Properties

Label 425.2.n.c.399.5
Level $425$
Weight $2$
Character 425.399
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(49,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 399.5
Character \(\chi\) \(=\) 425.399
Dual form 425.2.n.c.49.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.528855 + 0.528855i) q^{2} +(2.84096 + 1.17676i) q^{3} -1.44062i q^{4} +(0.880118 + 2.12479i) q^{6} +(-1.23707 - 2.98655i) q^{7} +(1.81959 - 1.81959i) q^{8} +(4.56494 + 4.56494i) q^{9} +(1.04667 + 2.52689i) q^{11} +(1.69527 - 4.09275i) q^{12} -4.31833 q^{13} +(0.925222 - 2.23368i) q^{14} -0.956646 q^{16} +(2.22453 + 3.47152i) q^{17} +4.82839i q^{18} +(0.897260 - 0.897260i) q^{19} -9.94040i q^{21} +(-0.782821 + 1.88990i) q^{22} +(0.454888 - 0.188421i) q^{23} +(7.31061 - 3.02815i) q^{24} +(-2.28377 - 2.28377i) q^{26} +(4.06666 + 9.81779i) q^{27} +(-4.30250 + 1.78215i) q^{28} +(0.410535 + 0.170049i) q^{29} +(-2.11561 + 5.10754i) q^{31} +(-4.14511 - 4.14511i) q^{32} +8.41047i q^{33} +(-0.659477 + 3.01239i) q^{34} +(6.57637 - 6.57637i) q^{36} +(-9.88545 - 4.09469i) q^{37} +0.949042 q^{38} +(-12.2682 - 5.08165i) q^{39} +(-2.00526 + 0.830608i) q^{41} +(5.25703 - 5.25703i) q^{42} +(-1.52864 + 1.52864i) q^{43} +(3.64030 - 1.50786i) q^{44} +(0.340217 + 0.140922i) q^{46} -8.39597 q^{47} +(-2.71779 - 1.12575i) q^{48} +(-2.43940 + 2.43940i) q^{49} +(2.23464 + 12.4802i) q^{51} +6.22109i q^{52} +(1.28480 + 1.28480i) q^{53} +(-3.04152 + 7.34287i) q^{54} +(-7.68527 - 3.18334i) q^{56} +(3.60494 - 1.49321i) q^{57} +(0.127182 + 0.307045i) q^{58} +(2.13537 + 2.13537i) q^{59} +(11.2928 - 4.67764i) q^{61} +(-3.82000 + 1.58230i) q^{62} +(7.98628 - 19.2806i) q^{63} -2.47104i q^{64} +(-4.44792 + 4.44792i) q^{66} +4.21389i q^{67} +(5.00116 - 3.20471i) q^{68} +1.51404 q^{69} +(-1.48927 + 3.59542i) q^{71} +16.6127 q^{72} +(2.47620 - 5.97807i) q^{73} +(-3.06247 - 7.39347i) q^{74} +(-1.29261 - 1.29261i) q^{76} +(6.25188 - 6.25188i) q^{77} +(-3.80064 - 9.17555i) q^{78} +(2.76355 + 6.67180i) q^{79} +13.3100i q^{81} +(-1.49977 - 0.621223i) q^{82} +(0.160866 + 0.160866i) q^{83} -14.3204 q^{84} -1.61686 q^{86} +(0.966206 + 0.966206i) q^{87} +(6.50243 + 2.69339i) q^{88} -13.3408i q^{89} +(5.34208 + 12.8969i) q^{91} +(-0.271443 - 0.655322i) q^{92} +(-12.0207 + 12.0207i) q^{93} +(-4.44025 - 4.44025i) q^{94} +(-6.89827 - 16.6539i) q^{96} +(-5.66657 + 13.6803i) q^{97} -2.58018 q^{98} +(-6.75711 + 16.3131i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{3} - 8 q^{6} + 24 q^{9} - 8 q^{11} + 40 q^{12} + 16 q^{13} - 24 q^{16} + 8 q^{19} - 24 q^{22} + 8 q^{23} + 8 q^{24} + 16 q^{26} + 16 q^{27} - 40 q^{28} + 8 q^{29} - 16 q^{34} - 24 q^{36} - 16 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.528855 + 0.528855i 0.373957 + 0.373957i 0.868916 0.494959i \(-0.164817\pi\)
−0.494959 + 0.868916i \(0.664817\pi\)
\(3\) 2.84096 + 1.17676i 1.64023 + 0.679404i 0.996321 0.0857002i \(-0.0273127\pi\)
0.643906 + 0.765105i \(0.277313\pi\)
\(4\) 1.44062i 0.720312i
\(5\) 0 0
\(6\) 0.880118 + 2.12479i 0.359307 + 0.867443i
\(7\) −1.23707 2.98655i −0.467569 1.12881i −0.965221 0.261434i \(-0.915805\pi\)
0.497653 0.867376i \(-0.334195\pi\)
\(8\) 1.81959 1.81959i 0.643323 0.643323i
\(9\) 4.56494 + 4.56494i 1.52165 + 1.52165i
\(10\) 0 0
\(11\) 1.04667 + 2.52689i 0.315584 + 0.761886i 0.999478 + 0.0323052i \(0.0102849\pi\)
−0.683894 + 0.729581i \(0.739715\pi\)
\(12\) 1.69527 4.09275i 0.489383 1.18148i
\(13\) −4.31833 −1.19769 −0.598845 0.800865i \(-0.704373\pi\)
−0.598845 + 0.800865i \(0.704373\pi\)
\(14\) 0.925222 2.23368i 0.247276 0.596977i
\(15\) 0 0
\(16\) −0.956646 −0.239162
\(17\) 2.22453 + 3.47152i 0.539528 + 0.841968i
\(18\) 4.82839i 1.13806i
\(19\) 0.897260 0.897260i 0.205846 0.205846i −0.596653 0.802499i \(-0.703503\pi\)
0.802499 + 0.596653i \(0.203503\pi\)
\(20\) 0 0
\(21\) 9.94040i 2.16917i
\(22\) −0.782821 + 1.88990i −0.166898 + 0.402928i
\(23\) 0.454888 0.188421i 0.0948506 0.0392884i −0.334754 0.942306i \(-0.608653\pi\)
0.429604 + 0.903017i \(0.358653\pi\)
\(24\) 7.31061 3.02815i 1.49227 0.618119i
\(25\) 0 0
\(26\) −2.28377 2.28377i −0.447884 0.447884i
\(27\) 4.06666 + 9.81779i 0.782630 + 1.88943i
\(28\) −4.30250 + 1.78215i −0.813096 + 0.336795i
\(29\) 0.410535 + 0.170049i 0.0762345 + 0.0315774i 0.420475 0.907304i \(-0.361863\pi\)
−0.344240 + 0.938882i \(0.611863\pi\)
\(30\) 0 0
\(31\) −2.11561 + 5.10754i −0.379975 + 0.917342i 0.611994 + 0.790862i \(0.290368\pi\)
−0.991969 + 0.126479i \(0.959632\pi\)
\(32\) −4.14511 4.14511i −0.732759 0.732759i
\(33\) 8.41047i 1.46408i
\(34\) −0.659477 + 3.01239i −0.113099 + 0.516620i
\(35\) 0 0
\(36\) 6.57637 6.57637i 1.09606 1.09606i
\(37\) −9.88545 4.09469i −1.62516 0.673162i −0.630481 0.776205i \(-0.717142\pi\)
−0.994677 + 0.103043i \(0.967142\pi\)
\(38\) 0.949042 0.153955
\(39\) −12.2682 5.08165i −1.96448 0.813715i
\(40\) 0 0
\(41\) −2.00526 + 0.830608i −0.313170 + 0.129719i −0.533732 0.845654i \(-0.679211\pi\)
0.220562 + 0.975373i \(0.429211\pi\)
\(42\) 5.25703 5.25703i 0.811178 0.811178i
\(43\) −1.52864 + 1.52864i −0.233115 + 0.233115i −0.813992 0.580876i \(-0.802710\pi\)
0.580876 + 0.813992i \(0.302710\pi\)
\(44\) 3.64030 1.50786i 0.548796 0.227319i
\(45\) 0 0
\(46\) 0.340217 + 0.140922i 0.0501622 + 0.0207779i
\(47\) −8.39597 −1.22468 −0.612339 0.790595i \(-0.709771\pi\)
−0.612339 + 0.790595i \(0.709771\pi\)
\(48\) −2.71779 1.12575i −0.392279 0.162487i
\(49\) −2.43940 + 2.43940i −0.348485 + 0.348485i
\(50\) 0 0
\(51\) 2.23464 + 12.4802i 0.312912 + 1.74758i
\(52\) 6.22109i 0.862710i
\(53\) 1.28480 + 1.28480i 0.176481 + 0.176481i 0.789820 0.613339i \(-0.210174\pi\)
−0.613339 + 0.789820i \(0.710174\pi\)
\(54\) −3.04152 + 7.34287i −0.413898 + 0.999238i
\(55\) 0 0
\(56\) −7.68527 3.18334i −1.02699 0.425392i
\(57\) 3.60494 1.49321i 0.477486 0.197781i
\(58\) 0.127182 + 0.307045i 0.0166999 + 0.0403170i
\(59\) 2.13537 + 2.13537i 0.278001 + 0.278001i 0.832311 0.554309i \(-0.187018\pi\)
−0.554309 + 0.832311i \(0.687018\pi\)
\(60\) 0 0
\(61\) 11.2928 4.67764i 1.44590 0.598910i 0.484677 0.874693i \(-0.338937\pi\)
0.961220 + 0.275783i \(0.0889371\pi\)
\(62\) −3.82000 + 1.58230i −0.485141 + 0.200952i
\(63\) 7.98628 19.2806i 1.00618 2.42913i
\(64\) 2.47104i 0.308880i
\(65\) 0 0
\(66\) −4.44792 + 4.44792i −0.547501 + 0.547501i
\(67\) 4.21389i 0.514808i 0.966304 + 0.257404i \(0.0828672\pi\)
−0.966304 + 0.257404i \(0.917133\pi\)
\(68\) 5.00116 3.20471i 0.606479 0.388629i
\(69\) 1.51404 0.182269
\(70\) 0 0
\(71\) −1.48927 + 3.59542i −0.176744 + 0.426698i −0.987280 0.158991i \(-0.949176\pi\)
0.810536 + 0.585689i \(0.199176\pi\)
\(72\) 16.6127 1.95782
\(73\) 2.47620 5.97807i 0.289817 0.699680i −0.710173 0.704027i \(-0.751383\pi\)
0.999991 + 0.00434632i \(0.00138348\pi\)
\(74\) −3.06247 7.39347i −0.356005 0.859473i
\(75\) 0 0
\(76\) −1.29261 1.29261i −0.148273 0.148273i
\(77\) 6.25188 6.25188i 0.712468 0.712468i
\(78\) −3.80064 9.17555i −0.430338 1.03893i
\(79\) 2.76355 + 6.67180i 0.310923 + 0.750636i 0.999671 + 0.0256347i \(0.00816068\pi\)
−0.688748 + 0.725001i \(0.741839\pi\)
\(80\) 0 0
\(81\) 13.3100i 1.47889i
\(82\) −1.49977 0.621223i −0.165621 0.0686026i
\(83\) 0.160866 + 0.160866i 0.0176574 + 0.0176574i 0.715880 0.698223i \(-0.246026\pi\)
−0.698223 + 0.715880i \(0.746026\pi\)
\(84\) −14.3204 −1.56248
\(85\) 0 0
\(86\) −1.61686 −0.174350
\(87\) 0.966206 + 0.966206i 0.103588 + 0.103588i
\(88\) 6.50243 + 2.69339i 0.693161 + 0.287117i
\(89\) 13.3408i 1.41413i −0.707150 0.707064i \(-0.750019\pi\)
0.707150 0.707064i \(-0.249981\pi\)
\(90\) 0 0
\(91\) 5.34208 + 12.8969i 0.560002 + 1.35196i
\(92\) −0.271443 0.655322i −0.0282999 0.0683220i
\(93\) −12.0207 + 12.0207i −1.24649 + 1.24649i
\(94\) −4.44025 4.44025i −0.457977 0.457977i
\(95\) 0 0
\(96\) −6.89827 16.6539i −0.704052 1.69973i
\(97\) −5.66657 + 13.6803i −0.575353 + 1.38902i 0.321591 + 0.946879i \(0.395782\pi\)
−0.896943 + 0.442145i \(0.854218\pi\)
\(98\) −2.58018 −0.260637
\(99\) −6.75711 + 16.3131i −0.679115 + 1.63953i
\(100\) 0 0
\(101\) −0.284213 −0.0282803 −0.0141401 0.999900i \(-0.504501\pi\)
−0.0141401 + 0.999900i \(0.504501\pi\)
\(102\) −5.41841 + 7.78201i −0.536503 + 0.770534i
\(103\) 14.0842i 1.38775i −0.720093 0.693877i \(-0.755901\pi\)
0.720093 0.693877i \(-0.244099\pi\)
\(104\) −7.85760 + 7.85760i −0.770501 + 0.770501i
\(105\) 0 0
\(106\) 1.35894i 0.131992i
\(107\) 7.15995 17.2857i 0.692179 1.67107i −0.0481649 0.998839i \(-0.515337\pi\)
0.740344 0.672228i \(-0.234663\pi\)
\(108\) 14.1437 5.85853i 1.36098 0.563738i
\(109\) 3.26202 1.35117i 0.312444 0.129419i −0.220951 0.975285i \(-0.570916\pi\)
0.533395 + 0.845866i \(0.320916\pi\)
\(110\) 0 0
\(111\) −23.2657 23.2657i −2.20828 2.20828i
\(112\) 1.18344 + 2.85707i 0.111824 + 0.269968i
\(113\) −2.62525 + 1.08741i −0.246963 + 0.102295i −0.502731 0.864443i \(-0.667671\pi\)
0.255769 + 0.966738i \(0.417671\pi\)
\(114\) 2.69619 + 1.11680i 0.252521 + 0.104598i
\(115\) 0 0
\(116\) 0.244977 0.591427i 0.0227456 0.0549126i
\(117\) −19.7129 19.7129i −1.82246 1.82246i
\(118\) 2.25860i 0.207921i
\(119\) 7.61598 10.9382i 0.698155 1.00270i
\(120\) 0 0
\(121\) 2.48852 2.48852i 0.226229 0.226229i
\(122\) 8.44606 + 3.49847i 0.764670 + 0.316737i
\(123\) −6.67430 −0.601801
\(124\) 7.35805 + 3.04780i 0.660772 + 0.273701i
\(125\) 0 0
\(126\) 14.4202 5.97306i 1.28466 0.532122i
\(127\) 3.86444 3.86444i 0.342914 0.342914i −0.514548 0.857462i \(-0.672040\pi\)
0.857462 + 0.514548i \(0.172040\pi\)
\(128\) −6.98340 + 6.98340i −0.617251 + 0.617251i
\(129\) −6.14164 + 2.54395i −0.540742 + 0.223983i
\(130\) 0 0
\(131\) 9.21986 + 3.81899i 0.805543 + 0.333667i 0.747174 0.664628i \(-0.231410\pi\)
0.0583689 + 0.998295i \(0.481410\pi\)
\(132\) 12.1163 1.05459
\(133\) −3.78969 1.56974i −0.328608 0.136114i
\(134\) −2.22854 + 2.22854i −0.192516 + 0.192516i
\(135\) 0 0
\(136\) 10.3645 + 2.26901i 0.888748 + 0.194566i
\(137\) 3.07772i 0.262947i 0.991320 + 0.131474i \(0.0419709\pi\)
−0.991320 + 0.131474i \(0.958029\pi\)
\(138\) 0.800709 + 0.800709i 0.0681609 + 0.0681609i
\(139\) 2.56777 6.19915i 0.217796 0.525805i −0.776786 0.629765i \(-0.783151\pi\)
0.994582 + 0.103960i \(0.0331513\pi\)
\(140\) 0 0
\(141\) −23.8526 9.88006i −2.00875 0.832051i
\(142\) −2.68907 + 1.11385i −0.225661 + 0.0934720i
\(143\) −4.51988 10.9119i −0.377971 0.912503i
\(144\) −4.36704 4.36704i −0.363920 0.363920i
\(145\) 0 0
\(146\) 4.47109 1.85198i 0.370030 0.153271i
\(147\) −9.80082 + 4.05963i −0.808358 + 0.334833i
\(148\) −5.89890 + 14.2412i −0.484887 + 1.17062i
\(149\) 22.9914i 1.88353i 0.336276 + 0.941764i \(0.390833\pi\)
−0.336276 + 0.941764i \(0.609167\pi\)
\(150\) 0 0
\(151\) 0.138411 0.138411i 0.0112638 0.0112638i −0.701452 0.712716i \(-0.747465\pi\)
0.712716 + 0.701452i \(0.247465\pi\)
\(152\) 3.26530i 0.264850i
\(153\) −5.69244 + 26.0022i −0.460207 + 2.10215i
\(154\) 6.61268 0.532865
\(155\) 0 0
\(156\) −7.32075 + 17.6738i −0.586129 + 1.41504i
\(157\) −11.8582 −0.946391 −0.473196 0.880957i \(-0.656900\pi\)
−0.473196 + 0.880957i \(0.656900\pi\)
\(158\) −2.06690 + 4.98993i −0.164434 + 0.396978i
\(159\) 2.13815 + 5.16196i 0.169567 + 0.409370i
\(160\) 0 0
\(161\) −1.12546 1.12546i −0.0886983 0.0886983i
\(162\) −7.03907 + 7.03907i −0.553041 + 0.553041i
\(163\) −2.04533 4.93787i −0.160203 0.386764i 0.823312 0.567588i \(-0.192123\pi\)
−0.983515 + 0.180824i \(0.942123\pi\)
\(164\) 1.19659 + 2.88883i 0.0934382 + 0.225580i
\(165\) 0 0
\(166\) 0.170150i 0.0132062i
\(167\) 10.7077 + 4.43529i 0.828589 + 0.343213i 0.756344 0.654174i \(-0.226984\pi\)
0.0722453 + 0.997387i \(0.476984\pi\)
\(168\) −18.0875 18.0875i −1.39548 1.39548i
\(169\) 5.64797 0.434459
\(170\) 0 0
\(171\) 8.19188 0.626449
\(172\) 2.20220 + 2.20220i 0.167916 + 0.167916i
\(173\) 10.1877 + 4.21988i 0.774556 + 0.320832i 0.734716 0.678375i \(-0.237315\pi\)
0.0398396 + 0.999206i \(0.487315\pi\)
\(174\) 1.02197i 0.0774750i
\(175\) 0 0
\(176\) −1.00130 2.41734i −0.0754755 0.182214i
\(177\) 3.55367 + 8.57932i 0.267110 + 0.644861i
\(178\) 7.05538 7.05538i 0.528823 0.528823i
\(179\) −14.9009 14.9009i −1.11375 1.11375i −0.992639 0.121109i \(-0.961355\pi\)
−0.121109 0.992639i \(-0.538645\pi\)
\(180\) 0 0
\(181\) 8.67131 + 20.9344i 0.644533 + 1.55604i 0.820501 + 0.571645i \(0.193695\pi\)
−0.175968 + 0.984396i \(0.556305\pi\)
\(182\) −3.99542 + 9.64579i −0.296160 + 0.714993i
\(183\) 37.5869 2.77850
\(184\) 0.484861 1.17056i 0.0357444 0.0862947i
\(185\) 0 0
\(186\) −12.7145 −0.932269
\(187\) −6.44380 + 9.25469i −0.471217 + 0.676770i
\(188\) 12.0954i 0.882150i
\(189\) 24.2906 24.2906i 1.76688 1.76688i
\(190\) 0 0
\(191\) 3.50162i 0.253368i 0.991943 + 0.126684i \(0.0404335\pi\)
−0.991943 + 0.126684i \(0.959567\pi\)
\(192\) 2.90782 7.02011i 0.209854 0.506633i
\(193\) 11.3584 4.70480i 0.817595 0.338659i 0.0656152 0.997845i \(-0.479099\pi\)
0.751980 + 0.659186i \(0.229099\pi\)
\(194\) −10.2317 + 4.23811i −0.734593 + 0.304278i
\(195\) 0 0
\(196\) 3.51426 + 3.51426i 0.251018 + 0.251018i
\(197\) −6.49632 15.6835i −0.462843 1.11740i −0.967225 0.253922i \(-0.918279\pi\)
0.504381 0.863481i \(-0.331721\pi\)
\(198\) −12.2008 + 5.05374i −0.867074 + 0.359154i
\(199\) −10.6966 4.43067i −0.758260 0.314082i −0.0301533 0.999545i \(-0.509600\pi\)
−0.728107 + 0.685464i \(0.759600\pi\)
\(200\) 0 0
\(201\) −4.95875 + 11.9715i −0.349763 + 0.844403i
\(202\) −0.150308 0.150308i −0.0105756 0.0105756i
\(203\) 1.43645i 0.100819i
\(204\) 17.9793 3.21928i 1.25880 0.225394i
\(205\) 0 0
\(206\) 7.44849 7.44849i 0.518961 0.518961i
\(207\) 2.93667 + 1.21641i 0.204112 + 0.0845461i
\(208\) 4.13111 0.286441
\(209\) 3.20642 + 1.32814i 0.221792 + 0.0918694i
\(210\) 0 0
\(211\) 6.15655 2.55013i 0.423834 0.175558i −0.160563 0.987026i \(-0.551331\pi\)
0.584397 + 0.811468i \(0.301331\pi\)
\(212\) 1.85091 1.85091i 0.127121 0.127121i
\(213\) −8.46191 + 8.46191i −0.579800 + 0.579800i
\(214\) 12.9282 5.35503i 0.883753 0.366063i
\(215\) 0 0
\(216\) 25.2640 + 10.4647i 1.71900 + 0.712033i
\(217\) 17.8711 1.21317
\(218\) 2.43971 + 1.01056i 0.165238 + 0.0684438i
\(219\) 14.0695 14.0695i 0.950732 0.950732i
\(220\) 0 0
\(221\) −9.60626 14.9912i −0.646187 1.00842i
\(222\) 24.6083i 1.65160i
\(223\) 8.90442 + 8.90442i 0.596284 + 0.596284i 0.939322 0.343037i \(-0.111456\pi\)
−0.343037 + 0.939322i \(0.611456\pi\)
\(224\) −7.25180 + 17.5074i −0.484531 + 1.16976i
\(225\) 0 0
\(226\) −1.96346 0.813292i −0.130607 0.0540994i
\(227\) 7.43044 3.07779i 0.493176 0.204280i −0.122213 0.992504i \(-0.538999\pi\)
0.615389 + 0.788224i \(0.288999\pi\)
\(228\) −2.15116 5.19336i −0.142464 0.343939i
\(229\) 15.2944 + 15.2944i 1.01068 + 1.01068i 0.999942 + 0.0107373i \(0.00341786\pi\)
0.0107373 + 0.999942i \(0.496582\pi\)
\(230\) 0 0
\(231\) 25.1183 10.4043i 1.65266 0.684555i
\(232\) 1.05643 0.437587i 0.0693579 0.0287290i
\(233\) 8.40011 20.2797i 0.550310 1.32857i −0.366937 0.930246i \(-0.619594\pi\)
0.917247 0.398320i \(-0.130406\pi\)
\(234\) 20.8506i 1.36304i
\(235\) 0 0
\(236\) 3.07626 3.07626i 0.200248 0.200248i
\(237\) 22.2063i 1.44246i
\(238\) 9.81247 1.75697i 0.636048 0.113888i
\(239\) −5.90132 −0.381725 −0.190862 0.981617i \(-0.561128\pi\)
−0.190862 + 0.981617i \(0.561128\pi\)
\(240\) 0 0
\(241\) 5.09407 12.2982i 0.328138 0.792195i −0.670593 0.741826i \(-0.733960\pi\)
0.998731 0.0503696i \(-0.0160399\pi\)
\(242\) 2.63214 0.169200
\(243\) −3.46273 + 8.35977i −0.222134 + 0.536279i
\(244\) −6.73872 16.2687i −0.431402 1.04150i
\(245\) 0 0
\(246\) −3.52974 3.52974i −0.225048 0.225048i
\(247\) −3.87467 + 3.87467i −0.246539 + 0.246539i
\(248\) 5.44409 + 13.1432i 0.345700 + 0.834594i
\(249\) 0.267712 + 0.646315i 0.0169656 + 0.0409586i
\(250\) 0 0
\(251\) 3.59367i 0.226831i 0.993548 + 0.113415i \(0.0361790\pi\)
−0.993548 + 0.113415i \(0.963821\pi\)
\(252\) −27.7761 11.5052i −1.74973 0.724761i
\(253\) 0.952236 + 0.952236i 0.0598666 + 0.0598666i
\(254\) 4.08746 0.256470
\(255\) 0 0
\(256\) −12.3285 −0.770531
\(257\) 17.3588 + 17.3588i 1.08281 + 1.08281i 0.996246 + 0.0865680i \(0.0275900\pi\)
0.0865680 + 0.996246i \(0.472410\pi\)
\(258\) −4.59342 1.90266i −0.285974 0.118454i
\(259\) 34.5888i 2.14924i
\(260\) 0 0
\(261\) 1.09781 + 2.65034i 0.0679524 + 0.164052i
\(262\) 2.85628 + 6.89567i 0.176462 + 0.426016i
\(263\) −10.3521 + 10.3521i −0.638340 + 0.638340i −0.950146 0.311806i \(-0.899066\pi\)
0.311806 + 0.950146i \(0.399066\pi\)
\(264\) 15.3036 + 15.3036i 0.941873 + 0.941873i
\(265\) 0 0
\(266\) −1.17403 2.83436i −0.0719845 0.173786i
\(267\) 15.6990 37.9008i 0.960764 2.31949i
\(268\) 6.07063 0.370823
\(269\) 7.17904 17.3317i 0.437714 1.05673i −0.539023 0.842291i \(-0.681206\pi\)
0.976736 0.214443i \(-0.0687936\pi\)
\(270\) 0 0
\(271\) 5.76388 0.350131 0.175065 0.984557i \(-0.443986\pi\)
0.175065 + 0.984557i \(0.443986\pi\)
\(272\) −2.12809 3.32102i −0.129034 0.201366i
\(273\) 42.9259i 2.59800i
\(274\) −1.62767 + 1.62767i −0.0983311 + 0.0983311i
\(275\) 0 0
\(276\) 2.18117i 0.131291i
\(277\) 0.0471663 0.113870i 0.00283395 0.00684176i −0.922456 0.386102i \(-0.873821\pi\)
0.925290 + 0.379260i \(0.123821\pi\)
\(278\) 4.63643 1.92047i 0.278075 0.115182i
\(279\) −32.9733 + 13.6580i −1.97406 + 0.817682i
\(280\) 0 0
\(281\) −1.28950 1.28950i −0.0769253 0.0769253i 0.667597 0.744523i \(-0.267323\pi\)
−0.744523 + 0.667597i \(0.767323\pi\)
\(282\) −7.38944 17.8397i −0.440035 1.06234i
\(283\) −26.4486 + 10.9554i −1.57221 + 0.651229i −0.987155 0.159767i \(-0.948926\pi\)
−0.585052 + 0.810996i \(0.698926\pi\)
\(284\) 5.17965 + 2.14548i 0.307355 + 0.127311i
\(285\) 0 0
\(286\) 3.38048 8.16120i 0.199892 0.482582i
\(287\) 4.96130 + 4.96130i 0.292856 + 0.292856i
\(288\) 37.8444i 2.23000i
\(289\) −7.10292 + 15.4450i −0.417819 + 0.908530i
\(290\) 0 0
\(291\) −32.1969 + 32.1969i −1.88742 + 1.88742i
\(292\) −8.61216 3.56727i −0.503988 0.208759i
\(293\) −1.41607 −0.0827278 −0.0413639 0.999144i \(-0.513170\pi\)
−0.0413639 + 0.999144i \(0.513170\pi\)
\(294\) −7.33017 3.03626i −0.427504 0.177078i
\(295\) 0 0
\(296\) −25.4381 + 10.5368i −1.47856 + 0.612440i
\(297\) −20.5520 + 20.5520i −1.19255 + 1.19255i
\(298\) −12.1591 + 12.1591i −0.704358 + 0.704358i
\(299\) −1.96435 + 0.813662i −0.113602 + 0.0470553i
\(300\) 0 0
\(301\) 6.45639 + 2.67433i 0.372140 + 0.154146i
\(302\) 0.146399 0.00842433
\(303\) −0.807438 0.334452i −0.0463861 0.0192138i
\(304\) −0.858361 + 0.858361i −0.0492304 + 0.0492304i
\(305\) 0 0
\(306\) −16.7619 + 10.7409i −0.958212 + 0.614017i
\(307\) 21.7364i 1.24056i 0.784379 + 0.620281i \(0.212982\pi\)
−0.784379 + 0.620281i \(0.787018\pi\)
\(308\) −9.00661 9.00661i −0.513199 0.513199i
\(309\) 16.5737 40.0125i 0.942846 2.27623i
\(310\) 0 0
\(311\) 7.99250 + 3.31060i 0.453213 + 0.187727i 0.597600 0.801794i \(-0.296121\pi\)
−0.144387 + 0.989521i \(0.546121\pi\)
\(312\) −31.5696 + 13.0766i −1.78728 + 0.740315i
\(313\) 3.93476 + 9.49936i 0.222406 + 0.536936i 0.995216 0.0977022i \(-0.0311493\pi\)
−0.772810 + 0.634638i \(0.781149\pi\)
\(314\) −6.27130 6.27130i −0.353910 0.353910i
\(315\) 0 0
\(316\) 9.61155 3.98123i 0.540692 0.223962i
\(317\) −1.04183 + 0.431538i −0.0585147 + 0.0242376i −0.411749 0.911297i \(-0.635082\pi\)
0.353234 + 0.935535i \(0.385082\pi\)
\(318\) −1.59916 + 3.86070i −0.0896762 + 0.216497i
\(319\) 1.21536i 0.0680473i
\(320\) 0 0
\(321\) 40.6822 40.6822i 2.27066 2.27066i
\(322\) 1.19041i 0.0663387i
\(323\) 5.11084 + 1.11887i 0.284375 + 0.0622559i
\(324\) 19.1747 1.06526
\(325\) 0 0
\(326\) 1.52974 3.69311i 0.0847242 0.204542i
\(327\) 10.8573 0.600407
\(328\) −2.13740 + 5.16013i −0.118018 + 0.284921i
\(329\) 10.3864 + 25.0750i 0.572621 + 1.38243i
\(330\) 0 0
\(331\) −24.2254 24.2254i −1.33155 1.33155i −0.903984 0.427567i \(-0.859371\pi\)
−0.427567 0.903984i \(-0.640629\pi\)
\(332\) 0.231748 0.231748i 0.0127188 0.0127188i
\(333\) −26.4345 63.8185i −1.44860 3.49723i
\(334\) 3.31722 + 8.00847i 0.181510 + 0.438204i
\(335\) 0 0
\(336\) 9.50945i 0.518783i
\(337\) 12.6999 + 5.26046i 0.691807 + 0.286556i 0.700753 0.713404i \(-0.252848\pi\)
−0.00894611 + 0.999960i \(0.502848\pi\)
\(338\) 2.98696 + 2.98696i 0.162469 + 0.162469i
\(339\) −8.73784 −0.474574
\(340\) 0 0
\(341\) −15.1206 −0.818824
\(342\) 4.33232 + 4.33232i 0.234265 + 0.234265i
\(343\) −10.6028 4.39181i −0.572495 0.237135i
\(344\) 5.56300i 0.299937i
\(345\) 0 0
\(346\) 3.15611 + 7.61952i 0.169673 + 0.409628i
\(347\) −7.22453 17.4415i −0.387833 0.936311i −0.990398 0.138242i \(-0.955855\pi\)
0.602566 0.798069i \(-0.294145\pi\)
\(348\) 1.39194 1.39194i 0.0746158 0.0746158i
\(349\) −4.98501 4.98501i −0.266842 0.266842i 0.560985 0.827826i \(-0.310423\pi\)
−0.827826 + 0.560985i \(0.810423\pi\)
\(350\) 0 0
\(351\) −17.5612 42.3965i −0.937347 2.26296i
\(352\) 6.13567 14.8128i 0.327032 0.789526i
\(353\) −8.60779 −0.458146 −0.229073 0.973409i \(-0.573569\pi\)
−0.229073 + 0.973409i \(0.573569\pi\)
\(354\) −2.65784 + 6.41659i −0.141263 + 0.341038i
\(355\) 0 0
\(356\) −19.2191 −1.01861
\(357\) 34.5083 22.1127i 1.82637 1.17033i
\(358\) 15.7609i 0.832988i
\(359\) 6.49195 6.49195i 0.342632 0.342632i −0.514724 0.857356i \(-0.672106\pi\)
0.857356 + 0.514724i \(0.172106\pi\)
\(360\) 0 0
\(361\) 17.3898i 0.915255i
\(362\) −6.48540 + 15.6571i −0.340865 + 0.822921i
\(363\) 9.99818 4.14138i 0.524769 0.217366i
\(364\) 18.5796 7.69592i 0.973836 0.403376i
\(365\) 0 0
\(366\) 19.8780 + 19.8780i 1.03904 + 1.03904i
\(367\) 2.60840 + 6.29722i 0.136157 + 0.328712i 0.977221 0.212223i \(-0.0680703\pi\)
−0.841064 + 0.540935i \(0.818070\pi\)
\(368\) −0.435166 + 0.180252i −0.0226846 + 0.00939628i
\(369\) −12.9456 5.36224i −0.673921 0.279147i
\(370\) 0 0
\(371\) 2.24773 5.42650i 0.116696 0.281730i
\(372\) 17.3174 + 17.3174i 0.897863 + 0.897863i
\(373\) 10.4647i 0.541841i 0.962602 + 0.270920i \(0.0873280\pi\)
−0.962602 + 0.270920i \(0.912672\pi\)
\(374\) −8.30223 + 1.48656i −0.429298 + 0.0768680i
\(375\) 0 0
\(376\) −15.2772 + 15.2772i −0.787863 + 0.787863i
\(377\) −1.77283 0.734329i −0.0913053 0.0378199i
\(378\) 25.6924 1.32148
\(379\) −23.4129 9.69794i −1.20264 0.498150i −0.310789 0.950479i \(-0.600593\pi\)
−0.891851 + 0.452330i \(0.850593\pi\)
\(380\) 0 0
\(381\) 15.5263 6.43119i 0.795434 0.329480i
\(382\) −1.85185 + 1.85185i −0.0947489 + 0.0947489i
\(383\) 5.43799 5.43799i 0.277868 0.277868i −0.554389 0.832258i \(-0.687048\pi\)
0.832258 + 0.554389i \(0.187048\pi\)
\(384\) −28.0574 + 11.6217i −1.43180 + 0.593069i
\(385\) 0 0
\(386\) 8.49511 + 3.51879i 0.432389 + 0.179102i
\(387\) −13.9563 −0.709439
\(388\) 19.7082 + 8.16339i 1.00053 + 0.414433i
\(389\) −11.1991 + 11.1991i −0.567816 + 0.567816i −0.931516 0.363700i \(-0.881513\pi\)
0.363700 + 0.931516i \(0.381513\pi\)
\(390\) 0 0
\(391\) 1.66602 + 1.16000i 0.0842541 + 0.0586639i
\(392\) 8.87742i 0.448377i
\(393\) 21.6992 + 21.6992i 1.09458 + 1.09458i
\(394\) 4.85869 11.7299i 0.244777 0.590944i
\(395\) 0 0
\(396\) 23.5011 + 9.73446i 1.18097 + 0.489175i
\(397\) 26.9440 11.1606i 1.35228 0.560133i 0.415355 0.909659i \(-0.363657\pi\)
0.936927 + 0.349526i \(0.113657\pi\)
\(398\) −3.31376 8.00012i −0.166104 0.401010i
\(399\) −8.91913 8.91913i −0.446515 0.446515i
\(400\) 0 0
\(401\) −15.1386 + 6.27060i −0.755984 + 0.313139i −0.727181 0.686446i \(-0.759170\pi\)
−0.0288034 + 0.999585i \(0.509170\pi\)
\(402\) −8.95364 + 3.70872i −0.446567 + 0.184974i
\(403\) 9.13592 22.0561i 0.455092 1.09869i
\(404\) 0.409445i 0.0203706i
\(405\) 0 0
\(406\) 0.759673 0.759673i 0.0377019 0.0377019i
\(407\) 29.2652i 1.45062i
\(408\) 26.7750 + 18.6427i 1.32556 + 0.922952i
\(409\) −33.9971 −1.68105 −0.840525 0.541772i \(-0.817753\pi\)
−0.840525 + 0.541772i \(0.817753\pi\)
\(410\) 0 0
\(411\) −3.62175 + 8.74367i −0.178648 + 0.431294i
\(412\) −20.2900 −0.999616
\(413\) 3.73579 9.01899i 0.183826 0.443796i
\(414\) 0.909768 + 2.19637i 0.0447127 + 0.107946i
\(415\) 0 0
\(416\) 17.9000 + 17.9000i 0.877618 + 0.877618i
\(417\) 14.5899 14.5899i 0.714468 0.714468i
\(418\) 0.993336 + 2.39812i 0.0485856 + 0.117296i
\(419\) −0.341711 0.824964i −0.0166937 0.0403021i 0.915313 0.402743i \(-0.131943\pi\)
−0.932007 + 0.362441i \(0.881943\pi\)
\(420\) 0 0
\(421\) 33.6725i 1.64110i 0.571575 + 0.820550i \(0.306332\pi\)
−0.571575 + 0.820550i \(0.693668\pi\)
\(422\) 4.60457 + 1.90728i 0.224147 + 0.0928448i
\(423\) −38.3271 38.3271i −1.86353 1.86353i
\(424\) 4.67562 0.227068
\(425\) 0 0
\(426\) −8.95025 −0.433641
\(427\) −27.9400 27.9400i −1.35211 1.35211i
\(428\) −24.9021 10.3148i −1.20369 0.498585i
\(429\) 36.3192i 1.75351i
\(430\) 0 0
\(431\) −6.23658 15.0564i −0.300405 0.725243i −0.999943 0.0106472i \(-0.996611\pi\)
0.699538 0.714595i \(-0.253389\pi\)
\(432\) −3.89036 9.39215i −0.187175 0.451880i
\(433\) 24.7450 24.7450i 1.18917 1.18917i 0.211871 0.977298i \(-0.432044\pi\)
0.977298 0.211871i \(-0.0679556\pi\)
\(434\) 9.45122 + 9.45122i 0.453673 + 0.453673i
\(435\) 0 0
\(436\) −1.94653 4.69934i −0.0932219 0.225057i
\(437\) 0.239090 0.577215i 0.0114372 0.0276119i
\(438\) 14.8815 0.711066
\(439\) −8.52530 + 20.5819i −0.406891 + 0.982321i 0.579060 + 0.815285i \(0.303420\pi\)
−0.985951 + 0.167036i \(0.946580\pi\)
\(440\) 0 0
\(441\) −22.2714 −1.06054
\(442\) 2.84784 13.0085i 0.135458 0.618750i
\(443\) 8.79907i 0.418056i −0.977910 0.209028i \(-0.932970\pi\)
0.977910 0.209028i \(-0.0670300\pi\)
\(444\) −33.5171 + 33.5171i −1.59065 + 1.59065i
\(445\) 0 0
\(446\) 9.41830i 0.445970i
\(447\) −27.0554 + 65.3175i −1.27968 + 3.08941i
\(448\) −7.37988 + 3.05685i −0.348666 + 0.144422i
\(449\) 8.19189 3.39319i 0.386599 0.160135i −0.180914 0.983499i \(-0.557906\pi\)
0.567513 + 0.823364i \(0.307906\pi\)
\(450\) 0 0
\(451\) −4.19771 4.19771i −0.197662 0.197662i
\(452\) 1.56655 + 3.78200i 0.0736845 + 0.177890i
\(453\) 0.556098 0.230343i 0.0261278 0.0108225i
\(454\) 5.55733 + 2.30192i 0.260819 + 0.108035i
\(455\) 0 0
\(456\) 3.84248 9.27656i 0.179941 0.434415i
\(457\) 13.0643 + 13.0643i 0.611120 + 0.611120i 0.943238 0.332118i \(-0.107763\pi\)
−0.332118 + 0.943238i \(0.607763\pi\)
\(458\) 16.1770i 0.755902i
\(459\) −25.0363 + 35.9575i −1.16859 + 1.67835i
\(460\) 0 0
\(461\) 17.3736 17.3736i 0.809169 0.809169i −0.175339 0.984508i \(-0.556102\pi\)
0.984508 + 0.175339i \(0.0561022\pi\)
\(462\) 18.7863 + 7.78156i 0.874020 + 0.362031i
\(463\) −9.90931 −0.460525 −0.230262 0.973129i \(-0.573958\pi\)
−0.230262 + 0.973129i \(0.573958\pi\)
\(464\) −0.392737 0.162677i −0.0182324 0.00755209i
\(465\) 0 0
\(466\) 15.1675 6.28257i 0.702619 0.291034i
\(467\) −20.7918 + 20.7918i −0.962131 + 0.962131i −0.999309 0.0371777i \(-0.988163\pi\)
0.0371777 + 0.999309i \(0.488163\pi\)
\(468\) −28.3989 + 28.3989i −1.31274 + 1.31274i
\(469\) 12.5850 5.21287i 0.581121 0.240708i
\(470\) 0 0
\(471\) −33.6888 13.9543i −1.55230 0.642982i
\(472\) 7.77100 0.357689
\(473\) −5.46269 2.26272i −0.251175 0.104040i
\(474\) −11.7439 + 11.7439i −0.539417 + 0.539417i
\(475\) 0 0
\(476\) −15.7578 10.9718i −0.722259 0.502890i
\(477\) 11.7301i 0.537083i
\(478\) −3.12095 3.12095i −0.142749 0.142749i
\(479\) 10.9449 26.4232i 0.500083 1.20731i −0.449354 0.893354i \(-0.648346\pi\)
0.949438 0.313955i \(-0.101654\pi\)
\(480\) 0 0
\(481\) 42.6886 + 17.6822i 1.94643 + 0.806239i
\(482\) 9.19799 3.80993i 0.418957 0.173538i
\(483\) −1.87298 4.52176i −0.0852234 0.205747i
\(484\) −3.58503 3.58503i −0.162956 0.162956i
\(485\) 0 0
\(486\) −6.25239 + 2.58982i −0.283614 + 0.117477i
\(487\) −0.570849 + 0.236454i −0.0258677 + 0.0107147i −0.395580 0.918432i \(-0.629456\pi\)
0.369712 + 0.929146i \(0.379456\pi\)
\(488\) 12.0369 29.0597i 0.544886 1.31547i
\(489\) 16.4352i 0.743224i
\(490\) 0 0
\(491\) 18.0077 18.0077i 0.812675 0.812675i −0.172359 0.985034i \(-0.555139\pi\)
0.985034 + 0.172359i \(0.0551390\pi\)
\(492\) 9.61515i 0.433485i
\(493\) 0.322919 + 1.80346i 0.0145435 + 0.0812239i
\(494\) −4.09827 −0.184390
\(495\) 0 0
\(496\) 2.02389 4.88611i 0.0908755 0.219393i
\(497\) 12.5802 0.564301
\(498\) −0.200226 + 0.483388i −0.00897234 + 0.0216611i
\(499\) −13.9527 33.6849i −0.624611 1.50794i −0.846234 0.532811i \(-0.821136\pi\)
0.221624 0.975132i \(-0.428864\pi\)
\(500\) 0 0
\(501\) 25.2009 + 25.2009i 1.12589 + 1.12589i
\(502\) −1.90053 + 1.90053i −0.0848249 + 0.0848249i
\(503\) 11.5525 + 27.8902i 0.515100 + 1.24356i 0.940881 + 0.338736i \(0.109999\pi\)
−0.425781 + 0.904826i \(0.640001\pi\)
\(504\) −20.5510 49.6146i −0.915416 2.21001i
\(505\) 0 0
\(506\) 1.00719i 0.0447751i
\(507\) 16.0456 + 6.64632i 0.712612 + 0.295174i
\(508\) −5.56721 5.56721i −0.247005 0.247005i
\(509\) 40.1857 1.78120 0.890600 0.454787i \(-0.150285\pi\)
0.890600 + 0.454787i \(0.150285\pi\)
\(510\) 0 0
\(511\) −20.9171 −0.925316
\(512\) 7.44682 + 7.44682i 0.329106 + 0.329106i
\(513\) 12.4580 + 5.16026i 0.550033 + 0.227831i
\(514\) 18.3606i 0.809852i
\(515\) 0 0
\(516\) 3.66488 + 8.84780i 0.161337 + 0.389503i
\(517\) −8.78783 21.2157i −0.386488 0.933065i
\(518\) −18.2925 + 18.2925i −0.803725 + 0.803725i
\(519\) 23.9770 + 23.9770i 1.05247 + 1.05247i
\(520\) 0 0
\(521\) −13.5302 32.6647i −0.592767 1.43107i −0.880820 0.473451i \(-0.843008\pi\)
0.288053 0.957614i \(-0.406992\pi\)
\(522\) −0.821064 + 1.98222i −0.0359370 + 0.0867596i
\(523\) −24.5035 −1.07146 −0.535732 0.844388i \(-0.679964\pi\)
−0.535732 + 0.844388i \(0.679964\pi\)
\(524\) 5.50173 13.2824i 0.240344 0.580243i
\(525\) 0 0
\(526\) −10.9496 −0.477424
\(527\) −22.4372 + 4.01749i −0.977379 + 0.175005i
\(528\) 8.04585i 0.350150i
\(529\) −16.0920 + 16.0920i −0.699654 + 0.699654i
\(530\) 0 0
\(531\) 19.4957i 0.846041i
\(532\) −2.26140 + 5.45951i −0.0980443 + 0.236700i
\(533\) 8.65939 3.58684i 0.375080 0.155363i
\(534\) 28.3465 11.7415i 1.22667 0.508105i
\(535\) 0 0
\(536\) 7.66756 + 7.66756i 0.331188 + 0.331188i
\(537\) −24.7981 59.8678i −1.07011 2.58349i
\(538\) 12.9626 5.36930i 0.558859 0.231487i
\(539\) −8.71734 3.61084i −0.375483 0.155530i
\(540\) 0 0
\(541\) 9.77786 23.6058i 0.420383 1.01489i −0.561852 0.827238i \(-0.689911\pi\)
0.982235 0.187657i \(-0.0600892\pi\)
\(542\) 3.04826 + 3.04826i 0.130934 + 0.130934i
\(543\) 69.6778i 2.99016i
\(544\) 5.16891 23.6108i 0.221615 1.01230i
\(545\) 0 0
\(546\) −22.7016 + 22.7016i −0.971539 + 0.971539i
\(547\) 10.8664 + 4.50103i 0.464616 + 0.192450i 0.602696 0.797971i \(-0.294093\pi\)
−0.138080 + 0.990421i \(0.544093\pi\)
\(548\) 4.43384 0.189404
\(549\) 72.9042 + 30.1979i 3.11148 + 1.28882i
\(550\) 0 0
\(551\) 0.520936 0.215779i 0.0221926 0.00919248i
\(552\) 2.75494 2.75494i 0.117258 0.117258i
\(553\) 16.5070 16.5070i 0.701947 0.701947i
\(554\) 0.0851647 0.0352764i 0.00361830 0.00149875i
\(555\) 0 0
\(556\) −8.93065 3.69919i −0.378744 0.156881i
\(557\) −35.6812 −1.51186 −0.755931 0.654651i \(-0.772816\pi\)
−0.755931 + 0.654651i \(0.772816\pi\)
\(558\) −24.6612 10.2150i −1.04399 0.432436i
\(559\) 6.60117 6.60117i 0.279200 0.279200i
\(560\) 0 0
\(561\) −29.1971 + 18.7094i −1.23270 + 0.789910i
\(562\) 1.36392i 0.0575335i
\(563\) −21.3003 21.3003i −0.897702 0.897702i 0.0975306 0.995233i \(-0.468906\pi\)
−0.995233 + 0.0975306i \(0.968906\pi\)
\(564\) −14.2335 + 34.3626i −0.599337 + 1.44693i
\(565\) 0 0
\(566\) −19.7813 8.19368i −0.831470 0.344406i
\(567\) 39.7510 16.4654i 1.66939 0.691482i
\(568\) 3.83233 + 9.25206i 0.160801 + 0.388208i
\(569\) 17.2524 + 17.2524i 0.723257 + 0.723257i 0.969267 0.246010i \(-0.0791197\pi\)
−0.246010 + 0.969267i \(0.579120\pi\)
\(570\) 0 0
\(571\) −30.7483 + 12.7364i −1.28678 + 0.533001i −0.918024 0.396526i \(-0.870216\pi\)
−0.368755 + 0.929527i \(0.620216\pi\)
\(572\) −15.7200 + 6.51144i −0.657287 + 0.272257i
\(573\) −4.12058 + 9.94795i −0.172140 + 0.415582i
\(574\) 5.24762i 0.219032i
\(575\) 0 0
\(576\) 11.2801 11.2801i 0.470006 0.470006i
\(577\) 18.0611i 0.751895i 0.926641 + 0.375947i \(0.122683\pi\)
−0.926641 + 0.375947i \(0.877317\pi\)
\(578\) −11.9246 + 4.41176i −0.495998 + 0.183505i
\(579\) 37.8051 1.57113
\(580\) 0 0
\(581\) 0.281432 0.679438i 0.0116758 0.0281878i
\(582\) −34.0550 −1.41163
\(583\) −1.90178 + 4.59131i −0.0787637 + 0.190152i
\(584\) −6.37198 15.3833i −0.263675 0.636567i
\(585\) 0 0
\(586\) −0.748897 0.748897i −0.0309366 0.0309366i
\(587\) −29.5785 + 29.5785i −1.22084 + 1.22084i −0.253500 + 0.967335i \(0.581582\pi\)
−0.967335 + 0.253500i \(0.918418\pi\)
\(588\) 5.84840 + 14.1193i 0.241184 + 0.582270i
\(589\) 2.68454 + 6.48105i 0.110614 + 0.267047i
\(590\) 0 0
\(591\) 52.2008i 2.14725i
\(592\) 9.45688 + 3.91717i 0.388675 + 0.160995i
\(593\) 14.6130 + 14.6130i 0.600085 + 0.600085i 0.940335 0.340250i \(-0.110512\pi\)
−0.340250 + 0.940335i \(0.610512\pi\)
\(594\) −21.7381 −0.891925
\(595\) 0 0
\(596\) 33.1219 1.35673
\(597\) −25.1747 25.1747i −1.03033 1.03033i
\(598\) −1.46917 0.608550i −0.0600788 0.0248854i
\(599\) 9.21817i 0.376644i 0.982107 + 0.188322i \(0.0603049\pi\)
−0.982107 + 0.188322i \(0.939695\pi\)
\(600\) 0 0
\(601\) −0.620216 1.49733i −0.0252991 0.0610775i 0.910725 0.413013i \(-0.135524\pi\)
−0.936024 + 0.351936i \(0.885524\pi\)
\(602\) 2.00017 + 4.82883i 0.0815207 + 0.196808i
\(603\) −19.2362 + 19.2362i −0.783357 + 0.783357i
\(604\) −0.199399 0.199399i −0.00811342 0.00811342i
\(605\) 0 0
\(606\) −0.250141 0.603894i −0.0101613 0.0245315i
\(607\) 9.57311 23.1115i 0.388560 0.938068i −0.601685 0.798733i \(-0.705504\pi\)
0.990245 0.139334i \(-0.0444963\pi\)
\(608\) −7.43849 −0.301671
\(609\) 1.69036 4.08089i 0.0684968 0.165366i
\(610\) 0 0
\(611\) 36.2566 1.46678
\(612\) 37.4593 + 8.20067i 1.51420 + 0.331492i
\(613\) 4.83538i 0.195299i 0.995221 + 0.0976495i \(0.0311324\pi\)
−0.995221 + 0.0976495i \(0.968868\pi\)
\(614\) −11.4954 + 11.4954i −0.463917 + 0.463917i
\(615\) 0 0
\(616\) 22.7517i 0.916694i
\(617\) 6.43422 15.5336i 0.259032 0.625358i −0.739843 0.672779i \(-0.765100\pi\)
0.998875 + 0.0474212i \(0.0151003\pi\)
\(618\) 29.9259 12.3957i 1.20380 0.498629i
\(619\) −11.7540 + 4.86865i −0.472431 + 0.195687i −0.606179 0.795328i \(-0.707299\pi\)
0.133748 + 0.991015i \(0.457299\pi\)
\(620\) 0 0
\(621\) 3.69975 + 3.69975i 0.148466 + 0.148466i
\(622\) 2.47605 + 5.97771i 0.0992804 + 0.239684i
\(623\) −39.8431 + 16.5036i −1.59628 + 0.661201i
\(624\) 11.7363 + 4.86134i 0.469829 + 0.194609i
\(625\) 0 0
\(626\) −2.94287 + 7.10471i −0.117621 + 0.283961i
\(627\) 7.54638 + 7.54638i 0.301373 + 0.301373i
\(628\) 17.0833i 0.681697i
\(629\) −7.77569 43.4263i −0.310037 1.73152i
\(630\) 0 0
\(631\) −2.99812 + 2.99812i −0.119353 + 0.119353i −0.764261 0.644907i \(-0.776896\pi\)
0.644907 + 0.764261i \(0.276896\pi\)
\(632\) 17.1685 + 7.11142i 0.682925 + 0.282877i
\(633\) 20.4914 0.814459
\(634\) −0.779196 0.322754i −0.0309458 0.0128182i
\(635\) 0 0
\(636\) 7.43644 3.08028i 0.294874 0.122141i
\(637\) 10.5341 10.5341i 0.417377 0.417377i
\(638\) −0.642752 + 0.642752i −0.0254468 + 0.0254468i
\(639\) −23.2113 + 9.61444i −0.918226 + 0.380342i
\(640\) 0 0
\(641\) 19.6050 + 8.12065i 0.774350 + 0.320746i 0.734633 0.678465i \(-0.237354\pi\)
0.0397171 + 0.999211i \(0.487354\pi\)
\(642\) 43.0300 1.69826
\(643\) −7.54502 3.12525i −0.297547 0.123248i 0.228916 0.973446i \(-0.426482\pi\)
−0.526462 + 0.850198i \(0.676482\pi\)
\(644\) −1.62136 + 1.62136i −0.0638905 + 0.0638905i
\(645\) 0 0
\(646\) 2.11117 + 3.29462i 0.0830630 + 0.129625i
\(647\) 23.4331i 0.921249i −0.887595 0.460624i \(-0.847626\pi\)
0.887595 0.460624i \(-0.152374\pi\)
\(648\) 24.2188 + 24.2188i 0.951404 + 0.951404i
\(649\) −3.16081 + 7.63088i −0.124073 + 0.299538i
\(650\) 0 0
\(651\) 50.7710 + 21.0300i 1.98987 + 0.824232i
\(652\) −7.11362 + 2.94656i −0.278591 + 0.115396i
\(653\) 6.43188 + 15.5279i 0.251699 + 0.607655i 0.998341 0.0575706i \(-0.0183354\pi\)
−0.746643 + 0.665225i \(0.768335\pi\)
\(654\) 5.74192 + 5.74192i 0.224527 + 0.224527i
\(655\) 0 0
\(656\) 1.91833 0.794598i 0.0748981 0.0310238i
\(657\) 38.5933 15.9859i 1.50567 0.623668i
\(658\) −7.76814 + 18.7539i −0.302833 + 0.731105i
\(659\) 14.0972i 0.549150i −0.961566 0.274575i \(-0.911463\pi\)
0.961566 0.274575i \(-0.0885371\pi\)
\(660\) 0 0
\(661\) −7.34734 + 7.34734i −0.285779 + 0.285779i −0.835408 0.549630i \(-0.814769\pi\)
0.549630 + 0.835408i \(0.314769\pi\)
\(662\) 25.6235i 0.995886i
\(663\) −9.64991 53.8936i −0.374771 2.09305i
\(664\) 0.585422 0.0227188
\(665\) 0 0
\(666\) 19.7707 47.7308i 0.766101 1.84953i
\(667\) 0.218788 0.00847151
\(668\) 6.38959 15.4258i 0.247220 0.596843i
\(669\) 14.8187 + 35.7755i 0.572923 + 1.38316i
\(670\) 0 0
\(671\) 23.6398 + 23.6398i 0.912603 + 0.912603i
\(672\) −41.2041 + 41.2041i −1.58948 + 1.58948i
\(673\) −7.58646 18.3153i −0.292437 0.706005i 0.707563 0.706650i \(-0.249795\pi\)
−1.00000 0.000645530i \(0.999795\pi\)
\(674\) 3.93438 + 9.49842i 0.151546 + 0.365866i
\(675\) 0 0
\(676\) 8.13660i 0.312946i
\(677\) −3.09124 1.28043i −0.118806 0.0492111i 0.322489 0.946573i \(-0.395481\pi\)
−0.441295 + 0.897362i \(0.645481\pi\)
\(678\) −4.62105 4.62105i −0.177471 0.177471i
\(679\) 47.8669 1.83696
\(680\) 0 0
\(681\) 24.7314 0.947709
\(682\) −7.99658 7.99658i −0.306205 0.306205i
\(683\) 46.4553 + 19.2424i 1.77756 + 0.736290i 0.993260 + 0.115910i \(0.0369785\pi\)
0.784302 + 0.620380i \(0.213022\pi\)
\(684\) 11.8014i 0.451239i
\(685\) 0 0
\(686\) −3.28470 7.92996i −0.125410 0.302767i
\(687\) 25.4528 + 61.4484i 0.971084 + 2.34440i
\(688\) 1.46237 1.46237i 0.0557522 0.0557522i
\(689\) −5.54818 5.54818i −0.211369 0.211369i
\(690\) 0 0
\(691\) −14.8926 35.9539i −0.566540 1.36775i −0.904454 0.426572i \(-0.859721\pi\)
0.337913 0.941177i \(-0.390279\pi\)
\(692\) 6.07926 14.6766i 0.231099 0.557922i
\(693\) 57.0790 2.16825
\(694\) 5.40333 13.0448i 0.205107 0.495173i
\(695\) 0 0
\(696\) 3.51620 0.133281
\(697\) −7.34424 5.11360i −0.278183 0.193692i
\(698\) 5.27270i 0.199575i
\(699\) 47.7287 47.7287i 1.80527 1.80527i
\(700\) 0 0
\(701\) 37.5419i 1.41794i 0.705239 + 0.708969i \(0.250840\pi\)
−0.705239 + 0.708969i \(0.749160\pi\)
\(702\) 13.1343 31.7089i 0.495721 1.19678i
\(703\) −12.5438 + 5.19582i −0.473099 + 0.195964i
\(704\) 6.24404 2.58637i 0.235331 0.0974773i
\(705\) 0 0
\(706\) −4.55227 4.55227i −0.171327 0.171327i
\(707\) 0.351592 + 0.848818i 0.0132230 + 0.0319231i
\(708\) 12.3596 5.11950i 0.464501 0.192403i
\(709\) −12.7076 5.26367i −0.477245 0.197681i 0.131076 0.991372i \(-0.458157\pi\)
−0.608321 + 0.793691i \(0.708157\pi\)
\(710\) 0 0
\(711\) −17.8409 + 43.0718i −0.669087 + 1.61532i
\(712\) −24.2749 24.2749i −0.909741 0.909741i
\(713\) 2.72198i 0.101939i
\(714\) 29.9443 + 6.55547i 1.12064 + 0.245332i
\(715\) 0 0
\(716\) −21.4667 + 21.4667i −0.802246 + 0.802246i
\(717\) −16.7654 6.94446i −0.626116 0.259346i
\(718\) 6.86660 0.256259
\(719\) 0.488717 + 0.202433i 0.0182261 + 0.00754949i 0.391778 0.920060i \(-0.371860\pi\)
−0.373552 + 0.927609i \(0.621860\pi\)
\(720\) 0 0
\(721\) −42.0631 + 17.4231i −1.56651 + 0.648870i
\(722\) −9.19671 + 9.19671i −0.342266 + 0.342266i
\(723\) 28.9441 28.9441i 1.07644 1.07644i
\(724\) 30.1586 12.4921i 1.12084 0.464265i
\(725\) 0 0
\(726\) 7.47778 + 3.09740i 0.277527 + 0.114955i
\(727\) 26.7632 0.992591 0.496296 0.868154i \(-0.334693\pi\)
0.496296 + 0.868154i \(0.334693\pi\)
\(728\) 33.1875 + 13.7467i 1.23001 + 0.509487i
\(729\) 8.55986 8.55986i 0.317032 0.317032i
\(730\) 0 0
\(731\) −8.70721 1.90620i −0.322048 0.0705033i
\(732\) 54.1486i 2.00139i
\(733\) −12.2673 12.2673i −0.453105 0.453105i 0.443279 0.896384i \(-0.353815\pi\)
−0.896384 + 0.443279i \(0.853815\pi\)
\(734\) −1.95086 + 4.70978i −0.0720074 + 0.173841i
\(735\) 0 0
\(736\) −2.66658 1.10454i −0.0982916 0.0407137i
\(737\) −10.6480 + 4.41056i −0.392225 + 0.162465i
\(738\) −4.01050 9.68219i −0.147628 0.356407i
\(739\) −21.3876 21.3876i −0.786757 0.786757i 0.194204 0.980961i \(-0.437788\pi\)
−0.980961 + 0.194204i \(0.937788\pi\)
\(740\) 0 0
\(741\) −15.5673 + 6.44819i −0.571880 + 0.236880i
\(742\) 4.05856 1.68111i 0.148994 0.0617155i
\(743\) −2.74796 + 6.63416i −0.100813 + 0.243384i −0.966236 0.257657i \(-0.917049\pi\)
0.865424 + 0.501041i \(0.167049\pi\)
\(744\) 43.7457i 1.60379i
\(745\) 0 0
\(746\) −5.53430 + 5.53430i −0.202625 + 0.202625i
\(747\) 1.46869i 0.0537366i
\(748\) 13.3325 + 9.28309i 0.487486 + 0.339423i
\(749\) −60.4819 −2.20996
\(750\) 0 0
\(751\) 11.9767 28.9144i 0.437037 1.05510i −0.539930 0.841710i \(-0.681549\pi\)
0.976967 0.213390i \(-0.0684505\pi\)
\(752\) 8.03197 0.292896
\(753\) −4.22890 + 10.2095i −0.154110 + 0.372054i
\(754\) −0.549215 1.32592i −0.0200012 0.0482873i
\(755\) 0 0
\(756\) −34.9936 34.9936i −1.27271 1.27271i
\(757\) −7.61956 + 7.61956i −0.276938 + 0.276938i −0.831885 0.554948i \(-0.812738\pi\)
0.554948 + 0.831885i \(0.312738\pi\)
\(758\) −7.25323 17.5108i −0.263449 0.636022i
\(759\) 1.58471 + 3.82582i 0.0575212 + 0.138868i
\(760\) 0 0
\(761\) 33.1409i 1.20136i 0.799491 + 0.600678i \(0.205102\pi\)
−0.799491 + 0.600678i \(0.794898\pi\)
\(762\) 11.6123 + 4.80998i 0.420670 + 0.174247i
\(763\) −8.07068 8.07068i −0.292178 0.292178i
\(764\) 5.04452 0.182504
\(765\) 0 0
\(766\) 5.75182 0.207822
\(767\) −9.22123 9.22123i −0.332959 0.332959i
\(768\) −35.0247 14.5077i −1.26385 0.523502i
\(769\) 11.4864i 0.414210i −0.978319 0.207105i \(-0.933596\pi\)
0.978319 0.207105i \(-0.0664042\pi\)
\(770\) 0 0
\(771\) 28.8885 + 69.7429i 1.04039 + 2.51173i
\(772\) −6.77785 16.3632i −0.243940 0.588924i
\(773\) 2.26913 2.26913i 0.0816149 0.0816149i −0.665121 0.746736i \(-0.731620\pi\)
0.746736 + 0.665121i \(0.231620\pi\)
\(774\) −7.38087 7.38087i −0.265300 0.265300i
\(775\) 0 0
\(776\) 14.5817 + 35.2034i 0.523454 + 1.26373i
\(777\) −40.7028 + 98.2653i −1.46021 + 3.52525i
\(778\) −11.8454 −0.424678
\(779\) −1.05397 + 2.54451i −0.0377625 + 0.0911667i
\(780\) 0 0
\(781\) −10.6440 −0.380873
\(782\) 0.267608 + 1.49456i 0.00956963 + 0.0534452i
\(783\) 4.72208i 0.168754i
\(784\) 2.33364 2.33364i 0.0833443 0.0833443i
\(785\) 0 0
\(786\) 22.9515i 0.818651i
\(787\) 1.28976 3.11375i 0.0459748 0.110993i −0.899224 0.437489i \(-0.855868\pi\)
0.945199 + 0.326496i \(0.105868\pi\)
\(788\) −22.5940 + 9.35875i −0.804879 + 0.333392i
\(789\) −41.5920 + 17.2280i −1.48071 + 0.613332i
\(790\) 0 0
\(791\) 6.49523 + 6.49523i 0.230944 + 0.230944i
\(792\) 17.3880 + 41.9784i 0.617857 + 1.49164i
\(793\) −48.7661 + 20.1996i −1.73174 + 0.717308i
\(794\) 20.1518 + 8.34716i 0.715161 + 0.296230i
\(795\) 0 0
\(796\) −6.38293 + 15.4097i −0.226237 + 0.546184i
\(797\) 15.0966 + 15.0966i 0.534747 + 0.534747i 0.921981 0.387234i \(-0.126569\pi\)
−0.387234 + 0.921981i \(0.626569\pi\)
\(798\) 9.43385i 0.333955i
\(799\) −18.6771 29.1468i −0.660748 1.03114i
\(800\) 0 0
\(801\) 60.9002 60.9002i 2.15180 2.15180i
\(802\) −11.3224 4.68987i −0.399806 0.165605i
\(803\) 17.6977 0.624538
\(804\) 17.2464 + 7.14369i 0.608233 + 0.251939i
\(805\) 0 0
\(806\) 16.4960 6.83288i 0.581048 0.240678i
\(807\) 40.7907 40.7907i 1.43590 1.43590i
\(808\) −0.517153 + 0.517153i −0.0181934 + 0.0181934i
\(809\) 2.52190 1.04460i 0.0886652 0.0367263i −0.337910 0.941178i \(-0.609720\pi\)
0.426575 + 0.904452i \(0.359720\pi\)
\(810\) 0 0
\(811\) −34.4933 14.2876i −1.21122 0.501705i −0.316614 0.948554i \(-0.602546\pi\)
−0.894609 + 0.446849i \(0.852546\pi\)
\(812\) −2.06938 −0.0726211
\(813\) 16.3749 + 6.78272i 0.574294 + 0.237880i
\(814\) 15.4771 15.4771i 0.542471 0.542471i
\(815\) 0 0
\(816\) −2.13776 11.9391i −0.0748365 0.417953i
\(817\) 2.74317i 0.0959715i
\(818\) −17.9796 17.9796i −0.628641 0.628641i
\(819\) −34.4874 + 83.2600i −1.20509 + 2.90934i
\(820\) 0 0
\(821\) −39.0148 16.1605i −1.36163 0.564004i −0.422121 0.906540i \(-0.638714\pi\)
−0.939505 + 0.342536i \(0.888714\pi\)
\(822\) −6.53952 + 2.70876i −0.228092 + 0.0944788i
\(823\) 7.94473 + 19.1803i 0.276936 + 0.668582i 0.999748 0.0224627i \(-0.00715069\pi\)
−0.722812 + 0.691045i \(0.757151\pi\)
\(824\) −25.6275 25.6275i −0.892775 0.892775i
\(825\) 0 0
\(826\) 6.74543 2.79405i 0.234704 0.0972174i
\(827\) −10.6314 + 4.40367i −0.369690 + 0.153131i −0.559791 0.828634i \(-0.689119\pi\)
0.190101 + 0.981765i \(0.439119\pi\)
\(828\) 1.75238 4.23063i 0.0608996 0.147025i
\(829\) 11.7508i 0.408121i 0.978958 + 0.204060i \(0.0654139\pi\)
−0.978958 + 0.204060i \(0.934586\pi\)
\(830\) 0 0
\(831\) 0.267995 0.267995i 0.00929664 0.00929664i
\(832\) 10.6708i 0.369942i
\(833\) −13.8949 3.04191i −0.481431 0.105396i
\(834\) 15.4318 0.534361
\(835\) 0 0
\(836\) 1.91335 4.61924i 0.0661747 0.159760i
\(837\) −58.7483 −2.03064
\(838\) 0.255571 0.617003i 0.00882855 0.0213140i
\(839\) 14.0060 + 33.8134i 0.483540 + 1.16737i 0.957917 + 0.287046i \(0.0926733\pi\)
−0.474377 + 0.880322i \(0.657327\pi\)
\(840\) 0 0
\(841\) −20.3665 20.3665i −0.702292 0.702292i
\(842\) −17.8079 + 17.8079i −0.613701 + 0.613701i
\(843\) −2.14598 5.18086i −0.0739116 0.178438i
\(844\) −3.67377 8.86927i −0.126457 0.305293i
\(845\) 0 0
\(846\) 40.5390i 1.39376i
\(847\) −10.5106 4.35362i −0.361148 0.149592i
\(848\) −1.22910 1.22910i −0.0422074 0.0422074i
\(849\) −88.0312 −3.02122
\(850\) 0 0
\(851\) −5.26829 −0.180595
\(852\) 12.1904 + 12.1904i 0.417637 + 0.417637i
\(853\) 35.1787 + 14.5715i 1.20450 + 0.498918i 0.892449 0.451149i \(-0.148986\pi\)
0.312046 + 0.950067i \(0.398986\pi\)
\(854\) 29.5524i 1.01126i
\(855\) 0 0
\(856\) −18.4247 44.4811i −0.629742 1.52033i
\(857\) 7.74080 + 18.6880i 0.264421 + 0.638368i 0.999202 0.0399356i \(-0.0127153\pi\)
−0.734781 + 0.678304i \(0.762715\pi\)
\(858\) 19.2076 19.2076i 0.655736 0.655736i
\(859\) −1.84360 1.84360i −0.0629028 0.0629028i 0.674956 0.737858i \(-0.264163\pi\)
−0.737858 + 0.674956i \(0.764163\pi\)
\(860\) 0 0
\(861\) 8.25657 + 19.9331i 0.281383 + 0.679319i
\(862\) 4.66443 11.2609i 0.158871 0.383548i
\(863\) −11.2563 −0.383169 −0.191584 0.981476i \(-0.561363\pi\)
−0.191584 + 0.981476i \(0.561363\pi\)
\(864\) 23.8391 57.5526i 0.811022 1.95798i
\(865\) 0 0
\(866\) 26.1730 0.889396
\(867\) −38.3542 + 35.5202i −1.30258 + 1.20633i
\(868\) 25.7455i 0.873860i
\(869\) −13.9664 + 13.9664i −0.473777 + 0.473777i
\(870\) 0 0
\(871\) 18.1970i 0.616580i
\(872\) 3.47696 8.39412i 0.117745 0.284261i
\(873\) −88.3174 + 36.5822i −2.98909 + 1.23812i
\(874\) 0.431707 0.178819i 0.0146027 0.00604864i
\(875\) 0 0
\(876\) −20.2689 20.2689i −0.684824 0.684824i
\(877\) 2.29651 + 5.54426i 0.0775476 + 0.187216i 0.957899 0.287106i \(-0.0926932\pi\)
−0.880351 + 0.474322i \(0.842693\pi\)
\(878\) −15.3935 + 6.37620i −0.519506 + 0.215186i
\(879\) −4.02300 1.66638i −0.135692 0.0562056i
\(880\) 0 0
\(881\) 13.1380 31.7181i 0.442632 1.06861i −0.532390 0.846499i \(-0.678706\pi\)
0.975022 0.222109i \(-0.0712941\pi\)
\(882\) −11.7784 11.7784i −0.396598 0.396598i
\(883\) 11.8244i 0.397921i −0.980007 0.198961i \(-0.936243\pi\)
0.980007 0.198961i \(-0.0637566\pi\)
\(884\) −21.5966 + 13.8390i −0.726374 + 0.465456i
\(885\) 0 0
\(886\) 4.65343 4.65343i 0.156335 0.156335i
\(887\) 22.3904 + 9.27440i 0.751796 + 0.311404i 0.725474 0.688250i \(-0.241621\pi\)
0.0263216 + 0.999654i \(0.491621\pi\)
\(888\) −84.6680 −2.84127
\(889\) −16.3220 6.76077i −0.547421 0.226749i
\(890\) 0 0
\(891\) −33.6329 + 13.9312i −1.12675 + 0.466713i
\(892\) 12.8279 12.8279i 0.429511 0.429511i
\(893\) −7.53337 + 7.53337i −0.252095 + 0.252095i
\(894\) −48.8519 + 20.2351i −1.63385 + 0.676764i
\(895\) 0 0
\(896\) 29.4952 + 12.2173i 0.985367 + 0.408152i
\(897\) −6.53813 −0.218302
\(898\) 6.12683 + 2.53782i 0.204455 + 0.0846880i
\(899\) −1.73707 + 1.73707i −0.0579345 + 0.0579345i
\(900\) 0 0
\(901\) −1.60213 + 7.31828i −0.0533747 + 0.243807i
\(902\) 4.43996i 0.147835i
\(903\) 15.1953 + 15.1953i 0.505668 + 0.505668i
\(904\) −2.79823 + 6.75553i −0.0930678 + 0.224686i
\(905\) 0 0
\(906\) 0.415914 + 0.172277i 0.0138178 + 0.00572353i
\(907\) −41.3709 + 17.1364i −1.37370 + 0.569005i −0.942789 0.333390i \(-0.891808\pi\)
−0.430910 + 0.902395i \(0.641808\pi\)
\(908\) −4.43394 10.7045i −0.147145 0.355240i
\(909\) −1.29742 1.29742i −0.0430326 0.0430326i
\(910\) 0 0
\(911\) 9.19129 3.80716i 0.304521 0.126137i −0.225190 0.974315i \(-0.572300\pi\)
0.529711 + 0.848178i \(0.322300\pi\)
\(912\) −3.44865 + 1.42848i −0.114196 + 0.0473016i
\(913\) −0.238117 + 0.574865i −0.00788052 + 0.0190253i
\(914\) 13.8182i 0.457066i
\(915\) 0 0
\(916\) 22.0334 22.0334i 0.728005 0.728005i
\(917\) 32.2600i 1.06532i
\(918\) −32.2569 + 5.77575i −1.06464 + 0.190628i
\(919\) 33.3601 1.10045 0.550224 0.835017i \(-0.314542\pi\)
0.550224 + 0.835017i \(0.314542\pi\)
\(920\) 0 0
\(921\) −25.5786 + 61.7522i −0.842844 + 2.03480i
\(922\) 18.3762 0.605189
\(923\) 6.43116 15.5262i 0.211684 0.511051i
\(924\) −14.9887 36.1860i −0.493094 1.19043i
\(925\) 0 0
\(926\) −5.24059 5.24059i −0.172217 0.172217i
\(927\) 64.2934 64.2934i 2.11167 2.11167i
\(928\) −0.996842 2.40659i −0.0327229 0.0790001i
\(929\) 9.52731 + 23.0010i 0.312581 + 0.754637i 0.999608 + 0.0280049i \(0.00891541\pi\)
−0.687027 + 0.726632i \(0.741085\pi\)
\(930\) 0 0
\(931\) 4.37755i 0.143468i
\(932\) −29.2154 12.1014i −0.956982 0.396395i
\(933\) 18.8106 + 18.8106i 0.615830 + 0.615830i
\(934\) −21.9917 −0.719592
\(935\) 0 0
\(936\) −71.7390 −2.34486
\(937\) 22.0943 + 22.0943i 0.721788 + 0.721788i 0.968969 0.247181i \(-0.0795043\pi\)
−0.247181 + 0.968969i \(0.579504\pi\)
\(938\) 9.41250 + 3.89878i 0.307329 + 0.127300i
\(939\) 31.6176i 1.03180i
\(940\) 0 0
\(941\) −0.663467 1.60175i −0.0216284 0.0522156i 0.912696 0.408638i \(-0.133996\pi\)
−0.934325 + 0.356423i \(0.883996\pi\)
\(942\) −10.4367 25.1963i −0.340045 0.820940i
\(943\) −0.755666 + 0.755666i −0.0246079 + 0.0246079i
\(944\) −2.04279 2.04279i −0.0664873 0.0664873i
\(945\) 0 0
\(946\) −1.69232 4.08562i −0.0550221 0.132835i
\(947\) 4.15260 10.0253i 0.134941 0.325777i −0.841936 0.539577i \(-0.818584\pi\)
0.976877 + 0.213800i \(0.0685841\pi\)
\(948\) 31.9910 1.03902
\(949\) −10.6930 + 25.8153i −0.347111 + 0.838000i
\(950\) 0 0
\(951\) −3.46760 −0.112445
\(952\) −6.04508 33.7610i −0.195922 1.09420i
\(953\) 16.9007i 0.547466i −0.961806 0.273733i \(-0.911742\pi\)
0.961806 0.273733i \(-0.0882584\pi\)
\(954\) −6.20351 + 6.20351i −0.200846 + 0.200846i
\(955\) 0 0
\(956\) 8.50159i 0.274961i
\(957\) −1.43020 + 3.45280i −0.0462316 + 0.111613i
\(958\) 19.7623 8.18582i 0.638491 0.264472i
\(959\) 9.19177 3.80736i 0.296818 0.122946i
\(960\) 0 0
\(961\) 0.309144 + 0.309144i 0.00997239 + 0.00997239i
\(962\) 13.2248 + 31.9274i 0.426384 + 1.02938i
\(963\) 111.593 46.2233i 3.59603 1.48952i
\(964\) −17.7171 7.33864i −0.570628 0.236362i
\(965\) 0 0
\(966\) 1.40083 3.38189i 0.0450708 0.108811i
\(967\) −22.0869 22.0869i −0.710267 0.710267i 0.256324 0.966591i \(-0.417489\pi\)
−0.966591 + 0.256324i \(0.917489\pi\)
\(968\) 9.05619i 0.291077i
\(969\) 13.2030 + 9.19292i 0.424142 + 0.295319i
\(970\) 0 0
\(971\) −12.2957 + 12.2957i −0.394589 + 0.394589i −0.876319 0.481731i \(-0.840008\pi\)
0.481731 + 0.876319i \(0.340008\pi\)
\(972\) 12.0433 + 4.98849i 0.386288 + 0.160006i
\(973\) −21.6906 −0.695368
\(974\) −0.426947 0.176847i −0.0136802 0.00566654i
\(975\) 0 0
\(976\) −10.8032 + 4.47485i −0.345803 + 0.143236i
\(977\) −6.48656 + 6.48656i −0.207523 + 0.207523i −0.803214 0.595691i \(-0.796878\pi\)
0.595691 + 0.803214i \(0.296878\pi\)
\(978\) 8.69182 8.69182i 0.277934 0.277934i
\(979\) 33.7109 13.9635i 1.07740 0.446275i
\(980\) 0 0
\(981\) 21.0589 + 8.72290i 0.672360 + 0.278501i
\(982\) 19.0469 0.607811
\(983\) 34.4578 + 14.2729i 1.09903 + 0.455235i 0.857148 0.515070i \(-0.172234\pi\)
0.241886 + 0.970305i \(0.422234\pi\)
\(984\) −12.1445 + 12.1445i −0.387152 + 0.387152i
\(985\) 0 0
\(986\) −0.782993 + 1.12455i −0.0249356 + 0.0358129i
\(987\) 83.4593i 2.65654i
\(988\) 5.58194 + 5.58194i 0.177585 + 0.177585i
\(989\) −0.407332 + 0.983386i −0.0129524 + 0.0312699i
\(990\) 0 0
\(991\) −32.3988 13.4200i −1.02918 0.426301i −0.196765 0.980451i \(-0.563044\pi\)
−0.832417 + 0.554149i \(0.813044\pi\)
\(992\) 29.9408 12.4019i 0.950621 0.393760i
\(993\) −40.3158 97.3310i −1.27938 3.08871i
\(994\) 6.65312 + 6.65312i 0.211024 + 0.211024i
\(995\) 0 0
\(996\) 0.931097 0.385673i 0.0295029 0.0122205i
\(997\) 34.5139 14.2961i 1.09307 0.452763i 0.237991 0.971267i \(-0.423511\pi\)
0.855075 + 0.518505i \(0.173511\pi\)
\(998\) 10.4355 25.1934i 0.330329 0.797484i
\(999\) 113.705i 3.59747i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.c.399.5 24
5.2 odd 4 85.2.l.a.76.2 yes 24
5.3 odd 4 425.2.m.b.76.5 24
5.4 even 2 425.2.n.f.399.2 24
15.2 even 4 765.2.be.b.586.5 24
17.15 even 8 425.2.n.f.49.2 24
85.7 even 16 1445.2.a.p.1.9 12
85.27 even 16 1445.2.a.q.1.9 12
85.32 odd 8 85.2.l.a.66.2 24
85.49 even 8 inner 425.2.n.c.49.5 24
85.57 even 16 1445.2.d.j.866.8 24
85.58 even 16 7225.2.a.bs.1.4 12
85.62 even 16 1445.2.d.j.866.7 24
85.78 even 16 7225.2.a.bq.1.4 12
85.83 odd 8 425.2.m.b.151.5 24
255.32 even 8 765.2.be.b.406.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.2 24 85.32 odd 8
85.2.l.a.76.2 yes 24 5.2 odd 4
425.2.m.b.76.5 24 5.3 odd 4
425.2.m.b.151.5 24 85.83 odd 8
425.2.n.c.49.5 24 85.49 even 8 inner
425.2.n.c.399.5 24 1.1 even 1 trivial
425.2.n.f.49.2 24 17.15 even 8
425.2.n.f.399.2 24 5.4 even 2
765.2.be.b.406.5 24 255.32 even 8
765.2.be.b.586.5 24 15.2 even 4
1445.2.a.p.1.9 12 85.7 even 16
1445.2.a.q.1.9 12 85.27 even 16
1445.2.d.j.866.7 24 85.62 even 16
1445.2.d.j.866.8 24 85.57 even 16
7225.2.a.bq.1.4 12 85.78 even 16
7225.2.a.bs.1.4 12 85.58 even 16