Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [425,2,Mod(26,425)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("425.26");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.m (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.39364208590\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{8})\) |
Twist minimal: | no (minimal twist has level 85) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 | −1.48843 | + | 1.48843i | −1.66813 | − | 0.690961i | − | 2.43082i | 0 | 3.51133 | − | 1.45444i | −1.02689 | − | 2.47912i | 0.641241 | + | 0.641241i | 0.183901 | + | 0.183901i | 0 | |||||
26.2 | −0.672981 | + | 0.672981i | 2.28645 | + | 0.947078i | 1.09419i | 0 | −2.17610 | + | 0.901371i | 0.204115 | + | 0.492777i | −2.08233 | − | 2.08233i | 2.20957 | + | 2.20957i | 0 | ||||||
26.3 | −0.352960 | + | 0.352960i | −0.158243 | − | 0.0655465i | 1.75084i | 0 | 0.0789888 | − | 0.0327182i | −1.48214 | − | 3.57820i | −1.32390 | − | 1.32390i | −2.10058 | − | 2.10058i | 0 | ||||||
26.4 | 0.352960 | − | 0.352960i | 0.158243 | + | 0.0655465i | 1.75084i | 0 | 0.0789888 | − | 0.0327182i | 1.48214 | + | 3.57820i | 1.32390 | + | 1.32390i | −2.10058 | − | 2.10058i | 0 | ||||||
26.5 | 0.672981 | − | 0.672981i | −2.28645 | − | 0.947078i | 1.09419i | 0 | −2.17610 | + | 0.901371i | −0.204115 | − | 0.492777i | 2.08233 | + | 2.08233i | 2.20957 | + | 2.20957i | 0 | ||||||
26.6 | 1.48843 | − | 1.48843i | 1.66813 | + | 0.690961i | − | 2.43082i | 0 | 3.51133 | − | 1.45444i | 1.02689 | + | 2.47912i | −0.641241 | − | 0.641241i | 0.183901 | + | 0.183901i | 0 | |||||
76.1 | −1.63043 | + | 1.63043i | −0.718554 | + | 1.73474i | − | 3.31660i | 0 | −1.65683 | − | 3.99993i | 1.42808 | − | 0.591528i | 2.14663 | + | 2.14663i | −0.371694 | − | 0.371694i | 0 | |||||
76.2 | −1.23200 | + | 1.23200i | 0.229112 | − | 0.553124i | − | 1.03565i | 0 | 0.399184 | + | 0.963715i | −0.958968 | + | 0.397218i | −1.18808 | − | 1.18808i | 1.86787 | + | 1.86787i | 0 | |||||
76.3 | −0.176012 | + | 0.176012i | −0.629010 | + | 1.51856i | 1.93804i | 0 | −0.156572 | − | 0.377999i | −1.32215 | + | 0.547653i | −0.693142 | − | 0.693142i | 0.210935 | + | 0.210935i | 0 | ||||||
76.4 | 0.176012 | − | 0.176012i | 0.629010 | − | 1.51856i | 1.93804i | 0 | −0.156572 | − | 0.377999i | 1.32215 | − | 0.547653i | 0.693142 | + | 0.693142i | 0.210935 | + | 0.210935i | 0 | ||||||
76.5 | 1.23200 | − | 1.23200i | −0.229112 | + | 0.553124i | − | 1.03565i | 0 | 0.399184 | + | 0.963715i | 0.958968 | − | 0.397218i | 1.18808 | + | 1.18808i | 1.86787 | + | 1.86787i | 0 | |||||
76.6 | 1.63043 | − | 1.63043i | 0.718554 | − | 1.73474i | − | 3.31660i | 0 | −1.65683 | − | 3.99993i | −1.42808 | + | 0.591528i | −2.14663 | − | 2.14663i | −0.371694 | − | 0.371694i | 0 | |||||
151.1 | −1.63043 | − | 1.63043i | −0.718554 | − | 1.73474i | 3.31660i | 0 | −1.65683 | + | 3.99993i | 1.42808 | + | 0.591528i | 2.14663 | − | 2.14663i | −0.371694 | + | 0.371694i | 0 | ||||||
151.2 | −1.23200 | − | 1.23200i | 0.229112 | + | 0.553124i | 1.03565i | 0 | 0.399184 | − | 0.963715i | −0.958968 | − | 0.397218i | −1.18808 | + | 1.18808i | 1.86787 | − | 1.86787i | 0 | ||||||
151.3 | −0.176012 | − | 0.176012i | −0.629010 | − | 1.51856i | − | 1.93804i | 0 | −0.156572 | + | 0.377999i | −1.32215 | − | 0.547653i | −0.693142 | + | 0.693142i | 0.210935 | − | 0.210935i | 0 | |||||
151.4 | 0.176012 | + | 0.176012i | 0.629010 | + | 1.51856i | − | 1.93804i | 0 | −0.156572 | + | 0.377999i | 1.32215 | + | 0.547653i | 0.693142 | − | 0.693142i | 0.210935 | − | 0.210935i | 0 | |||||
151.5 | 1.23200 | + | 1.23200i | −0.229112 | − | 0.553124i | 1.03565i | 0 | 0.399184 | − | 0.963715i | 0.958968 | + | 0.397218i | 1.18808 | − | 1.18808i | 1.86787 | − | 1.86787i | 0 | ||||||
151.6 | 1.63043 | + | 1.63043i | 0.718554 | + | 1.73474i | 3.31660i | 0 | −1.65683 | + | 3.99993i | −1.42808 | − | 0.591528i | −2.14663 | + | 2.14663i | −0.371694 | + | 0.371694i | 0 | ||||||
376.1 | −1.48843 | − | 1.48843i | −1.66813 | + | 0.690961i | 2.43082i | 0 | 3.51133 | + | 1.45444i | −1.02689 | + | 2.47912i | 0.641241 | − | 0.641241i | 0.183901 | − | 0.183901i | 0 | ||||||
376.2 | −0.672981 | − | 0.672981i | 2.28645 | − | 0.947078i | − | 1.09419i | 0 | −2.17610 | − | 0.901371i | 0.204115 | − | 0.492777i | −2.08233 | + | 2.08233i | 2.20957 | − | 2.20957i | 0 | |||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
17.d | even | 8 | 1 | inner |
85.m | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 425.2.m.e | 24 | |
5.b | even | 2 | 1 | inner | 425.2.m.e | 24 | |
5.c | odd | 4 | 2 | 85.2.m.a | ✓ | 24 | |
15.e | even | 4 | 2 | 765.2.bh.b | 24 | ||
17.d | even | 8 | 1 | inner | 425.2.m.e | 24 | |
17.e | odd | 16 | 2 | 7225.2.a.by | 24 | ||
85.k | odd | 8 | 1 | 85.2.m.a | ✓ | 24 | |
85.m | even | 8 | 1 | inner | 425.2.m.e | 24 | |
85.n | odd | 8 | 1 | 85.2.m.a | ✓ | 24 | |
85.o | even | 16 | 2 | 1445.2.b.i | 24 | ||
85.p | odd | 16 | 2 | 7225.2.a.by | 24 | ||
85.r | even | 16 | 2 | 1445.2.b.i | 24 | ||
255.v | even | 8 | 1 | 765.2.bh.b | 24 | ||
255.ba | even | 8 | 1 | 765.2.bh.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
85.2.m.a | ✓ | 24 | 5.c | odd | 4 | 2 | |
85.2.m.a | ✓ | 24 | 85.k | odd | 8 | 1 | |
85.2.m.a | ✓ | 24 | 85.n | odd | 8 | 1 | |
425.2.m.e | 24 | 1.a | even | 1 | 1 | trivial | |
425.2.m.e | 24 | 5.b | even | 2 | 1 | inner | |
425.2.m.e | 24 | 17.d | even | 8 | 1 | inner | |
425.2.m.e | 24 | 85.m | even | 8 | 1 | inner | |
765.2.bh.b | 24 | 15.e | even | 4 | 2 | ||
765.2.bh.b | 24 | 255.v | even | 8 | 1 | ||
765.2.bh.b | 24 | 255.ba | even | 8 | 1 | ||
1445.2.b.i | 24 | 85.o | even | 16 | 2 | ||
1445.2.b.i | 24 | 85.r | even | 16 | 2 | ||
7225.2.a.by | 24 | 17.e | odd | 16 | 2 | ||
7225.2.a.by | 24 | 85.p | odd | 16 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} + 58T_{2}^{20} + 1047T_{2}^{16} + 6000T_{2}^{12} + 4587T_{2}^{8} + 278T_{2}^{4} + 1 \) acting on \(S_{2}^{\mathrm{new}}(425, [\chi])\).