126561 0.0524231i
\(93\) −0.673362 + 0.673362i −0.0698244 + 0.0698244i
\(94\) −7.82963 7.82963i −0.807565 0.807565i
\(95\) 0 0
\(96\) −3.96405 + 1.64196i −0.404579 + 0.167582i
\(97\) −17.7605 7.35663i −1.80330 0.746952i −0.985091 0.172036i \(-0.944965\pi\)
−0.818212 0.574916i \(-0.805035\pi\)
\(98\) −21.4033 −2.16206
\(99\) 0.122559 + 0.0507655i 0.0123176 + 0.00510212i
\(100\) 0 0
\(101\) −13.2926 −1.32266 −0.661331 0.750094i \(-0.730008\pi\)
−0.661331 + 0.750094i \(0.730008\pi\)
\(102\) −4.57510 2.30284i −0.453003 0.228015i
\(103\) 6.91299i 0.681157i 0.940216 + 0.340579i \(0.110623\pi\)
−0.940216 + 0.340579i \(0.889377\pi\)
\(104\) −2.85450 + 2.85450i −0.279907 + 0.279907i
\(105\) 0 0
\(106\) 21.7835i 2.11580i
\(107\) 13.6187 + 5.64104i 1.31657 + 0.545339i 0.926793 0.375572i \(-0.122554\pi\)
0.389773 + 0.920911i \(0.372554\pi\)
\(108\) 1.83472 + 4.42940i 0.176546 + 0.426220i
\(109\) 1.81709 + 4.38684i 0.174046 + 0.420183i 0.986698 0.162566i \(-0.0519770\pi\)
−0.812652 + 0.582749i \(0.801977\pi\)
\(110\) 0 0
\(111\) 0.163903 + 0.163903i 0.0155569 + 0.0155569i
\(112\) −19.7838 + 8.19471i −1.86939 + 0.774328i
\(113\) −1.15314 2.78393i −0.108478 0.261890i 0.860314 0.509765i \(-0.170268\pi\)
−0.968792 + 0.247875i \(0.920268\pi\)
\(114\) 3.71778 8.97551i 0.348202 0.840633i
\(115\) 0 0
\(116\) 0.490192 + 0.203044i 0.0455132 + 0.0188522i
\(117\) 5.40490 + 5.40490i 0.499683 + 0.499683i
\(118\) 9.20574i 0.847457i
\(119\) −15.9908 8.04884i −1.46588 0.737836i
\(120\) 0 0
\(121\) −7.77623 + 7.77623i −0.706930 + 0.706930i
\(122\) −4.12607 + 9.96122i −0.373557 + 0.901846i
\(123\) 4.53522 0.408927
\(124\) 0.668020 1.61274i 0.0599900 0.144829i
\(125\) 0 0
\(126\) 7.58167 + 18.3038i 0.675429 + 1.63063i
\(127\) −0.00585984 + 0.00585984i −0.000519977 + 0.000519977i −0.707367 0.706847i \(-0.750117\pi\)
0.706847 + 0.707367i \(0.250117\pi\)
\(128\) −7.03360 + 7.03360i −0.621689 + 0.621689i
\(129\) 2.63114 + 6.35213i 0.231659 + 0.559274i
\(130\) 0 0
\(131\) 3.13210 7.56157i 0.273653 0.660657i −0.725981 0.687715i \(-0.758614\pi\)
0.999634 + 0.0270577i \(0.00861380\pi\)
\(132\) 0.0455430 0.00396401
\(133\) 12.9943 31.3710i 1.12675 2.72021i
\(134\) 1.16971 1.16971i 0.101047 0.101047i
\(135\) 0 0
\(136\) −5.48726 0.404693i −0.470528 0.0347021i
\(137\) 2.23387i 0.190852i −0.995437 0.0954260i \(-0.969579\pi\)
0.995437 0.0954260i \(-0.0304213\pi\)
\(138\) 0.915277 + 0.915277i 0.0779136 + 0.0779136i
\(139\) 18.2335 + 7.55257i 1.54655 + 0.640601i 0.982688 0.185270i \(-0.0593160\pi\)
0.563859 + 0.825871i \(0.309316\pi\)
\(140\) 0 0
\(141\) 1.61419 3.89701i 0.135940 0.328187i
\(142\) −2.88854 6.97355i −0.242401 0.585207i
\(143\) 0.146729 0.0607770i 0.0122701 0.00508243i
\(144\) 8.81175 + 8.81175i 0.734313 + 0.734313i
\(145\) 0 0
\(146\) 3.72523 + 8.99349i 0.308302 + 0.744306i
\(147\) −3.12018 7.53279i −0.257348 0.621294i
\(148\) −0.392557 0.162602i −0.0322680 0.0133658i
\(149\) 10.1835i 0.834263i −0.908846 0.417132i \(-0.863035\pi\)
0.908846 0.417132i \(-0.136965\pi\)
\(150\) 0 0
\(151\) 10.8529 10.8529i 0.883200 0.883200i −0.110659 0.993858i \(-0.535296\pi\)
0.993858 + 0.110659i \(0.0352961\pi\)
\(152\) 10.4361i 0.846482i
\(153\) −0.766271 + 10.3899i −0.0619494 + 0.839975i
\(154\) 0.411645 0.0331713
\(155\) 0 0
\(156\) 2.42443 + 1.00423i 0.194110 + 0.0804030i
\(157\) 9.41222 0.751177 0.375588 0.926787i \(-0.377441\pi\)
0.375588 + 0.926787i \(0.377441\pi\)
\(158\) 16.6553 + 6.89884i 1.32502 + 0.548842i
\(159\) 7.66659 3.17561i 0.608000 0.251842i
\(160\) 0 0
\(161\) 3.19906 + 3.19906i 0.252121 + 0.252121i
\(162\) 6.33972 6.33972i 0.498096 0.498096i
\(163\) −11.4980 + 4.76262i −0.900592 + 0.373037i −0.784448 0.620195i \(-0.787053\pi\)
−0.116144 + 0.993232i \(0.537053\pi\)
\(164\) −7.68068 + 3.18144i −0.599761 + 0.248429i
\(165\) 0 0
\(166\) 11.7922i 0.915253i
\(167\) −4.82277 + 11.6432i −0.373197 + 0.900977i 0.620008 + 0.784596i \(0.287130\pi\)
−0.993205 + 0.116382i \(0.962870\pi\)
\(168\) −2.81846 2.81846i −0.217449 0.217449i
\(169\) −3.84890 −0.296069
\(170\) 0 0
\(171\) −19.7604 −1.51112
\(172\) −8.91201 8.91201i −0.679534 0.679534i
\(173\) 4.66741 11.2681i 0.354856 0.856699i −0.641150 0.767416i \(-0.721542\pi\)
0.996006 0.0892832i \(-0.0284576\pi\)
\(174\) 0.522687i 0.0396248i
\(175\) 0 0
\(176\) 0.239216 0.0990864i 0.0180316 0.00746892i
\(177\) −3.23991 + 1.34202i −0.243527 + 0.100872i
\(178\) 13.0449 13.0449i 0.977754 0.977754i
\(179\) −9.80106 9.80106i −0.732566 0.732566i 0.238562 0.971127i \(-0.423324\pi\)
−0.971127 + 0.238562i \(0.923324\pi\)
\(180\) 0 0
\(181\) 1.88863 0.782297i 0.140381 0.0581476i −0.311387 0.950283i \(-0.600794\pi\)
0.451768 + 0.892136i \(0.350794\pi\)
\(182\) 21.9135 + 9.07686i 1.62434 + 0.672822i
\(183\) −4.10730 −0.303620
\(184\) 1.28463 + 0.532112i 0.0947043 + 0.0392278i
\(185\) 0 0
\(186\) 1.71965 0.126091
\(187\) 0.193353 + 0.0973225i 0.0141394 + 0.00711693i
\(188\) 7.73218i 0.563927i
\(189\) −11.6728 + 11.6728i −0.849071 + 0.849071i
\(190\) 0 0
\(191\) 3.08056i 0.222902i 0.993770 + 0.111451i \(0.0355498\pi\)
−0.993770 + 0.111451i \(0.964450\pi\)
\(192\) 0.889482 + 0.368435i 0.0641928 + 0.0265895i
\(193\) −7.89931 19.0706i −0.568605 1.37273i −0.902731 0.430205i \(-0.858441\pi\)
0.334126 0.942528i \(-0.391559\pi\)
\(194\) 13.2848 + 32.0724i 0.953794 + 2.30266i
\(195\) 0 0
\(196\) 10.5685 + 10.5685i 0.754890 + 0.754890i
\(197\) 16.8483 6.97881i 1.20039 0.497219i 0.309268 0.950975i \(-0.399916\pi\)
0.891126 + 0.453756i \(0.149916\pi\)
\(198\) −0.0916738 0.221320i −0.00651497 0.0157285i
\(199\) 10.2053 24.6377i 0.723432 1.74652i 0.0601040 0.998192i \(-0.480857\pi\)
0.663328 0.748328i \(-0.269143\pi\)
\(200\) 0 0
\(201\) 0.582192 + 0.241152i 0.0410646 + 0.0170095i
\(202\) 16.9735 + 16.9735i 1.19425 + 1.19425i
\(203\) 1.82689i 0.128222i
\(204\) 1.12199 + 3.39617i 0.0785551 + 0.237779i
\(205\) 0 0
\(206\) 8.82730 8.82730i 0.615027 0.615027i
\(207\) 1.00754 2.43240i 0.0700285 0.169064i
\(208\) 14.9193 1.03447
\(209\) −0.157121 + 0.379323i −0.0108683 + 0.0262383i
\(210\) 0 0
\(211\) 2.98710 + 7.21149i 0.205640 + 0.496460i 0.992728 0.120382i \(-0.0384119\pi\)
−0.787087 + 0.616842i \(0.788412\pi\)
\(212\) −10.7562 + 10.7562i −0.738738 + 0.738738i
\(213\) 2.03321 2.03321i 0.139313 0.139313i
\(214\) −10.1868 24.5930i −0.696352 1.68114i
\(215\) 0 0
\(216\) −1.94158 + 4.68739i −0.132108 + 0.318937i
\(217\) 6.01049 0.408019
\(218\) 3.28135 7.92189i 0.222241 0.536538i
\(219\) −2.62215 + 2.62215i −0.177188 + 0.177188i
\(220\) 0 0
\(221\) 8.14696 + 9.44435i 0.548024 + 0.635295i
\(222\) 0.418579i 0.0280932i
\(223\) −3.37213 3.37213i −0.225815 0.225815i 0.585127 0.810942i \(-0.301045\pi\)
−0.810942 + 0.585127i \(0.801045\pi\)
\(224\) 25.0199 + 10.3636i 1.67171 + 0.692447i
\(225\) 0 0
\(226\) −2.08238 + 5.02731i −0.138518 + 0.334411i
\(227\) −4.29029 10.3577i −0.284757 0.687464i 0.715177 0.698943i \(-0.246346\pi\)
−0.999934 + 0.0114793i \(0.996346\pi\)
\(228\) −6.26765 + 2.59614i −0.415085 + 0.171934i
\(229\) 14.6007 + 14.6007i 0.964838 + 0.964838i 0.999402 0.0345640i \(-0.0110043\pi\)
−0.0345640 + 0.999402i \(0.511004\pi\)
\(230\) 0 0
\(231\) 0.0600097 + 0.144876i 0.00394835 + 0.00953215i
\(232\) 0.214871 + 0.518744i 0.0141069 + 0.0340572i
\(233\) 2.82569 + 1.17044i 0.185117 + 0.0766781i 0.473317 0.880892i \(-0.343057\pi\)
−0.288199 + 0.957570i \(0.593057\pi\)
\(234\) 13.8032i 0.902342i
\(235\) 0 0
\(236\) 4.54558 4.54558i 0.295892 0.295892i
\(237\) 6.86745i 0.446089i
\(238\) 10.1412 + 30.6966i 0.657358 + 1.98976i
\(239\) −4.94072 −0.319588 −0.159794 0.987150i \(-0.551083\pi\)
−0.159794 + 0.987150i \(0.551083\pi\)
\(240\) 0 0
\(241\) 1.53527 + 0.635928i 0.0988952 + 0.0409637i 0.431583 0.902073i \(-0.357955\pi\)
−0.332687 + 0.943037i \(0.607955\pi\)
\(242\) 19.8592 1.27659
\(243\) 13.6931 + 5.67187i 0.878413 + 0.363850i
\(244\) 6.95597 2.88126i 0.445311 0.184454i
\(245\) 0 0
\(246\) −5.79109 5.79109i −0.369226 0.369226i
\(247\) −16.7283 + 16.7283i −1.06440 + 1.06440i
\(248\) 1.70668 0.706929i 0.108374 0.0448900i
\(249\) 4.15021 1.71907i 0.263009 0.108942i
\(250\) 0 0
\(251\) 9.14240i 0.577063i 0.957470 + 0.288531i \(0.0931670\pi\)
−0.957470 + 0.288531i \(0.906833\pi\)
\(252\) 5.29432 12.7816i 0.333511 0.805167i
\(253\) −0.0386814 0.0386814i −0.00243188 0.00243188i
\(254\) 0.0149650 0.000938989
\(255\) 0 0
\(256\) 20.7617 1.29761
\(257\) −11.7749 11.7749i −0.734498 0.734498i 0.237009 0.971507i \(-0.423833\pi\)
−0.971507 + 0.237009i \(0.923833\pi\)
\(258\) 4.75139 11.4709i 0.295809 0.714145i
\(259\) 1.46301i 0.0909070i
\(260\) 0 0
\(261\) 0.982222 0.406850i 0.0607980 0.0251834i
\(262\) −13.6549 + 5.65605i −0.843603 + 0.349432i
\(263\) 15.3640 15.3640i 0.947387 0.947387i −0.0512969 0.998683i \(-0.516335\pi\)
0.998683 + 0.0512969i \(0.0163355\pi\)
\(264\) 0.0340795 + 0.0340795i 0.00209745 + 0.00209745i
\(265\) 0 0
\(266\) −56.6507 + 23.4655i −3.47348 + 1.43876i
\(267\) 6.49276 + 2.68939i 0.397350 + 0.164588i
\(268\) −1.15515 −0.0705618
\(269\) 21.4082 + 8.86758i 1.30528 + 0.540666i 0.923504 0.383588i \(-0.125312\pi\)
0.381779 + 0.924254i \(0.375312\pi\)
\(270\) 0 0
\(271\) −3.95595 −0.240307 −0.120153 0.992755i \(-0.538339\pi\)
−0.120153 + 0.992755i \(0.538339\pi\)
\(272\) 13.2822 + 15.3974i 0.805353 + 0.933603i
\(273\) 9.03556i 0.546857i
\(274\) −2.85246 + 2.85246i −0.172323 + 0.172323i
\(275\) 0 0
\(276\) 0.903885i 0.0544075i
\(277\) −15.6227 6.47115i −0.938679 0.388814i −0.139714 0.990192i \(-0.544618\pi\)
−0.798964 + 0.601378i \(0.794618\pi\)
\(278\) −13.6387 32.9266i −0.817992 1.97481i
\(279\) −1.33854 3.23153i −0.0801366 0.193467i
\(280\) 0 0
\(281\) 3.30210 + 3.30210i 0.196987 + 0.196987i 0.798707 0.601720i \(-0.205518\pi\)
−0.601720 + 0.798707i \(0.705518\pi\)
\(282\) −7.03733 + 2.91496i −0.419067 + 0.173583i
\(283\) 3.32949 + 8.03809i 0.197917 + 0.477815i 0.991414 0.130760i \(-0.0417417\pi\)
−0.793497 + 0.608575i \(0.791742\pi\)
\(284\) −2.01708 + 4.86967i −0.119692 + 0.288962i
\(285\) 0 0
\(286\) −0.264967 0.109753i −0.0156678 0.00648982i
\(287\) −20.2409 20.2409i −1.19478 1.19478i
\(288\) 15.7599i 0.928661i
\(289\) −2.49398 + 16.8161i −0.146705 + 0.989180i
\(290\) 0 0
\(291\) −9.35105 + 9.35105i −0.548168 + 0.548168i
\(292\) 2.60135 6.28021i 0.152232 0.367521i
\(293\) −0.739100 −0.0431787 −0.0215893 0.999767i \(-0.506873\pi\)
−0.0215893 + 0.999767i \(0.506873\pi\)
\(294\) −5.63452 + 13.6029i −0.328612 + 0.793339i
\(295\) 0 0
\(296\) −0.172073 0.415421i −0.0100015 0.0241459i
\(297\) 0.141142 0.141142i 0.00818987 0.00818987i
\(298\) −13.0034 + 13.0034i −0.753269 + 0.753269i
\(299\) −1.20623 2.91210i −0.0697582 0.168411i
\(300\) 0 0
\(301\) 16.6070 40.0928i 0.957210 2.31091i
\(302\) −27.7165 −1.59491
\(303\) −3.49933 + 8.44813i −0.201031 + 0.485333i
\(304\) −27.2726 + 27.2726i −1.56419 + 1.56419i
\(305\) 0 0
\(306\) 14.2455 12.2886i 0.814361 0.702491i
\(307\) 2.86108i 0.163290i −0.996661 0.0816451i \(-0.973983\pi\)
0.996661 0.0816451i \(-0.0260174\pi\)
\(308\) −0.203261 0.203261i −0.0115818 0.0115818i
\(309\) 4.39357 + 1.81988i 0.249941 + 0.103529i
\(310\) 0 0
\(311\) 7.84424 18.9377i 0.444806 1.07386i −0.529435 0.848350i \(-0.677596\pi\)
0.974242 0.225507i \(-0.0724038\pi\)
\(312\) 1.06273 + 2.56565i 0.0601650 + 0.145251i
\(313\) 7.82103 3.23958i 0.442071 0.183112i −0.150534 0.988605i \(-0.548099\pi\)
0.592605 + 0.805493i \(0.298099\pi\)
\(314\) −12.0186 12.0186i −0.678249 0.678249i
\(315\) 0 0
\(316\) −4.81750 11.6305i −0.271005 0.654265i
\(317\) −8.07149 19.4863i −0.453340 1.09446i −0.971044 0.238900i \(-0.923213\pi\)
0.517704 0.855560i \(-0.326787\pi\)
\(318\) −13.8446 5.73460i −0.776364 0.321581i
\(319\) 0.0220898i 0.00123679i
\(320\) 0 0
\(321\) 7.17035 7.17035i 0.400210 0.400210i
\(322\) 8.16985i 0.455288i
\(323\) −32.1571 2.37163i −1.78927 0.131961i
\(324\) −6.26082 −0.347823
\(325\) 0 0
\(326\) 20.7634 + 8.60048i 1.14998 + 0.476337i
\(327\) 3.26643 0.180634
\(328\) −8.12805 3.36675i −0.448796 0.185897i
\(329\) −24.5967 + 10.1883i −1.35606 + 0.561699i
\(330\) 0 0
\(331\) 10.7665 + 10.7665i 0.591780 + 0.591780i 0.938112 0.346332i \(-0.112573\pi\)
−0.346332 + 0.938112i \(0.612573\pi\)
\(332\) −5.82272 + 5.82272i −0.319563 + 0.319563i
\(333\) −0.786585 + 0.325814i −0.0431046 + 0.0178545i
\(334\) 21.0256 8.70910i 1.15047 0.476541i
\(335\) 0 0
\(336\) 14.7309i 0.803638i
\(337\) −4.39079 + 10.6003i −0.239182 + 0.577435i −0.997199 0.0747994i \(-0.976168\pi\)
0.758017 + 0.652235i \(0.226168\pi\)
\(338\) 4.91472 + 4.91472i 0.267326 + 0.267326i
\(339\) −2.07290 −0.112585
\(340\) 0 0
\(341\) −0.0726759 −0.00393562
\(342\) 25.2324 + 25.2324i 1.36441 + 1.36441i
\(343\) −8.06258 + 19.4648i −0.435338 + 1.05100i
\(344\) 13.3376i 0.719114i
\(345\) 0 0
\(346\) −20.3483 + 8.42854i −1.09393 + 0.453121i
\(347\) 13.8437 5.73424i 0.743168 0.307830i 0.0212172 0.999775i \(-0.493246\pi\)
0.721950 + 0.691945i \(0.243246\pi\)
\(348\) 0.258091 0.258091i 0.0138351 0.0138351i
\(349\) 3.20791 + 3.20791i 0.171715 + 0.171715i 0.787733 0.616017i \(-0.211255\pi\)
−0.616017 + 0.787733i \(0.711255\pi\)
\(350\) 0 0
\(351\) 10.6257 4.40133i 0.567160 0.234925i
\(352\) −0.302528 0.125311i −0.0161248 0.00667912i
\(353\) −7.71469 −0.410612 −0.205306 0.978698i \(-0.565819\pi\)
−0.205306 + 0.978698i \(0.565819\pi\)
\(354\) 5.85073 + 2.42345i 0.310963 + 0.128805i
\(355\) 0 0
\(356\) −12.8825 −0.682771
\(357\) −9.32511 + 8.04411i −0.493537 + 0.425739i
\(358\) 25.0302i 1.32289i
\(359\) 7.79826 7.79826i 0.411577 0.411577i −0.470711 0.882287i \(-0.656003\pi\)
0.882287 + 0.470711i \(0.156003\pi\)
\(360\) 0 0
\(361\) 42.1592i 2.21890i
\(362\) −3.41055 1.41269i −0.179254 0.0742496i
\(363\) 2.89507 + 6.98933i 0.151952 + 0.366844i
\(364\) −6.33843 15.3023i −0.332224 0.802059i
\(365\) 0 0
\(366\) 5.24467 + 5.24467i 0.274143 + 0.274143i
\(367\) 14.8084 6.13386i 0.772995 0.320185i 0.0389098 0.999243i \(-0.487611\pi\)
0.734085 + 0.679058i \(0.237611\pi\)
\(368\) −1.96655 4.74768i −0.102514 0.247490i
\(369\) −6.37481 + 15.3902i −0.331860 + 0.801180i
\(370\) 0 0
\(371\) −48.3892 20.0435i −2.51224 1.04061i
\(372\) −0.849124 0.849124i −0.0440250 0.0440250i
\(373\) 10.2501i 0.530732i 0.964148 + 0.265366i \(0.0854928\pi\)
−0.964148 + 0.265366i \(0.914507\pi\)
\(374\) −0.122623 0.371168i −0.00634066 0.0191926i
\(375\) 0 0
\(376\) −5.78593 + 5.78593i −0.298387 + 0.298387i
\(377\) 0.487085 1.17593i 0.0250862 0.0605634i
\(378\) 29.8103 1.53328
\(379\) 5.33919 12.8899i 0.274256 0.662112i −0.725401 0.688327i \(-0.758346\pi\)
0.999656 + 0.0262152i \(0.00834551\pi\)
\(380\) 0 0
\(381\) 0.00218161 + 0.00526686i 0.000111767 + 0.000269830i
\(382\) 3.93362 3.93362i 0.201261 0.201261i
\(383\) −3.97525 + 3.97525i −0.203126 + 0.203126i −0.801338 0.598212i \(-0.795878\pi\)
0.598212 + 0.801338i \(0.295878\pi\)
\(384\) 2.61860 + 6.32185i 0.133630 + 0.322611i
\(385\) 0 0
\(386\) −14.2648 + 34.4383i −0.726060 + 1.75286i
\(387\) −25.2542 −1.28374
\(388\) 9.27687 22.3963i 0.470962 1.13700i
\(389\) 25.3255 25.3255i 1.28406 1.28406i 0.345717 0.938339i \(-0.387636\pi\)
0.938339 0.345717i \(-0.112364\pi\)
\(390\) 0 0
\(391\) 1.93155 3.83745i 0.0976825 0.194068i
\(392\) 15.8166i 0.798858i
\(393\) −3.98123 3.98123i −0.200827 0.200827i
\(394\) −30.4252 12.6025i −1.53280 0.634907i
\(395\) 0 0
\(396\) −0.0640163 + 0.154549i −0.00321694 + 0.00776638i
\(397\) 1.48870 + 3.59405i 0.0747159 + 0.180380i 0.956825 0.290665i \(-0.0938767\pi\)
−0.882109 + 0.471046i \(0.843877\pi\)
\(398\) −44.4915 + 18.4290i −2.23016 + 0.923761i
\(399\) −16.5171 16.5171i −0.826891 0.826891i
\(400\) 0 0
\(401\) 14.0592 + 33.9420i 0.702085 + 1.69498i 0.718890 + 0.695124i \(0.244650\pi\)
−0.0168056 + 0.999859i \(0.505350\pi\)
\(402\) −0.435479 1.05134i −0.0217197 0.0524360i
\(403\) −3.86883 1.60252i −0.192720 0.0798273i
\(404\) 16.7622i 0.833952i
\(405\) 0 0
\(406\) 2.33278 2.33278i 0.115774 0.115774i
\(407\) 0.0176900i 0.000876860i
\(408\) −1.70175 + 3.38090i −0.0842491 + 0.167380i
\(409\) 22.3529 1.10528 0.552641 0.833419i \(-0.313620\pi\)
0.552641 + 0.833419i \(0.313620\pi\)
\(410\) 0 0
\(411\) −1.41974 0.588075i −0.0700306 0.0290076i
\(412\) −8.71743 −0.429477
\(413\) 20.4494 + 8.47041i 1.00625 + 0.416802i
\(414\) −4.39251 + 1.81944i −0.215880 + 0.0894204i
\(415\) 0 0
\(416\) −13.3416 13.3416i −0.654128 0.654128i
\(417\) 9.60011 9.60011i 0.470119 0.470119i
\(418\) 0.684993 0.283733i 0.0335041 0.0138778i
\(419\) −20.2014 + 8.36768i −0.986901 + 0.408788i −0.816978 0.576669i \(-0.804352\pi\)
−0.169924 + 0.985457i \(0.554352\pi\)
\(420\) 0 0
\(421\) 20.6111i 1.00453i 0.864715 + 0.502263i \(0.167499\pi\)
−0.864715 + 0.502263i \(0.832501\pi\)
\(422\) 5.39419 13.0227i 0.262585 0.633937i
\(423\) 10.9555 + 10.9555i 0.532672 + 0.532672i
\(424\) −16.0975 −0.781766
\(425\) 0 0
\(426\) −5.19248 −0.251576
\(427\) 18.3311 + 18.3311i 0.887103 + 0.887103i
\(428\) −7.11347 + 17.1734i −0.343842 + 0.830109i
\(429\) 0.109254i 0.00527481i
\(430\) 0 0
\(431\) 20.6074 8.53585i 0.992621 0.411157i 0.173535 0.984828i \(-0.444481\pi\)
0.819086 + 0.573670i \(0.194481\pi\)
\(432\) 17.3234 7.17561i 0.833475 0.345236i
\(433\) −6.31536 + 6.31536i −0.303497 + 0.303497i −0.842380 0.538883i \(-0.818846\pi\)
0.538883 + 0.842380i \(0.318846\pi\)
\(434\) −7.67489 7.67489i −0.368406 0.368406i
\(435\) 0 0
\(436\) −5.53190 + 2.29139i −0.264930 + 0.109738i
\(437\) 7.52837 + 3.11835i 0.360131 + 0.149171i
\(438\) 6.69652 0.319972
\(439\) −20.5695 8.52016i −0.981728 0.406645i −0.166663 0.986014i \(-0.553299\pi\)
−0.815066 + 0.579369i \(0.803299\pi\)
\(440\) 0 0
\(441\) 29.9481 1.42610
\(442\) 1.65665 22.4626i 0.0787987 1.06844i
\(443\) 6.17421i 0.293346i 0.989185 + 0.146673i \(0.0468564\pi\)
−0.989185 + 0.146673i \(0.953144\pi\)
\(444\) −0.206685 + 0.206685i −0.00980882 + 0.00980882i
\(445\) 0 0
\(446\) 8.61184i 0.407783i
\(447\) −6.47214 2.68085i −0.306122 0.126800i
\(448\) −2.32545 5.61414i −0.109867 0.265243i
\(449\) −11.5947 27.9922i −0.547189 1.32103i −0.919561 0.392948i \(-0.871455\pi\)
0.372371 0.928084i \(-0.378545\pi\)
\(450\) 0 0
\(451\) 0.244743 + 0.244743i 0.0115245 + 0.0115245i
\(452\) 3.51060 1.45414i 0.165125 0.0683968i
\(453\) −4.04053 9.75470i −0.189841 0.458316i
\(454\) −7.74754 + 18.7042i −0.363610 + 0.877833i
\(455\) 0 0
\(456\) −6.63271 2.74736i −0.310605 0.128657i
\(457\) 18.0847 + 18.0847i 0.845965 + 0.845965i 0.989627 0.143662i \(-0.0458877\pi\)
−0.143662 + 0.989627i \(0.545888\pi\)
\(458\) 37.2876i 1.74233i
\(459\) 14.0022 + 7.04787i 0.653565 + 0.328966i
\(460\) 0 0
\(461\) −9.93945 + 9.93945i −0.462926 + 0.462926i −0.899613 0.436687i \(-0.856152\pi\)
0.436687 + 0.899613i \(0.356152\pi\)
\(462\) 0.108367 0.261622i 0.00504170 0.0121717i
\(463\) 25.1233 1.16758 0.583789 0.811905i \(-0.301569\pi\)
0.583789 + 0.811905i \(0.301569\pi\)
\(464\) 0.794108 1.91715i 0.0368656 0.0890013i
\(465\) 0 0
\(466\) −2.11362 5.10272i −0.0979114 0.236379i
\(467\) 15.7614 15.7614i 0.729352 0.729352i −0.241139 0.970491i \(-0.577521\pi\)
0.970491 + 0.241139i \(0.0775209\pi\)
\(468\) −6.81569 + 6.81569i −0.315055 + 0.315055i
\(469\) −1.52208 3.67462i −0.0702830 0.169678i
\(470\) 0 0
\(471\) 2.47781 5.98196i 0.114171 0.275634i
\(472\) 6.80285 0.313126
\(473\) −0.200803 + 0.484782i −0.00923294 + 0.0222903i
\(474\) 8.76915 8.76915i 0.402780 0.402780i
\(475\) 0 0
\(476\) 10.1498 20.1648i 0.465213 0.924250i
\(477\) 30.4801i 1.39559i
\(478\) 6.30887 + 6.30887i 0.288561 + 0.288561i
\(479\) −24.7134 10.2366i −1.12919 0.467724i −0.261681 0.965154i \(-0.584277\pi\)
−0.867504 + 0.497430i \(0.834277\pi\)
\(480\) 0 0
\(481\) −0.390068 + 0.941709i −0.0177856 + 0.0429382i
\(482\) −1.14838 2.77243i −0.0523072 0.126281i
\(483\) 2.87534 1.19100i 0.130832 0.0541926i
\(484\) −9.80599 9.80599i −0.445727 0.445727i
\(485\) 0 0
\(486\) −10.2424 24.7274i −0.464606 1.12166i
\(487\) −8.85760 21.3841i −0.401376 0.969008i −0.987332 0.158665i \(-0.949281\pi\)
0.585956 0.810343i \(-0.300719\pi\)
\(488\) 7.36113 + 3.04908i 0.333223 + 0.138025i
\(489\) 8.56135i 0.387158i
\(490\) 0 0
\(491\) −5.50823 + 5.50823i −0.248583 + 0.248583i −0.820389 0.571806i \(-0.806243\pi\)
0.571806 + 0.820389i \(0.306243\pi\)
\(492\) 5.71901i 0.257833i
\(493\) 1.64725 0.544201i 0.0741883 0.0245096i
\(494\) 42.7213 1.92212
\(495\) 0 0
\(496\) −6.30746 2.61263i −0.283213 0.117311i
\(497\) −18.1487 −0.814079
\(498\) −7.49457 3.10435i −0.335840 0.139109i
\(499\) 8.12796 3.36671i 0.363858 0.150715i −0.193262 0.981147i \(-0.561907\pi\)
0.557119 + 0.830432i \(0.311907\pi\)
\(500\) 0 0
\(501\) 6.13025 + 6.13025i 0.273879 + 0.273879i
\(502\) 11.6741 11.6741i 0.521039 0.521039i
\(503\) −7.24271 + 3.00003i −0.322937 + 0.133765i −0.538262 0.842778i \(-0.680919\pi\)
0.215325 + 0.976542i \(0.430919\pi\)
\(504\) 13.5261 5.60269i 0.602500 0.249564i
\(505\) 0 0
\(506\) 0.0987858i 0.00439156i
\(507\) −1.01324 + 2.44618i −0.0449996 + 0.108639i
\(508\) −0.00738938 0.00738938i −0.000327851 0.000327851i
\(509\) −2.52868 −0.112082 −0.0560409 0.998428i \(-0.517848\pi\)
−0.0560409 + 0.998428i \(0.517848\pi\)
\(510\) 0 0
\(511\) 23.4055 1.03540
\(512\) −12.4437 12.4437i −0.549940 0.549940i
\(513\) −11.3783 + 27.4697i −0.502365 + 1.21282i
\(514\) 30.0711i 1.32638i
\(515\) 0 0
\(516\) −8.01017 + 3.31792i −0.352628 + 0.146063i
\(517\) 0.297412 0.123192i 0.0130801 0.00541797i
\(518\) −1.86814 + 1.86814i −0.0820813 + 0.0820813i
\(519\) −5.93276 5.93276i −0.260419 0.260419i
\(520\) 0 0
\(521\) 9.33885 3.86828i 0.409142 0.169472i −0.168613 0.985682i \(-0.553929\pi\)
0.577755 + 0.816210i \(0.303929\pi\)
\(522\) −1.77373 0.734701i −0.0776339 0.0321570i
\(523\) −5.80494 −0.253833 −0.126916 0.991913i \(-0.540508\pi\)
−0.126916 + 0.991913i \(0.540508\pi\)
\(524\) 9.53530 + 3.94965i 0.416552 + 0.172541i
\(525\) 0 0
\(526\) −39.2371 −1.71082
\(527\) −1.79043 5.41948i −0.0779925 0.236076i
\(528\) 0.178119i 0.00775164i
\(529\) 15.4958 15.4958i 0.673728 0.673728i
\(530\) 0 0
\(531\) 12.8809i 0.558985i
\(532\) 39.5595 + 16.3861i 1.71512 + 0.710427i
\(533\) 7.63200 + 18.4253i 0.330579 + 0.798087i
\(534\) −4.85658 11.7248i −0.210165 0.507382i
\(535\) 0 0
\(536\) −0.864387 0.864387i −0.0373358 0.0373358i
\(537\) −8.80926 + 3.64892i −0.380148 + 0.157462i
\(538\) −16.0133 38.6596i −0.690384 1.66674i
\(539\) 0.238126 0.574887i 0.0102568 0.0247621i
\(540\) 0 0
\(541\) 39.1174 + 16.2030i 1.68179 + 0.696620i 0.999409 0.0343783i \(-0.0109451\pi\)
0.682380 + 0.730998i \(0.260945\pi\)
\(542\) 5.05141 + 5.05141i 0.216976 + 0.216976i
\(543\) 1.40627i 0.0603487i
\(544\) 1.89149 25.6469i 0.0810971 1.09960i
\(545\) 0 0
\(546\) 11.5376 11.5376i 0.493766 0.493766i
\(547\) −7.65599 + 18.4832i −0.327347 + 0.790285i 0.671441 + 0.741058i \(0.265676\pi\)
−0.998788 + 0.0492266i \(0.984324\pi\)
\(548\) 2.81695 0.120334
\(549\) 5.77332 13.9380i 0.246399 0.594860i
\(550\) 0 0
\(551\) 1.25921 + 3.04001i 0.0536443 + 0.129509i
\(552\) 0.676370 0.676370i 0.0287882 0.0287882i
\(553\) 30.6498 30.6498i 1.30336 1.30336i
\(554\) 11.6858 + 28.2120i 0.496482 + 1.19861i
\(555\) 0 0
\(556\) −9.52395 + 22.9929i −0.403906 + 0.975114i
\(557\) 25.8965 1.09727 0.548636 0.836062i \(-0.315147\pi\)
0.548636 + 0.836062i \(0.315147\pi\)
\(558\) −2.41718 + 5.83560i −0.102328 + 0.247041i
\(559\) −21.3791 + 21.3791i −0.904240 + 0.904240i
\(560\) 0 0
\(561\) 0.112755 0.0972653i 0.00476050 0.00410655i
\(562\) 8.43299i 0.355724i
\(563\) −19.8208 19.8208i −0.835349 0.835349i 0.152894 0.988243i \(-0.451141\pi\)
−0.988243 + 0.152894i \(0.951141\pi\)
\(564\) 4.91421 + 2.03553i 0.206925 + 0.0857113i
\(565\) 0 0
\(566\) 6.01248 14.5154i 0.252724 0.610129i
\(567\) −8.24956 19.9162i −0.346449 0.836402i
\(568\) −5.15331 + 2.13457i −0.216228 + 0.0895645i
\(569\) 27.7130 + 27.7130i 1.16179 + 1.16179i 0.984084 + 0.177706i \(0.0568675\pi\)
0.177706 + 0.984084i \(0.443132\pi\)
\(570\) 0 0
\(571\) 1.48008 + 3.57322i 0.0619392 + 0.149535i 0.951819 0.306661i \(-0.0992118\pi\)
−0.889880 + 0.456196i \(0.849212\pi\)
\(572\) 0.0766411 + 0.185028i 0.00320452 + 0.00773641i
\(573\) 1.95786 + 0.810972i 0.0817908 + 0.0338788i
\(574\) 51.6918i 2.15757i
\(575\) 0 0
\(576\) −2.50055 + 2.50055i −0.104190 + 0.104190i
\(577\) 14.4808i 0.602845i 0.953491 + 0.301423i \(0.0974615\pi\)
−0.953491 + 0.301423i \(0.902539\pi\)
\(578\) 24.6573 18.2881i 1.02561 0.760684i
\(579\) −14.1999 −0.590128
\(580\) 0 0
\(581\) −26.1949 10.8503i −1.08675 0.450145i
\(582\) 23.8810 0.989898
\(583\) 0.585099 + 0.242356i 0.0242323 + 0.0100374i
\(584\) 6.64600 2.75286i 0.275013 0.113914i
\(585\) 0 0
\(586\) 0.943767 + 0.943767i 0.0389867 + 0.0389867i
\(587\) −22.0937 + 22.0937i −0.911905 + 0.911905i −0.996422 0.0845171i \(-0.973065\pi\)
0.0845171 + 0.996422i \(0.473065\pi\)
\(588\) 9.49900 3.93462i 0.391732 0.162261i
\(589\) 10.0017 4.14284i 0.412113 0.170703i
\(590\) 0 0
\(591\) 12.5452i 0.516041i
\(592\) −0.635939 + 1.53529i −0.0261369 + 0.0631002i
\(593\) −1.41805 1.41805i −0.0582323 0.0582323i 0.677391 0.735623i \(-0.263111\pi\)
−0.735623 + 0.677391i \(0.763111\pi\)
\(594\) −0.360452 −0.0147895
\(595\) 0 0
\(596\) 12.8416 0.526012
\(597\) −12.9720 12.9720i −0.530907 0.530907i
\(598\) −2.17825 + 5.25876i −0.0890753 + 0.215047i
\(599\) 36.0451i 1.47276i 0.676567 + 0.736381i \(0.263467\pi\)
−0.676567 + 0.736381i \(0.736533\pi\)
\(600\) 0 0
\(601\) −35.8417 + 14.8461i −1.46201 + 0.605586i −0.965022 0.262168i \(-0.915562\pi\)
−0.496993 + 0.867755i \(0.665562\pi\)
\(602\) −72.4007 + 29.9894i −2.95083 + 1.22228i
\(603\) −1.63669 + 1.63669i −0.0666510 + 0.0666510i
\(604\) 13.6858 + 13.6858i 0.556867 + 0.556867i
\(605\) 0 0
\(606\) 15.2559 6.31920i 0.619728 0.256700i
\(607\) −26.7496 11.0800i −1.08573 0.449725i −0.233215 0.972425i \(-0.574925\pi\)
−0.852516 + 0.522701i \(0.824925\pi\)
\(608\) 48.7774 1.97818
\(609\) 1.16108 + 0.480936i 0.0470494 + 0.0194885i
\(610\) 0 0
\(611\) 18.5488 0.750405
\(612\) −13.1019 0.966284i −0.529613 0.0390597i
\(613\) 9.10707i 0.367831i −0.982942 0.183915i \(-0.941123\pi\)
0.982942 0.183915i \(-0.0588773\pi\)
\(614\) −3.65335 + 3.65335i −0.147437 + 0.147437i
\(615\) 0 0
\(616\) 0.304197i 0.0122564i
\(617\) −4.67068 1.93466i −0.188035 0.0778864i 0.286680 0.958027i \(-0.407449\pi\)
−0.474714 + 0.880140i \(0.657449\pi\)
\(618\) −3.28639 7.93404i −0.132198 0.319154i
\(619\) −6.45177 15.5760i −0.259319 0.626051i 0.739575 0.673074i \(-0.235026\pi\)
−0.998894 + 0.0470233i \(0.985026\pi\)
\(620\) 0 0
\(621\) −2.80122 2.80122i −0.112409 0.112409i
\(622\) −34.1982 + 14.1654i −1.37122 + 0.567979i
\(623\) −16.9746 40.9803i −0.680074 1.64184i
\(624\) 3.92757 9.48199i 0.157229 0.379583i
\(625\) 0 0
\(626\) −14.1235 5.85013i −0.564487 0.233818i
\(627\) 0.199717 + 0.199717i 0.00797592 + 0.00797592i
\(628\) 11.8690i 0.473625i
\(629\) −1.31915 + 0.435808i −0.0525981 + 0.0173768i
\(630\) 0 0
\(631\) 1.91845 1.91845i 0.0763722 0.0763722i −0.667889 0.744261i \(-0.732802\pi\)
0.744261 + 0.667889i \(0.232802\pi\)
\(632\) 5.09809 12.3079i 0.202791 0.489581i
\(633\) 5.36965 0.213424
\(634\) −14.5757 + 35.1889i −0.578876 + 1.39753i
\(635\) 0 0
\(636\) 4.00451 + 9.66773i 0.158789 + 0.383351i
\(637\) 25.3528 25.3528i 1.00451 1.00451i
\(638\) −0.0282068 + 0.0282068i −0.00111672 + 0.00111672i
\(639\) 4.04173 + 9.75760i 0.159888 + 0.386005i
\(640\) 0 0
\(641\) −8.72988 + 21.0758i −0.344809 + 0.832443i 0.652406 + 0.757870i \(0.273760\pi\)
−0.997215 + 0.0745739i \(0.976240\pi\)
\(642\) −18.3118 −0.722711
\(643\) −7.37702 + 17.8097i −0.290921 + 0.702346i −0.999996 0.00278691i \(-0.999113\pi\)
0.709075 + 0.705133i \(0.249113\pi\)
\(644\) −4.03408 + 4.03408i −0.158965 + 0.158965i
\(645\) 0 0
\(646\) 38.0335 + 44.0903i 1.49641 + 1.73471i
\(647\) 12.8098i 0.503606i 0.967778 + 0.251803i \(0.0810235\pi\)
−0.967778 + 0.251803i \(0.918976\pi\)
\(648\) −4.68492 4.68492i −0.184041 0.184041i
\(649\) −0.247264 0.102420i −0.00970595 0.00402033i
\(650\) 0 0
\(651\) 1.58229 3.81998i 0.0620148 0.149717i
\(652\) −6.00577 14.4992i −0.235204 0.567833i
\(653\) −38.5442 + 15.9656i −1.50835 + 0.624780i −0.975217 0.221249i \(-0.928987\pi\)
−0.533136 + 0.846030i \(0.678987\pi\)
\(654\) −4.17095 4.17095i −0.163097 0.163097i
\(655\) 0 0
\(656\) 12.4427 + 30.0392i 0.485804 + 1.17284i
\(657\) −5.21244 12.5840i −0.203357 0.490947i
\(658\) 44.4175 + 18.3983i 1.73158 + 0.717242i
\(659\) 34.3290i 1.33727i 0.743592 + 0.668633i \(0.233120\pi\)
−0.743592 + 0.668633i \(0.766880\pi\)
\(660\) 0 0
\(661\) −19.5875 + 19.5875i −0.761865 + 0.761865i −0.976659 0.214794i \(-0.931092\pi\)
0.214794 + 0.976659i \(0.431092\pi\)
\(662\) 27.4958i 1.06865i
\(663\) 8.14710 2.69156i 0.316407 0.104531i
\(664\) −8.71419 −0.338176
\(665\) 0 0
\(666\) 1.42044 + 0.588365i 0.0550409 + 0.0227987i
\(667\) −0.438413 −0.0169754
\(668\) −14.6823 6.08161i −0.568076 0.235305i
\(669\) −3.03089 + 1.25544i −0.117181 + 0.0485380i
\(670\) 0 0
\(671\) −0.221650 0.221650i −0.00855671 0.00855671i
\(672\) 13.1732 13.1732i 0.508168 0.508168i
\(673\) 33.4517 13.8561i 1.28947 0.534115i 0.370640 0.928777i \(-0.379138\pi\)
0.918826 + 0.394662i \(0.129138\pi\)
\(674\) 19.1423 7.92902i 0.737336 0.305414i
\(675\) 0 0
\(676\) 4.85355i 0.186675i
\(677\) −6.54992 + 15.8129i −0.251734 + 0.607739i −0.998344 0.0575224i \(-0.981680\pi\)
0.746610 + 0.665262i \(0.231680\pi\)
\(678\) 2.64692 + 2.64692i 0.101654 + 0.101654i
\(679\) 83.4684 3.20322
\(680\) 0 0
\(681\) −7.71229 −0.295536
\(682\) 0.0928009 + 0.0928009i 0.00355353 + 0.00355353i
\(683\) 3.38683 8.17654i 0.129594 0.312866i −0.845743 0.533591i \(-0.820842\pi\)
0.975336 + 0.220725i \(0.0708422\pi\)
\(684\) 24.9183i 0.952776i
\(685\) 0 0
\(686\) 35.1501 14.5596i 1.34204 0.555890i
\(687\) 13.1232 5.43580i 0.500680 0.207389i
\(688\) −34.8550 + 34.8550i −1.32883 + 1.32883i
\(689\) 25.8031 + 25.8031i 0.983021 + 0.983021i
\(690\) 0 0
\(691\) 1.29190 0.535121i 0.0491461 0.0203570i −0.357975 0.933731i \(-0.616533\pi\)
0.407121 + 0.913374i \(0.366533\pi\)
\(692\) 14.2093 + 5.88570i 0.540158 + 0.223741i
\(693\) −0.575985 −0.0218799
\(694\) −24.9993 10.3551i −0.948962 0.393073i
\(695\) 0 0
\(696\) 0.386254 0.0146409
\(697\) −12.2212 + 24.2801i −0.462910 + 0.919673i
\(698\) 8.19245i 0.310089i
\(699\) 1.48775 1.48775i 0.0562720 0.0562720i
\(700\) 0 0
\(701\) 2.36331i 0.0892608i −0.999004 0.0446304i \(-0.985789\pi\)
0.999004 0.0446304i \(-0.0142110\pi\)
\(702\) −19.1883 7.94805i −0.724215 0.299980i
\(703\) −1.00841 2.43451i −0.0380327 0.0918191i
\(704\) 0.0281182 + 0.0678834i 0.00105975 + 0.00255845i
\(705\) 0 0
\(706\) 9.85100 + 9.85100i 0.370747 + 0.370747i
\(707\) 53.3221 22.0867i 2.00538 0.830657i
\(708\) −1.69231 4.08560i −0.0636009 0.153546i
\(709\) −12.4474 + 30.0507i −0.467472 + 1.12858i 0.497791 + 0.867297i \(0.334145\pi\)
−0.965263 + 0.261280i \(0.915855\pi\)
\(710\) 0 0
\(711\) −23.3045 9.65306i −0.873988 0.362018i
\(712\) −9.63987 9.63987i −0.361270 0.361270i
\(713\) 1.44239i 0.0540179i
\(714\) 22.1790 + 1.63573i 0.830028 + 0.0612158i
\(715\) 0 0
\(716\) 12.3594 12.3594i 0.461891 0.461891i
\(717\) −1.30067 + 3.14009i −0.0485743 + 0.117269i
\(718\) −19.9154 −0.743237
\(719\) 6.28758 15.1796i 0.234487 0.566102i −0.762208 0.647332i \(-0.775885\pi\)
0.996695 + 0.0812299i \(0.0258848\pi\)
\(720\) 0 0
\(721\) −11.4865 27.7309i −0.427780 1.03275i
\(722\) −53.8336 + 53.8336i −2.00348 + 2.00348i
\(723\) 0.808332 0.808332i 0.0300622 0.0300622i
\(724\) 0.986493 + 2.38160i 0.0366627 + 0.0885116i
\(725\) 0 0
\(726\) 5.22801 12.6215i 0.194030 0.468429i
\(727\) 32.4709 1.20428 0.602139 0.798391i \(-0.294315\pi\)
0.602139 + 0.798391i \(0.294315\pi\)
\(728\) 6.70761 16.1936i 0.248600 0.600175i
\(729\) −3.32256 + 3.32256i −0.123058 + 0.123058i
\(730\) 0 0
\(731\) −41.0974 3.03099i −1.52004 0.112105i
\(732\) 5.17939i 0.191436i
\(733\) 6.10533 + 6.10533i 0.225506 + 0.225506i 0.810812 0.585307i \(-0.199026\pi\)
−0.585307 + 0.810812i \(0.699026\pi\)
\(734\) −26.7415 11.0767i −0.987048 0.408849i
\(735\) 0 0
\(736\) −2.48704 + 6.00424i −0.0916734 + 0.221319i
\(737\) 0.0184042 + 0.0444317i 0.000677928 + 0.00163666i
\(738\) 27.7920 11.5118i 1.02304 0.423756i
\(739\) 7.49715 + 7.49715i 0.275787 + 0.275787i 0.831425 0.555637i \(-0.187526\pi\)
−0.555637 + 0.831425i \(0.687526\pi\)
\(740\) 0 0
\(741\) 6.22792 + 15.0355i 0.228788 + 0.552344i
\(742\) 36.1951 + 87.3827i 1.32876 + 3.20792i
\(743\) 20.6417 + 8.55008i 0.757272 + 0.313672i 0.727705 0.685891i \(-0.240587\pi\)
0.0295670 + 0.999563i \(0.490587\pi\)
\(744\) 1.27079i 0.0465893i
\(745\) 0 0
\(746\) 13.0886 13.0886i 0.479206 0.479206i
\(747\) 16.5000i 0.603704i
\(748\) −0.122726 + 0.243822i −0.00448730 + 0.00891502i
\(749\) −64.0032 −2.33863
\(750\) 0 0
\(751\) 6.59640 + 2.73232i 0.240706 + 0.0997037i 0.499775 0.866155i \(-0.333416\pi\)
−0.259069 + 0.965859i \(0.583416\pi\)
\(752\) 30.2406 1.10276
\(753\) 5.81047 + 2.40678i 0.211745 + 0.0877078i
\(754\) −2.12353 + 0.879593i −0.0773342 + 0.0320329i
\(755\) 0 0
\(756\) −14.7197 14.7197i −0.535349 0.535349i
\(757\) −12.7467 + 12.7467i −0.463287 + 0.463287i −0.899731 0.436444i \(-0.856238\pi\)
0.436444 + 0.899731i \(0.356238\pi\)
\(758\) −23.2770 + 9.64166i −0.845460 + 0.350201i
\(759\) −0.0347671 + 0.0144010i −0.00126197 + 0.000522724i
\(760\) 0 0
\(761\) 49.9437i 1.81046i −0.424923 0.905230i \(-0.639699\pi\)
0.424923 0.905230i \(-0.360301\pi\)
\(762\) 0.00393961 0.00951106i 0.000142717 0.000344549i
\(763\) −14.5782 14.5782i −0.527767 0.527767i
\(764\) −3.88466 −0.140542
\(765\) 0 0
\(766\) 10.1521 0.366811
\(767\) −10.9044 10.9044i −0.393737 0.393737i
\(768\) 5.46561 13.1952i 0.197223 0.476139i
\(769\) 43.9115i 1.58349i −0.610852 0.791745i \(-0.709173\pi\)
0.610852 0.791745i \(-0.290827\pi\)
\(770\) 0 0
\(771\) −10.5834 + 4.38377i −0.381151 + 0.157878i
\(772\) 24.0485 9.96120i 0.865523 0.358511i
\(773\) 6.84309 6.84309i 0.246129 0.246129i −0.573251 0.819380i \(-0.694318\pi\)
0.819380 + 0.573251i \(0.194318\pi\)
\(774\) 32.2475 + 32.2475i 1.15911 + 1.15911i
\(775\) 0 0
\(776\) 23.7008 9.81720i 0.850810 0.352417i
\(777\) −0.929820 0.385144i −0.0333571 0.0138170i
\(778\) −64.6771 −2.31879
\(779\) −47.6330 19.7302i −1.70663 0.706909i
\(780\) 0 0
\(781\) 0.219445 0.00785234
\(782\) −7.36651 + 2.43367i −0.263426 + 0.0870280i
\(783\) 1.59969i 0.0571683i
\(784\) 41.3334 41.3334i 1.47619 1.47619i
\(785\) 0 0
\(786\) 10.1674i 0.362659i
\(787\) 18.3283 + 7.59181i 0.653332 + 0.270619i 0.684630 0.728891i \(-0.259964\pi\)
−0.0312976 + 0.999510i \(0.509964\pi\)
\(788\) 8.80043 + 21.2461i 0.313502 + 0.756861i
\(789\) −5.72000 13.8093i −0.203637 0.491624i
\(790\) 0 0
\(791\) 9.25147 + 9.25147i 0.328944 + 0.328944i
\(792\) −0.163551 + 0.0677450i −0.00581152 + 0.00240721i
\(793\) −6.91188 16.6868i −0.245448 0.592564i
\(794\) 2.68835 6.49024i 0.0954059 0.230330i
\(795\) 0 0
\(796\) 31.0687 + 12.8691i 1.10120 + 0.456132i
\(797\) −3.93230 3.93230i −0.139289 0.139289i 0.634024 0.773313i \(-0.281402\pi\)
−0.773313 + 0.634024i \(0.781402\pi\)
\(798\) 42.1819i 1.49322i
\(799\) 16.5135 + 19.1432i 0.584205 + 0.677238i
\(800\) 0 0
\(801\) −18.2528 + 18.2528i −0.644929 + 0.644929i
\(802\) 25.3886 61.2935i 0.896502 2.16435i
\(803\) −0.283008 −0.00998714
\(804\) −0.304097 + 0.734156i −0.0107247 + 0.0258917i
\(805\) 0 0
\(806\) 2.89388 + 6.98644i 0.101933 + 0.246087i
\(807\) 11.2716 11.2716i 0.396780 0.396780i
\(808\) 12.5430 12.5430i 0.441263 0.441263i
\(809\) −11.8801 28.6811i −0.417683 1.00838i −0.983017 0.183513i \(-0.941253\pi\)
0.565335 0.824862i \(-0.308747\pi\)
\(810\) 0 0
\(811\) −17.9749 + 43.3953i −0.631185 + 1.52382i 0.206949 + 0.978352i \(0.433647\pi\)
−0.838134 + 0.545464i \(0.816353\pi\)
\(812\) −2.30374 −0.0808455
\(813\) −1.04142 + 2.51421i −0.0365242 + 0.0881773i
\(814\) 0.0225886 0.0225886i 0.000791730 0.000791730i
\(815\) 0 0
\(816\) 13.2824 4.38812i 0.464979 0.153615i
\(817\) 78.1626i 2.73456i
\(818\) −28.5428 28.5428i −0.997976 0.997976i
\(819\) −30.6620 12.7006i −1.07142 0.443795i
\(820\) 0 0
\(821\) 6.40739 15.4688i 0.223619 0.539865i −0.771757 0.635918i \(-0.780622\pi\)
0.995376 + 0.0960527i \(0.0306217\pi\)
\(822\) 1.06196 + 2.56381i 0.0370402 + 0.0894231i
\(823\) −24.5749 + 10.1792i −0.856626 + 0.354826i −0.767387 0.641184i \(-0.778443\pi\)
−0.0892387 + 0.996010i \(0.528443\pi\)
\(824\) −6.52318 6.52318i −0.227246 0.227246i
\(825\) 0 0
\(826\) −15.2961 36.9281i −0.532220 1.28489i
\(827\) 13.1970 + 31.8605i 0.458906 + 1.10790i 0.968841 + 0.247684i \(0.0796696\pi\)
−0.509934 + 0.860213i \(0.670330\pi\)
\(828\) 3.06731 + 1.27052i 0.106597 + 0.0441537i
\(829\) 7.29346i 0.253312i 0.991947 + 0.126656i \(0.0404245\pi\)
−0.991947 + 0.126656i \(0.959576\pi\)
\(830\) 0 0
\(831\) −8.22551 + 8.22551i −0.285340 + 0.285340i
\(832\) 4.23372i 0.146778i
\(833\) 48.7361 + 3.59436i 1.68861 + 0.124537i
\(834\) −24.5170 −0.848956
\(835\) 0 0
\(836\) −0.478334 0.198133i −0.0165435 0.00685256i
\(837\) −5.26302 −0.181917
\(838\) 36.4802 + 15.1106i 1.26019 + 0.521987i
\(839\) 32.8053 13.5884i 1.13257 0.469124i 0.263913 0.964546i \(-0.414987\pi\)
0.868652 + 0.495422i \(0.164987\pi\)
\(840\) 0 0
\(841\) 20.3809 + 20.3809i 0.702790 + 0.702790i
\(842\) 26.3187 26.3187i 0.907001 0.907001i
\(843\) 2.96795 1.22936i 0.102222 0.0423415i
\(844\) −9.09385 + 3.76680i −0.313023 + 0.129658i
\(845\) 0 0
\(846\) 27.9784i 0.961916i
\(847\) 18.2728 44.1146i 0.627862 1.51579i
\(848\) 42.0676 + 42.0676i 1.44461 + 1.44461i
\(849\) 5.98513 0.205409
\(850\) 0 0
\(851\) 0.351091 0.0120352
\(852\) 2.56393 + 2.56393i 0.0878386 + 0.0878386i
\(853\) 0.0913933 0.220643i 0.00312925 0.00755467i −0.922307 0.386458i \(-0.873699\pi\)
0.925436 + 0.378903i \(0.123699\pi\)
\(854\) 46.8144i 1.60196i
\(855\) 0 0
\(856\) −18.1737 + 7.52779i −0.621164 + 0.257295i
\(857\) 16.8099 6.96291i 0.574217 0.237848i −0.0766273 0.997060i \(-0.524415\pi\)
0.650844 + 0.759211i \(0.274415\pi\)
\(858\) −0.139507 + 0.139507i −0.00476271 + 0.00476271i
\(859\) 14.2525 + 14.2525i 0.486288 + 0.486288i 0.907133 0.420845i \(-0.138266\pi\)
−0.420845 + 0.907133i \(0.638266\pi\)
\(860\) 0 0
\(861\) −18.1927 + 7.53565i −0.620004 + 0.256814i
\(862\) −37.2134 15.4143i −1.26749 0.525013i
\(863\) 14.7597 0.502424 0.251212 0.967932i \(-0.419171\pi\)
0.251212 + 0.967932i \(0.419171\pi\)
\(864\) −21.9084 9.07476i −0.745339 0.308730i
\(865\) 0 0
\(866\) 16.1284 0.548064
\(867\) 10.0309 + 6.01196i 0.340669 + 0.204177i
\(868\) 7.57936i 0.257260i
\(869\) −0.370602 + 0.370602i −0.0125718 + 0.0125718i
\(870\) 0 0
\(871\) 2.77109i 0.0938949i
\(872\) −5.85411 2.42485i −0.198245 0.0821158i
\(873\) −18.5885 44.8766i −0.629126 1.51884i
\(874\) −5.63121 13.5950i −0.190479 0.459856i
\(875\) 0 0
\(876\) −3.30658 3.30658i −0.111719 0.111719i
\(877\) −39.5030 + 16.3627i −1.33392 + 0.552528i −0.931771 0.363046i \(-0.881737\pi\)
−0.402149 + 0.915574i \(0.631737\pi\)
\(878\) 15.3860 + 37.1450i 0.519251 + 1.25358i
\(879\) −0.194571 + 0.469737i −0.00656273 + 0.0158438i
\(880\) 0 0
\(881\) −40.3580 16.7168i −1.35970 0.563205i −0.420721 0.907190i \(-0.638223\pi\)
−0.938975 + 0.343985i \(0.888223\pi\)
\(882\) −38.2412 38.2412i −1.28765 1.28765i
\(883\) 41.4824i 1.39599i −0.716101 0.697997i \(-0.754075\pi\)
0.716101 0.697997i \(-0.245925\pi\)
\(884\) −11.9095 + 10.2735i −0.400561 + 0.345535i
\(885\) 0 0
\(886\) 7.88394 7.88394i 0.264866 0.264866i
\(887\) −12.5826 + 30.3770i −0.422481 + 1.01996i 0.559132 + 0.829078i \(0.311134\pi\)
−0.981613 + 0.190881i \(0.938866\pi\)
\(888\) −0.309321 −0.0103801
\(889\) 0.0137697 0.0332429i 0.000461819 0.00111493i
\(890\) 0 0
\(891\) 0.0997496 + 0.240817i 0.00334174 + 0.00806767i
\(892\) 4.25233 4.25233i 0.142378 0.142378i
\(893\) −33.9075 + 33.9075i −1.13467 + 1.13467i
\(894\) 4.84115 + 11.6876i 0.161912 + 0.390891i
\(895\) 0 0
\(896\) 16.5278 39.9017i 0.552155 1.33302i
\(897\) −2.16834 −0.0723988
\(898\) −20.9381 + 50.5491i −0.698714 + 1.68685i
\(899\) −0.411852 + 0.411852i −0.0137360 + 0.0137360i
\(900\) 0 0
\(901\) −3.65820 + 49.6018i −0.121872 + 1.65248i
\(902\) 0.625031i 0.0208113i
\(903\) −21.1092 21.1092i −0.702470 0.702470i
\(904\) 3.71507 + 1.53883i 0.123561 + 0.0511808i
\(905\) 0 0
\(906\) −7.29650 + 17.6153i −0.242410 + 0.585230i
\(907\) 13.9479 + 33.6731i 0.463131 + 1.11810i 0.967105 + 0.254379i \(0.0818709\pi\)
−0.503973 + 0.863719i \(0.668129\pi\)
\(908\) 13.0613 5.41015i 0.433453 0.179542i
\(909\) −23.7498 23.7498i −0.787731 0.787731i
\(910\) 0 0
\(911\) −11.4322 27.5999i −0.378767 0.914425i −0.992197 0.124676i \(-0.960211\pi\)
0.613430 0.789749i \(-0.289789\pi\)
\(912\) 10.1535 + 24.5128i 0.336218 + 0.811701i
\(913\) 0.316736 + 0.131196i 0.0104824 + 0.00434196i
\(914\) 46.1852i 1.52767i
\(915\) 0 0
\(916\) −18.4117 + 18.4117i −0.608341 + 0.608341i
\(917\) 35.5369i 1.17353i
\(918\) −8.88004 26.8791i −0.293085 0.887143i
\(919\) −11.6218 −0.383368 −0.191684 0.981457i \(-0.561395\pi\)
−0.191684 + 0.981457i \(0.561395\pi\)
\(920\) 0 0
\(921\) −1.81836 0.753191i −0.0599171 0.0248185i
\(922\) 25.3837 0.835966
\(923\) 11.6819 + 4.83880i 0.384515 + 0.159271i
\(924\) −0.182692 + 0.0756735i −0.00601012 + 0.00248947i
\(925\) 0 0
\(926\) −32.0803 32.0803i −1.05422 1.05422i
\(927\) −12.3514 + 12.3514i −0.405674 + 0.405674i
\(928\) −2.42455 + 1.00428i −0.0795899 + 0.0329672i
\(929\) 4.65849 1.92961i 0.152840 0.0633085i −0.304952 0.952368i \(-0.598640\pi\)
0.457792 + 0.889059i \(0.348640\pi\)
\(930\) 0 0
\(931\) 92.6904i 3.03781i
\(932\) −1.47595 + 3.56326i −0.0483464 + 0.116718i
\(933\) −9.97085 9.97085i −0.326431 0.326431i
\(934\) −40.2520 −1.31709
\(935\) 0 0
\(936\) −10.2003 −0.333406
\(937\) 24.6863 + 24.6863i 0.806465 + 0.806465i 0.984097 0.177632i \(-0.0568437\pi\)
−0.177632 + 0.984097i \(0.556844\pi\)
\(938\) −2.74861 + 6.63574i −0.0897454 + 0.216665i
\(939\) 5.82351i 0.190043i
\(940\) 0 0
\(941\) 10.2169 4.23196i 0.333060 0.137958i −0.209885 0.977726i \(-0.567309\pi\)
0.542945 + 0.839768i \(0.317309\pi\)
\(942\) −10.8024 + 4.47450i −0.351961 + 0.145787i
\(943\) 4.85738 4.85738i 0.158178 0.158178i
\(944\) −17.7778 17.7778i −0.578619 0.578619i
\(945\) 0 0
\(946\) 0.875434 0.362616i 0.0284628 0.0117897i
\(947\) 10.6171 + 4.39774i 0.345008 + 0.142907i 0.548458 0.836178i \(-0.315215\pi\)
−0.203449 + 0.979086i \(0.565215\pi\)
\(948\) −8.66000 −0.281264
\(949\) −15.0657 6.24040i −0.489052 0.202572i
\(950\) 0 0
\(951\) −14.5094 −0.470500
\(952\) 22.6841 7.49414i 0.735196 0.242887i
\(953\) 0.704896i 0.0228338i 0.999935 + 0.0114169i \(0.00363419\pi\)
−0.999935 + 0.0114169i \(0.996366\pi\)
\(954\) 38.9205 38.9205i 1.26010 1.26010i
\(955\) 0 0
\(956\) 6.23035i 0.201504i
\(957\) −0.0140392 0.00581524i −0.000453824 0.000187980i
\(958\) 18.4856 + 44.6282i 0.597243 + 1.44187i
\(959\) 3.71176 + 8.96097i 0.119859 + 0.289365i
\(960\) 0 0
\(961\) −20.5653 20.5653i −0.663397 0.663397i
\(962\) 1.70057 0.704397i 0.0548284 0.0227107i
\(963\) 14.2536 + 34.4112i 0.459316 + 1.10889i
\(964\) −0.801919 + 1.93600i −0.0258281 + 0.0623545i
\(965\) 0 0
\(966\) −5.19237 2.15075i −0.167062 0.0691993i
\(967\) 28.2521 + 28.2521i 0.908527 + 0.908527i 0.996153 0.0876267i \(-0.0279283\pi\)
−0.0876267 + 0.996153i \(0.527928\pi\)
\(968\) 14.6755i 0.471688i
\(969\) −9.97281 + 19.8132i −0.320373 + 0.636492i
\(970\) 0 0
\(971\) 30.5851 30.5851i 0.981521 0.981521i −0.0183111 0.999832i \(-0.505829\pi\)
0.999832 + 0.0183111i \(0.00582892\pi\)
\(972\) −7.15235 + 17.2673i −0.229412 + 0.553849i
\(973\) −85.6915 −2.74714
\(974\) −15.9953 + 38.6161i −0.512523 + 1.23734i
\(975\) 0 0
\(976\) −11.2686 27.2049i −0.360700 0.870807i
\(977\) 34.5543 34.5543i 1.10549 1.10549i 0.111753 0.993736i \(-0.464353\pi\)
0.993736 0.111753i \(-0.0356467\pi\)
\(978\) 10.9321 10.9321i 0.349571 0.349571i
\(979\) 0.205249 + 0.495514i 0.00655977 + 0.0158367i
\(980\) 0 0
\(981\) −4.59137 + 11.0845i −0.146591 + 0.353902i
\(982\) 14.0671 0.448898
\(983\) −18.7068 + 45.1621i −0.596653 + 1.44045i 0.280318 + 0.959907i \(0.409560\pi\)
−0.876972 + 0.480542i \(0.840440\pi\)
\(984\) −4.27949 + 4.27949i −0.136425 + 0.136425i
\(985\) 0 0
\(986\) −2.79829 1.40850i −0.0891158 0.0448557i
\(987\) 18.3146i 0.582961i
\(988\) −21.0948 21.0948i −0.671114 0.671114i
\(989\) 9.62140 + 3.98531i 0.305943 + 0.126726i
\(990\) 0 0
\(991\) 5.56191 13.4276i 0.176680 0.426543i −0.810586 0.585619i \(-0.800851\pi\)
0.987266 + 0.159076i \(0.0508515\pi\)
\(992\) 3.30411 + 7.97684i 0.104906 + 0.253265i
\(993\) 9.67699 4.00834i 0.307090 0.127201i
\(994\) 23.1743 + 23.1743i 0.735044 + 0.735044i
\(995\) 0 0
\(996\) 2.16779 + 5.23350i 0.0686890 + 0.165830i
\(997\) −16.9161 40.8392i −0.535740 1.29339i −0.927672 0.373396i \(-0.878193\pi\)
0.391933 0.919994i \(-0.371807\pi\)
\(998\) −14.6777 6.07971i −0.464615 0.192450i
\(999\) 1.28107i 0.0405312i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.f.349.2 24
5.2 odd 4 425.2.m.b.26.5 24
5.3 odd 4 85.2.l.a.26.2 24
5.4 even 2 425.2.n.c.349.5 24
15.8 even 4 765.2.be.b.451.5 24
17.2 even 8 425.2.n.c.274.5 24
85.2 odd 8 425.2.m.b.376.5 24
85.19 even 8 inner 425.2.n.f.274.2 24
85.23 even 16 1445.2.a.p.1.3 12
85.28 even 16 1445.2.a.q.1.3 12
85.53 odd 8 85.2.l.a.36.2 yes 24
85.57 even 16 7225.2.a.bs.1.10 12
85.58 even 16 1445.2.d.j.866.20 24
85.62 even 16 7225.2.a.bq.1.10 12
85.78 even 16 1445.2.d.j.866.19 24
255.53 even 8 765.2.be.b.631.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.2 24 5.3 odd 4
85.2.l.a.36.2 yes 24 85.53 odd 8
425.2.m.b.26.5 24 5.2 odd 4
425.2.m.b.376.5 24 85.2 odd 8
425.2.n.c.274.5 24 17.2 even 8
425.2.n.c.349.5 24 5.4 even 2
425.2.n.f.274.2 24 85.19 even 8 inner
425.2.n.f.349.2 24 1.1 even 1 trivial
765.2.be.b.451.5 24 15.8 even 4
765.2.be.b.631.5 24 255.53 even 8
1445.2.a.p.1.3 12 85.23 even 16
1445.2.a.q.1.3 12 85.28 even 16
1445.2.d.j.866.19 24 85.78 even 16
1445.2.d.j.866.20 24 85.58 even 16
7225.2.a.bq.1.10 12 85.62 even 16
7225.2.a.bs.1.10 12 85.57 even 16