Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.n (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 200 | 120 | 80 |
Cusp forms | 152 | 104 | 48 |
Eisenstein series | 48 | 16 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
425.2.n.a | $4$ | $3.394$ | \(\Q(\zeta_{8})\) | None | \(-4\) | \(-4\) | \(0\) | \(-4\) | \(q+(-1+\zeta_{8}-\zeta_{8}^{2})q^{2}+(-1+\zeta_{8}+\cdots)q^{3}+\cdots\) |
425.2.n.b | $4$ | $3.394$ | \(\Q(\zeta_{8})\) | None | \(4\) | \(4\) | \(0\) | \(4\) | \(q+(1-\zeta_{8}+\zeta_{8}^{2})q^{2}+(1-\zeta_{8}-\zeta_{8}^{2}+\cdots)q^{3}+\cdots\) |
425.2.n.c | $24$ | $3.394$ | None | \(0\) | \(-8\) | \(0\) | \(0\) | ||
425.2.n.d | $24$ | $3.394$ | None | \(0\) | \(-4\) | \(0\) | \(0\) | ||
425.2.n.e | $24$ | $3.394$ | None | \(0\) | \(4\) | \(0\) | \(0\) | ||
425.2.n.f | $24$ | $3.394$ | None | \(0\) | \(8\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)