Properties

Label 425.2.n
Level $425$
Weight $2$
Character orbit 425.n
Rep. character $\chi_{425}(49,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $104$
Newform subspaces $6$
Sturm bound $90$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 6 \)
Sturm bound: \(90\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).

Total New Old
Modular forms 200 120 80
Cusp forms 152 104 48
Eisenstein series 48 16 32

Trace form

\( 104 q - 24 q^{6} + 8 q^{9} - 16 q^{11} + 40 q^{14} - 120 q^{16} + 40 q^{19} - 40 q^{24} + 56 q^{26} + 16 q^{29} + 24 q^{31} - 24 q^{34} + 72 q^{36} - 32 q^{39} - 16 q^{41} - 120 q^{44} - 24 q^{46} - 64 q^{49}+ \cdots + 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
425.2.n.a 425.n 85.m $4$ $3.394$ \(\Q(\zeta_{8})\) None 17.2.d.a \(-4\) \(-4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(-1+\zeta_{8}-\zeta_{8}^{2})q^{2}+(-1+\zeta_{8}+\cdots)q^{3}+\cdots\)
425.2.n.b 425.n 85.m $4$ $3.394$ \(\Q(\zeta_{8})\) None 17.2.d.a \(4\) \(4\) \(0\) \(4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1-\zeta_{8}+\zeta_{8}^{2})q^{2}+(1-\zeta_{8}-\zeta_{8}^{2}+\cdots)q^{3}+\cdots\)
425.2.n.c 425.n 85.m $24$ $3.394$ None 85.2.l.a \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
425.2.n.d 425.n 85.m $24$ $3.394$ None 425.2.m.c \(0\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
425.2.n.e 425.n 85.m $24$ $3.394$ None 425.2.m.c \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
425.2.n.f 425.n 85.m $24$ $3.394$ None 85.2.l.a \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)