Properties

Label 425.2.m.b.76.5
Level $425$
Weight $2$
Character 425.76
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(26,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,-8,0,0,-24,0,-8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 76.5
Character \(\chi\) \(=\) 425.76
Dual form 425.2.m.b.151.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.528855 - 0.528855i) q^{2} +(-1.17676 + 2.84096i) q^{3} +1.44062i q^{4} +(0.880118 + 2.12479i) q^{6} +(-2.98655 + 1.23707i) q^{7} +(1.81959 + 1.81959i) q^{8} +(-4.56494 - 4.56494i) q^{9} +(1.04667 + 2.52689i) q^{11} +(-4.09275 - 1.69527i) q^{12} -4.31833i q^{13} +(-0.925222 + 2.23368i) q^{14} -0.956646 q^{16} +(3.47152 - 2.22453i) q^{17} -4.82839 q^{18} +(-0.897260 + 0.897260i) q^{19} -9.94040i q^{21} +(1.88990 + 0.782821i) q^{22} +(0.188421 + 0.454888i) q^{23} +(-7.31061 + 3.02815i) q^{24} +(-2.28377 - 2.28377i) q^{26} +(9.81779 - 4.06666i) q^{27} +(-1.78215 - 4.30250i) q^{28} +(-0.410535 - 0.170049i) q^{29} +(-2.11561 + 5.10754i) q^{31} +(-4.14511 + 4.14511i) q^{32} -8.41047 q^{33} +(0.659477 - 3.01239i) q^{34} +(6.57637 - 6.57637i) q^{36} +(-4.09469 + 9.88545i) q^{37} +0.949042i q^{38} +(12.2682 + 5.08165i) q^{39} +(-2.00526 + 0.830608i) q^{41} +(-5.25703 - 5.25703i) q^{42} +(-1.52864 - 1.52864i) q^{43} +(-3.64030 + 1.50786i) q^{44} +(0.340217 + 0.140922i) q^{46} +8.39597i q^{47} +(1.12575 - 2.71779i) q^{48} +(2.43940 - 2.43940i) q^{49} +(2.23464 + 12.4802i) q^{51} +6.22109 q^{52} +(-1.28480 + 1.28480i) q^{53} +(3.04152 - 7.34287i) q^{54} +(-7.68527 - 3.18334i) q^{56} +(-1.49321 - 3.60494i) q^{57} +(-0.307045 + 0.127182i) q^{58} +(-2.13537 - 2.13537i) q^{59} +(11.2928 - 4.67764i) q^{61} +(1.58230 + 3.82000i) q^{62} +(19.2806 + 7.98628i) q^{63} +2.47104i q^{64} +(-4.44792 + 4.44792i) q^{66} +4.21389 q^{67} +(3.20471 + 5.00116i) q^{68} -1.51404 q^{69} +(-1.48927 + 3.59542i) q^{71} -16.6127i q^{72} +(5.97807 + 2.47620i) q^{73} +(3.06247 + 7.39347i) q^{74} +(-1.29261 - 1.29261i) q^{76} +(-6.25188 - 6.25188i) q^{77} +(9.17555 - 3.80064i) q^{78} +(-2.76355 - 6.67180i) q^{79} +13.3100i q^{81} +(-0.621223 + 1.49977i) q^{82} +(-0.160866 + 0.160866i) q^{83} +14.3204 q^{84} -1.61686 q^{86} +(0.966206 - 0.966206i) q^{87} +(-2.69339 + 6.50243i) q^{88} +13.3408i q^{89} +(5.34208 + 12.8969i) q^{91} +(-0.655322 + 0.271443i) q^{92} +(-12.0207 - 12.0207i) q^{93} +(4.44025 + 4.44025i) q^{94} +(-6.89827 - 16.6539i) q^{96} +(13.6803 + 5.66657i) q^{97} -2.58018i q^{98} +(6.75711 - 16.3131i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} - 24 q^{12} - 24 q^{16} + 8 q^{17} - 8 q^{18} - 8 q^{19} + 32 q^{22} + 16 q^{23} - 8 q^{24} + 16 q^{26} - 24 q^{27} - 48 q^{28} - 8 q^{29} + 16 q^{34} - 24 q^{36} - 24 q^{37}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.528855 0.528855i 0.373957 0.373957i −0.494959 0.868916i \(-0.664817\pi\)
0.868916 + 0.494959i \(0.164817\pi\)
\(3\) −1.17676 + 2.84096i −0.679404 + 1.64023i 0.0857002 + 0.996321i \(0.472687\pi\)
−0.765105 + 0.643906i \(0.777313\pi\)
\(4\) 1.44062i 0.720312i
\(5\) 0 0
\(6\) 0.880118 + 2.12479i 0.359307 + 0.867443i
\(7\) −2.98655 + 1.23707i −1.12881 + 0.467569i −0.867376 0.497653i \(-0.834195\pi\)
−0.261434 + 0.965221i \(0.584195\pi\)
\(8\) 1.81959 + 1.81959i 0.643323 + 0.643323i
\(9\) −4.56494 4.56494i −1.52165 1.52165i
\(10\) 0 0
\(11\) 1.04667 + 2.52689i 0.315584 + 0.761886i 0.999478 + 0.0323052i \(0.0102849\pi\)
−0.683894 + 0.729581i \(0.739715\pi\)
\(12\) −4.09275 1.69527i −1.18148 0.489383i
\(13\) 4.31833i 1.19769i −0.800865 0.598845i \(-0.795627\pi\)
0.800865 0.598845i \(-0.204373\pi\)
\(14\) −0.925222 + 2.23368i −0.247276 + 0.596977i
\(15\) 0 0
\(16\) −0.956646 −0.239162
\(17\) 3.47152 2.22453i 0.841968 0.539528i
\(18\) −4.82839 −1.13806
\(19\) −0.897260 + 0.897260i −0.205846 + 0.205846i −0.802499 0.596653i \(-0.796497\pi\)
0.596653 + 0.802499i \(0.296497\pi\)
\(20\) 0 0
\(21\) 9.94040i 2.16917i
\(22\) 1.88990 + 0.782821i 0.402928 + 0.166898i
\(23\) 0.188421 + 0.454888i 0.0392884 + 0.0948506i 0.942306 0.334754i \(-0.108653\pi\)
−0.903017 + 0.429604i \(0.858653\pi\)
\(24\) −7.31061 + 3.02815i −1.49227 + 0.618119i
\(25\) 0 0
\(26\) −2.28377 2.28377i −0.447884 0.447884i
\(27\) 9.81779 4.06666i 1.88943 0.782630i
\(28\) −1.78215 4.30250i −0.336795 0.813096i
\(29\) −0.410535 0.170049i −0.0762345 0.0315774i 0.344240 0.938882i \(-0.388137\pi\)
−0.420475 + 0.907304i \(0.638137\pi\)
\(30\) 0 0
\(31\) −2.11561 + 5.10754i −0.379975 + 0.917342i 0.611994 + 0.790862i \(0.290368\pi\)
−0.991969 + 0.126479i \(0.959632\pi\)
\(32\) −4.14511 + 4.14511i −0.732759 + 0.732759i
\(33\) −8.41047 −1.46408
\(34\) 0.659477 3.01239i 0.113099 0.516620i
\(35\) 0 0
\(36\) 6.57637 6.57637i 1.09606 1.09606i
\(37\) −4.09469 + 9.88545i −0.673162 + 1.62516i 0.103043 + 0.994677i \(0.467142\pi\)
−0.776205 + 0.630481i \(0.782858\pi\)
\(38\) 0.949042i 0.153955i
\(39\) 12.2682 + 5.08165i 1.96448 + 0.813715i
\(40\) 0 0
\(41\) −2.00526 + 0.830608i −0.313170 + 0.129719i −0.533732 0.845654i \(-0.679211\pi\)
0.220562 + 0.975373i \(0.429211\pi\)
\(42\) −5.25703 5.25703i −0.811178 0.811178i
\(43\) −1.52864 1.52864i −0.233115 0.233115i 0.580876 0.813992i \(-0.302710\pi\)
−0.813992 + 0.580876i \(0.802710\pi\)
\(44\) −3.64030 + 1.50786i −0.548796 + 0.227319i
\(45\) 0 0
\(46\) 0.340217 + 0.140922i 0.0501622 + 0.0207779i
\(47\) 8.39597i 1.22468i 0.790595 + 0.612339i \(0.209771\pi\)
−0.790595 + 0.612339i \(0.790229\pi\)
\(48\) 1.12575 2.71779i 0.162487 0.392279i
\(49\) 2.43940 2.43940i 0.348485 0.348485i
\(50\) 0 0
\(51\) 2.23464 + 12.4802i 0.312912 + 1.74758i
\(52\) 6.22109 0.862710
\(53\) −1.28480 + 1.28480i −0.176481 + 0.176481i −0.789820 0.613339i \(-0.789826\pi\)
0.613339 + 0.789820i \(0.289826\pi\)
\(54\) 3.04152 7.34287i 0.413898 0.999238i
\(55\) 0 0
\(56\) −7.68527 3.18334i −1.02699 0.425392i
\(57\) −1.49321 3.60494i −0.197781 0.477486i
\(58\) −0.307045 + 0.127182i −0.0403170 + 0.0166999i
\(59\) −2.13537 2.13537i −0.278001 0.278001i 0.554309 0.832311i \(-0.312982\pi\)
−0.832311 + 0.554309i \(0.812982\pi\)
\(60\) 0 0
\(61\) 11.2928 4.67764i 1.44590 0.598910i 0.484677 0.874693i \(-0.338937\pi\)
0.961220 + 0.275783i \(0.0889371\pi\)
\(62\) 1.58230 + 3.82000i 0.200952 + 0.485141i
\(63\) 19.2806 + 7.98628i 2.42913 + 1.00618i
\(64\) 2.47104i 0.308880i
\(65\) 0 0
\(66\) −4.44792 + 4.44792i −0.547501 + 0.547501i
\(67\) 4.21389 0.514808 0.257404 0.966304i \(-0.417133\pi\)
0.257404 + 0.966304i \(0.417133\pi\)
\(68\) 3.20471 + 5.00116i 0.388629 + 0.606479i
\(69\) −1.51404 −0.182269
\(70\) 0 0
\(71\) −1.48927 + 3.59542i −0.176744 + 0.426698i −0.987280 0.158991i \(-0.949176\pi\)
0.810536 + 0.585689i \(0.199176\pi\)
\(72\) 16.6127i 1.95782i
\(73\) 5.97807 + 2.47620i 0.699680 + 0.289817i 0.704027 0.710173i \(-0.251383\pi\)
−0.00434632 + 0.999991i \(0.501383\pi\)
\(74\) 3.06247 + 7.39347i 0.356005 + 0.859473i
\(75\) 0 0
\(76\) −1.29261 1.29261i −0.148273 0.148273i
\(77\) −6.25188 6.25188i −0.712468 0.712468i
\(78\) 9.17555 3.80064i 1.03893 0.430338i
\(79\) −2.76355 6.67180i −0.310923 0.750636i −0.999671 0.0256347i \(-0.991839\pi\)
0.688748 0.725001i \(-0.258161\pi\)
\(80\) 0 0
\(81\) 13.3100i 1.47889i
\(82\) −0.621223 + 1.49977i −0.0686026 + 0.165621i
\(83\) −0.160866 + 0.160866i −0.0176574 + 0.0176574i −0.715880 0.698223i \(-0.753974\pi\)
0.698223 + 0.715880i \(0.253974\pi\)
\(84\) 14.3204 1.56248
\(85\) 0 0
\(86\) −1.61686 −0.174350
\(87\) 0.966206 0.966206i 0.103588 0.103588i
\(88\) −2.69339 + 6.50243i −0.287117 + 0.693161i
\(89\) 13.3408i 1.41413i 0.707150 + 0.707064i \(0.249981\pi\)
−0.707150 + 0.707064i \(0.750019\pi\)
\(90\) 0 0
\(91\) 5.34208 + 12.8969i 0.560002 + 1.35196i
\(92\) −0.655322 + 0.271443i −0.0683220 + 0.0282999i
\(93\) −12.0207 12.0207i −1.24649 1.24649i
\(94\) 4.44025 + 4.44025i 0.457977 + 0.457977i
\(95\) 0 0
\(96\) −6.89827 16.6539i −0.704052 1.69973i
\(97\) 13.6803 + 5.66657i 1.38902 + 0.575353i 0.946879 0.321591i \(-0.104218\pi\)
0.442145 + 0.896943i \(0.354218\pi\)
\(98\) 2.58018i 0.260637i
\(99\) 6.75711 16.3131i 0.679115 1.63953i
\(100\) 0 0
\(101\) −0.284213 −0.0282803 −0.0141401 0.999900i \(-0.504501\pi\)
−0.0141401 + 0.999900i \(0.504501\pi\)
\(102\) 7.78201 + 5.41841i 0.770534 + 0.536503i
\(103\) 14.0842 1.38775 0.693877 0.720093i \(-0.255901\pi\)
0.693877 + 0.720093i \(0.255901\pi\)
\(104\) 7.85760 7.85760i 0.770501 0.770501i
\(105\) 0 0
\(106\) 1.35894i 0.131992i
\(107\) −17.2857 7.15995i −1.67107 0.692179i −0.672228 0.740344i \(-0.734663\pi\)
−0.998839 + 0.0481649i \(0.984663\pi\)
\(108\) 5.85853 + 14.1437i 0.563738 + 1.36098i
\(109\) −3.26202 + 1.35117i −0.312444 + 0.129419i −0.533395 0.845866i \(-0.679084\pi\)
0.220951 + 0.975285i \(0.429084\pi\)
\(110\) 0 0
\(111\) −23.2657 23.2657i −2.20828 2.20828i
\(112\) 2.85707 1.18344i 0.269968 0.111824i
\(113\) −1.08741 2.62525i −0.102295 0.246963i 0.864443 0.502731i \(-0.167671\pi\)
−0.966738 + 0.255769i \(0.917671\pi\)
\(114\) −2.69619 1.11680i −0.252521 0.104598i
\(115\) 0 0
\(116\) 0.244977 0.591427i 0.0227456 0.0549126i
\(117\) −19.7129 + 19.7129i −1.82246 + 1.82246i
\(118\) −2.25860 −0.207921
\(119\) −7.61598 + 10.9382i −0.698155 + 1.00270i
\(120\) 0 0
\(121\) 2.48852 2.48852i 0.226229 0.226229i
\(122\) 3.49847 8.44606i 0.316737 0.764670i
\(123\) 6.67430i 0.601801i
\(124\) −7.35805 3.04780i −0.660772 0.273701i
\(125\) 0 0
\(126\) 14.4202 5.97306i 1.28466 0.532122i
\(127\) −3.86444 3.86444i −0.342914 0.342914i 0.514548 0.857462i \(-0.327960\pi\)
−0.857462 + 0.514548i \(0.827960\pi\)
\(128\) −6.98340 6.98340i −0.617251 0.617251i
\(129\) 6.14164 2.54395i 0.540742 0.223983i
\(130\) 0 0
\(131\) 9.21986 + 3.81899i 0.805543 + 0.333667i 0.747174 0.664628i \(-0.231410\pi\)
0.0583689 + 0.998295i \(0.481410\pi\)
\(132\) 12.1163i 1.05459i
\(133\) 1.56974 3.78969i 0.136114 0.328608i
\(134\) 2.22854 2.22854i 0.192516 0.192516i
\(135\) 0 0
\(136\) 10.3645 + 2.26901i 0.888748 + 0.194566i
\(137\) 3.07772 0.262947 0.131474 0.991320i \(-0.458029\pi\)
0.131474 + 0.991320i \(0.458029\pi\)
\(138\) −0.800709 + 0.800709i −0.0681609 + 0.0681609i
\(139\) −2.56777 + 6.19915i −0.217796 + 0.525805i −0.994582 0.103960i \(-0.966849\pi\)
0.776786 + 0.629765i \(0.216849\pi\)
\(140\) 0 0
\(141\) −23.8526 9.88006i −2.00875 0.832051i
\(142\) 1.11385 + 2.68907i 0.0934720 + 0.225661i
\(143\) 10.9119 4.51988i 0.912503 0.377971i
\(144\) 4.36704 + 4.36704i 0.363920 + 0.363920i
\(145\) 0 0
\(146\) 4.47109 1.85198i 0.370030 0.153271i
\(147\) 4.05963 + 9.80082i 0.334833 + 0.808358i
\(148\) −14.2412 5.89890i −1.17062 0.484887i
\(149\) 22.9914i 1.88353i −0.336276 0.941764i \(-0.609167\pi\)
0.336276 0.941764i \(-0.390833\pi\)
\(150\) 0 0
\(151\) 0.138411 0.138411i 0.0112638 0.0112638i −0.701452 0.712716i \(-0.747465\pi\)
0.712716 + 0.701452i \(0.247465\pi\)
\(152\) −3.26530 −0.264850
\(153\) −26.0022 5.69244i −2.10215 0.460207i
\(154\) −6.61268 −0.532865
\(155\) 0 0
\(156\) −7.32075 + 17.6738i −0.586129 + 1.41504i
\(157\) 11.8582i 0.946391i 0.880957 + 0.473196i \(0.156900\pi\)
−0.880957 + 0.473196i \(0.843100\pi\)
\(158\) −4.98993 2.06690i −0.396978 0.164434i
\(159\) −2.13815 5.16196i −0.169567 0.409370i
\(160\) 0 0
\(161\) −1.12546 1.12546i −0.0886983 0.0886983i
\(162\) 7.03907 + 7.03907i 0.553041 + 0.553041i
\(163\) 4.93787 2.04533i 0.386764 0.160203i −0.180824 0.983515i \(-0.557877\pi\)
0.567588 + 0.823312i \(0.307877\pi\)
\(164\) −1.19659 2.88883i −0.0934382 0.225580i
\(165\) 0 0
\(166\) 0.170150i 0.0132062i
\(167\) 4.43529 10.7077i 0.343213 0.828589i −0.654174 0.756344i \(-0.726984\pi\)
0.997387 0.0722453i \(-0.0230164\pi\)
\(168\) 18.0875 18.0875i 1.39548 1.39548i
\(169\) −5.64797 −0.434459
\(170\) 0 0
\(171\) 8.19188 0.626449
\(172\) 2.20220 2.20220i 0.167916 0.167916i
\(173\) −4.21988 + 10.1877i −0.320832 + 0.774556i 0.678375 + 0.734716i \(0.262685\pi\)
−0.999206 + 0.0398396i \(0.987315\pi\)
\(174\) 1.02197i 0.0774750i
\(175\) 0 0
\(176\) −1.00130 2.41734i −0.0754755 0.182214i
\(177\) 8.57932 3.55367i 0.644861 0.267110i
\(178\) 7.05538 + 7.05538i 0.528823 + 0.528823i
\(179\) 14.9009 + 14.9009i 1.11375 + 1.11375i 0.992639 + 0.121109i \(0.0386451\pi\)
0.121109 + 0.992639i \(0.461355\pi\)
\(180\) 0 0
\(181\) 8.67131 + 20.9344i 0.644533 + 1.55604i 0.820501 + 0.571645i \(0.193695\pi\)
−0.175968 + 0.984396i \(0.556305\pi\)
\(182\) 9.64579 + 3.99542i 0.714993 + 0.296160i
\(183\) 37.5869i 2.77850i
\(184\) −0.484861 + 1.17056i −0.0357444 + 0.0862947i
\(185\) 0 0
\(186\) −12.7145 −0.932269
\(187\) 9.25469 + 6.44380i 0.676770 + 0.471217i
\(188\) −12.0954 −0.882150
\(189\) −24.2906 + 24.2906i −1.76688 + 1.76688i
\(190\) 0 0
\(191\) 3.50162i 0.253368i 0.991943 + 0.126684i \(0.0404335\pi\)
−0.991943 + 0.126684i \(0.959567\pi\)
\(192\) −7.02011 2.90782i −0.506633 0.209854i
\(193\) 4.70480 + 11.3584i 0.338659 + 0.817595i 0.997845 + 0.0656152i \(0.0209010\pi\)
−0.659186 + 0.751980i \(0.729099\pi\)
\(194\) 10.2317 4.23811i 0.734593 0.304278i
\(195\) 0 0
\(196\) 3.51426 + 3.51426i 0.251018 + 0.251018i
\(197\) −15.6835 + 6.49632i −1.11740 + 0.462843i −0.863481 0.504381i \(-0.831721\pi\)
−0.253922 + 0.967225i \(0.581721\pi\)
\(198\) −5.05374 12.2008i −0.359154 0.867074i
\(199\) 10.6966 + 4.43067i 0.758260 + 0.314082i 0.728107 0.685464i \(-0.240400\pi\)
0.0301533 + 0.999545i \(0.490400\pi\)
\(200\) 0 0
\(201\) −4.95875 + 11.9715i −0.349763 + 0.844403i
\(202\) −0.150308 + 0.150308i −0.0105756 + 0.0105756i
\(203\) 1.43645 0.100819
\(204\) −17.9793 + 3.21928i −1.25880 + 0.225394i
\(205\) 0 0
\(206\) 7.44849 7.44849i 0.518961 0.518961i
\(207\) 1.21641 2.93667i 0.0845461 0.204112i
\(208\) 4.13111i 0.286441i
\(209\) −3.20642 1.32814i −0.221792 0.0918694i
\(210\) 0 0
\(211\) 6.15655 2.55013i 0.423834 0.175558i −0.160563 0.987026i \(-0.551331\pi\)
0.584397 + 0.811468i \(0.301331\pi\)
\(212\) −1.85091 1.85091i −0.127121 0.127121i
\(213\) −8.46191 8.46191i −0.579800 0.579800i
\(214\) −12.9282 + 5.35503i −0.883753 + 0.366063i
\(215\) 0 0
\(216\) 25.2640 + 10.4647i 1.71900 + 0.712033i
\(217\) 17.8711i 1.21317i
\(218\) −1.01056 + 2.43971i −0.0684438 + 0.165238i
\(219\) −14.0695 + 14.0695i −0.950732 + 0.950732i
\(220\) 0 0
\(221\) −9.60626 14.9912i −0.646187 1.00842i
\(222\) −24.6083 −1.65160
\(223\) −8.90442 + 8.90442i −0.596284 + 0.596284i −0.939322 0.343037i \(-0.888544\pi\)
0.343037 + 0.939322i \(0.388544\pi\)
\(224\) 7.25180 17.5074i 0.484531 1.16976i
\(225\) 0 0
\(226\) −1.96346 0.813292i −0.130607 0.0540994i
\(227\) −3.07779 7.43044i −0.204280 0.493176i 0.788224 0.615389i \(-0.211001\pi\)
−0.992504 + 0.122213i \(0.961001\pi\)
\(228\) 5.19336 2.15116i 0.343939 0.142464i
\(229\) −15.2944 15.2944i −1.01068 1.01068i −0.999942 0.0107373i \(-0.996582\pi\)
−0.0107373 0.999942i \(-0.503418\pi\)
\(230\) 0 0
\(231\) 25.1183 10.4043i 1.65266 0.684555i
\(232\) −0.437587 1.05643i −0.0287290 0.0693579i
\(233\) 20.2797 + 8.40011i 1.32857 + 0.550310i 0.930246 0.366937i \(-0.119594\pi\)
0.398320 + 0.917247i \(0.369594\pi\)
\(234\) 20.8506i 1.36304i
\(235\) 0 0
\(236\) 3.07626 3.07626i 0.200248 0.200248i
\(237\) 22.2063 1.44246
\(238\) 1.75697 + 9.81247i 0.113888 + 0.636048i
\(239\) 5.90132 0.381725 0.190862 0.981617i \(-0.438872\pi\)
0.190862 + 0.981617i \(0.438872\pi\)
\(240\) 0 0
\(241\) 5.09407 12.2982i 0.328138 0.792195i −0.670593 0.741826i \(-0.733960\pi\)
0.998731 0.0503696i \(-0.0160399\pi\)
\(242\) 2.63214i 0.169200i
\(243\) −8.35977 3.46273i −0.536279 0.222134i
\(244\) 6.73872 + 16.2687i 0.431402 + 1.04150i
\(245\) 0 0
\(246\) −3.52974 3.52974i −0.225048 0.225048i
\(247\) 3.87467 + 3.87467i 0.246539 + 0.246539i
\(248\) −13.1432 + 5.44409i −0.834594 + 0.345700i
\(249\) −0.267712 0.646315i −0.0169656 0.0409586i
\(250\) 0 0
\(251\) 3.59367i 0.226831i 0.993548 + 0.113415i \(0.0361790\pi\)
−0.993548 + 0.113415i \(0.963821\pi\)
\(252\) −11.5052 + 27.7761i −0.724761 + 1.74973i
\(253\) −0.952236 + 0.952236i −0.0598666 + 0.0598666i
\(254\) −4.08746 −0.256470
\(255\) 0 0
\(256\) −12.3285 −0.770531
\(257\) 17.3588 17.3588i 1.08281 1.08281i 0.0865680 0.996246i \(-0.472410\pi\)
0.996246 0.0865680i \(-0.0275900\pi\)
\(258\) 1.90266 4.59342i 0.118454 0.285974i
\(259\) 34.5888i 2.14924i
\(260\) 0 0
\(261\) 1.09781 + 2.65034i 0.0679524 + 0.164052i
\(262\) 6.89567 2.85628i 0.426016 0.176462i
\(263\) −10.3521 10.3521i −0.638340 0.638340i 0.311806 0.950146i \(-0.399066\pi\)
−0.950146 + 0.311806i \(0.899066\pi\)
\(264\) −15.3036 15.3036i −0.941873 0.941873i
\(265\) 0 0
\(266\) −1.17403 2.83436i −0.0719845 0.173786i
\(267\) −37.9008 15.6990i −2.31949 0.960764i
\(268\) 6.07063i 0.370823i
\(269\) −7.17904 + 17.3317i −0.437714 + 1.05673i 0.539023 + 0.842291i \(0.318794\pi\)
−0.976736 + 0.214443i \(0.931206\pi\)
\(270\) 0 0
\(271\) 5.76388 0.350131 0.175065 0.984557i \(-0.443986\pi\)
0.175065 + 0.984557i \(0.443986\pi\)
\(272\) −3.32102 + 2.12809i −0.201366 + 0.129034i
\(273\) −42.9259 −2.59800
\(274\) 1.62767 1.62767i 0.0983311 0.0983311i
\(275\) 0 0
\(276\) 2.18117i 0.131291i
\(277\) −0.113870 0.0471663i −0.00684176 0.00283395i 0.379260 0.925290i \(-0.376179\pi\)
−0.386102 + 0.922456i \(0.626179\pi\)
\(278\) 1.92047 + 4.63643i 0.115182 + 0.278075i
\(279\) 32.9733 13.6580i 1.97406 0.817682i
\(280\) 0 0
\(281\) −1.28950 1.28950i −0.0769253 0.0769253i 0.667597 0.744523i \(-0.267323\pi\)
−0.744523 + 0.667597i \(0.767323\pi\)
\(282\) −17.8397 + 7.38944i −1.06234 + 0.440035i
\(283\) −10.9554 26.4486i −0.651229 1.57221i −0.810996 0.585052i \(-0.801074\pi\)
0.159767 0.987155i \(-0.448926\pi\)
\(284\) −5.17965 2.14548i −0.307355 0.127311i
\(285\) 0 0
\(286\) 3.38048 8.16120i 0.199892 0.482582i
\(287\) 4.96130 4.96130i 0.292856 0.292856i
\(288\) 37.8444 2.23000
\(289\) 7.10292 15.4450i 0.417819 0.908530i
\(290\) 0 0
\(291\) −32.1969 + 32.1969i −1.88742 + 1.88742i
\(292\) −3.56727 + 8.61216i −0.208759 + 0.503988i
\(293\) 1.41607i 0.0827278i −0.999144 0.0413639i \(-0.986830\pi\)
0.999144 0.0413639i \(-0.0131703\pi\)
\(294\) 7.33017 + 3.03626i 0.427504 + 0.177078i
\(295\) 0 0
\(296\) −25.4381 + 10.5368i −1.47856 + 0.612440i
\(297\) 20.5520 + 20.5520i 1.19255 + 1.19255i
\(298\) −12.1591 12.1591i −0.704358 0.704358i
\(299\) 1.96435 0.813662i 0.113602 0.0470553i
\(300\) 0 0
\(301\) 6.45639 + 2.67433i 0.372140 + 0.154146i
\(302\) 0.146399i 0.00842433i
\(303\) 0.334452 0.807438i 0.0192138 0.0463861i
\(304\) 0.858361 0.858361i 0.0492304 0.0492304i
\(305\) 0 0
\(306\) −16.7619 + 10.7409i −0.958212 + 0.614017i
\(307\) 21.7364 1.24056 0.620281 0.784379i \(-0.287018\pi\)
0.620281 + 0.784379i \(0.287018\pi\)
\(308\) 9.00661 9.00661i 0.513199 0.513199i
\(309\) −16.5737 + 40.0125i −0.942846 + 2.27623i
\(310\) 0 0
\(311\) 7.99250 + 3.31060i 0.453213 + 0.187727i 0.597600 0.801794i \(-0.296121\pi\)
−0.144387 + 0.989521i \(0.546121\pi\)
\(312\) 13.0766 + 31.5696i 0.740315 + 1.78728i
\(313\) −9.49936 + 3.93476i −0.536936 + 0.222406i −0.634638 0.772810i \(-0.718851\pi\)
0.0977022 + 0.995216i \(0.468851\pi\)
\(314\) 6.27130 + 6.27130i 0.353910 + 0.353910i
\(315\) 0 0
\(316\) 9.61155 3.98123i 0.540692 0.223962i
\(317\) 0.431538 + 1.04183i 0.0242376 + 0.0585147i 0.935535 0.353234i \(-0.114918\pi\)
−0.911297 + 0.411749i \(0.864918\pi\)
\(318\) −3.86070 1.59916i −0.216497 0.0896762i
\(319\) 1.21536i 0.0680473i
\(320\) 0 0
\(321\) 40.6822 40.6822i 2.27066 2.27066i
\(322\) −1.19041 −0.0663387
\(323\) −1.11887 + 5.11084i −0.0622559 + 0.284375i
\(324\) −19.1747 −1.06526
\(325\) 0 0
\(326\) 1.52974 3.69311i 0.0847242 0.204542i
\(327\) 10.8573i 0.600407i
\(328\) −5.16013 2.13740i −0.284921 0.118018i
\(329\) −10.3864 25.0750i −0.572621 1.38243i
\(330\) 0 0
\(331\) −24.2254 24.2254i −1.33155 1.33155i −0.903984 0.427567i \(-0.859371\pi\)
−0.427567 0.903984i \(-0.640629\pi\)
\(332\) −0.231748 0.231748i −0.0127188 0.0127188i
\(333\) 63.8185 26.4345i 3.49723 1.44860i
\(334\) −3.31722 8.00847i −0.181510 0.438204i
\(335\) 0 0
\(336\) 9.50945i 0.518783i
\(337\) 5.26046 12.6999i 0.286556 0.691807i −0.713404 0.700753i \(-0.752848\pi\)
0.999960 + 0.00894611i \(0.00284767\pi\)
\(338\) −2.98696 + 2.98696i −0.162469 + 0.162469i
\(339\) 8.73784 0.474574
\(340\) 0 0
\(341\) −15.1206 −0.818824
\(342\) 4.33232 4.33232i 0.234265 0.234265i
\(343\) 4.39181 10.6028i 0.237135 0.572495i
\(344\) 5.56300i 0.299937i
\(345\) 0 0
\(346\) 3.15611 + 7.61952i 0.169673 + 0.409628i
\(347\) −17.4415 + 7.22453i −0.936311 + 0.387833i −0.798069 0.602566i \(-0.794145\pi\)
−0.138242 + 0.990398i \(0.544145\pi\)
\(348\) 1.39194 + 1.39194i 0.0746158 + 0.0746158i
\(349\) 4.98501 + 4.98501i 0.266842 + 0.266842i 0.827826 0.560985i \(-0.189577\pi\)
−0.560985 + 0.827826i \(0.689577\pi\)
\(350\) 0 0
\(351\) −17.5612 42.3965i −0.937347 2.26296i
\(352\) −14.8128 6.13567i −0.789526 0.327032i
\(353\) 8.60779i 0.458146i −0.973409 0.229073i \(-0.926431\pi\)
0.973409 0.229073i \(-0.0735695\pi\)
\(354\) 2.65784 6.41659i 0.141263 0.341038i
\(355\) 0 0
\(356\) −19.2191 −1.01861
\(357\) −22.1127 34.5083i −1.17033 1.82637i
\(358\) 15.7609 0.832988
\(359\) −6.49195 + 6.49195i −0.342632 + 0.342632i −0.857356 0.514724i \(-0.827894\pi\)
0.514724 + 0.857356i \(0.327894\pi\)
\(360\) 0 0
\(361\) 17.3898i 0.915255i
\(362\) 15.6571 + 6.48540i 0.822921 + 0.340865i
\(363\) 4.14138 + 9.99818i 0.217366 + 0.524769i
\(364\) −18.5796 + 7.69592i −0.973836 + 0.403376i
\(365\) 0 0
\(366\) 19.8780 + 19.8780i 1.03904 + 1.03904i
\(367\) 6.29722 2.60840i 0.328712 0.136157i −0.212223 0.977221i \(-0.568070\pi\)
0.540935 + 0.841064i \(0.318070\pi\)
\(368\) −0.180252 0.435166i −0.00939628 0.0226846i
\(369\) 12.9456 + 5.36224i 0.673921 + 0.279147i
\(370\) 0 0
\(371\) 2.24773 5.42650i 0.116696 0.281730i
\(372\) 17.3174 17.3174i 0.897863 0.897863i
\(373\) −10.4647 −0.541841 −0.270920 0.962602i \(-0.587328\pi\)
−0.270920 + 0.962602i \(0.587328\pi\)
\(374\) 8.30223 1.48656i 0.429298 0.0768680i
\(375\) 0 0
\(376\) −15.2772 + 15.2772i −0.787863 + 0.787863i
\(377\) −0.734329 + 1.77283i −0.0378199 + 0.0913053i
\(378\) 25.6924i 1.32148i
\(379\) 23.4129 + 9.69794i 1.20264 + 0.498150i 0.891851 0.452330i \(-0.149407\pi\)
0.310789 + 0.950479i \(0.399407\pi\)
\(380\) 0 0
\(381\) 15.5263 6.43119i 0.795434 0.329480i
\(382\) 1.85185 + 1.85185i 0.0947489 + 0.0947489i
\(383\) 5.43799 + 5.43799i 0.277868 + 0.277868i 0.832258 0.554389i \(-0.187048\pi\)
−0.554389 + 0.832258i \(0.687048\pi\)
\(384\) 28.0574 11.6217i 1.43180 0.593069i
\(385\) 0 0
\(386\) 8.49511 + 3.51879i 0.432389 + 0.179102i
\(387\) 13.9563i 0.709439i
\(388\) −8.16339 + 19.7082i −0.414433 + 1.00053i
\(389\) 11.1991 11.1991i 0.567816 0.567816i −0.363700 0.931516i \(-0.618487\pi\)
0.931516 + 0.363700i \(0.118487\pi\)
\(390\) 0 0
\(391\) 1.66602 + 1.16000i 0.0842541 + 0.0586639i
\(392\) 8.87742 0.448377
\(393\) −21.6992 + 21.6992i −1.09458 + 1.09458i
\(394\) −4.85869 + 11.7299i −0.244777 + 0.590944i
\(395\) 0 0
\(396\) 23.5011 + 9.73446i 1.18097 + 0.489175i
\(397\) −11.1606 26.9440i −0.560133 1.35228i −0.909659 0.415355i \(-0.863657\pi\)
0.349526 0.936927i \(-0.386343\pi\)
\(398\) 8.00012 3.31376i 0.401010 0.166104i
\(399\) 8.91913 + 8.91913i 0.446515 + 0.446515i
\(400\) 0 0
\(401\) −15.1386 + 6.27060i −0.755984 + 0.313139i −0.727181 0.686446i \(-0.759170\pi\)
−0.0288034 + 0.999585i \(0.509170\pi\)
\(402\) 3.70872 + 8.95364i 0.184974 + 0.446567i
\(403\) 22.0561 + 9.13592i 1.09869 + 0.455092i
\(404\) 0.409445i 0.0203706i
\(405\) 0 0
\(406\) 0.759673 0.759673i 0.0377019 0.0377019i
\(407\) −29.2652 −1.45062
\(408\) −18.6427 + 26.7750i −0.922952 + 1.32556i
\(409\) 33.9971 1.68105 0.840525 0.541772i \(-0.182247\pi\)
0.840525 + 0.541772i \(0.182247\pi\)
\(410\) 0 0
\(411\) −3.62175 + 8.74367i −0.178648 + 0.431294i
\(412\) 20.2900i 0.999616i
\(413\) 9.01899 + 3.73579i 0.443796 + 0.183826i
\(414\) −0.909768 2.19637i −0.0447127 0.107946i
\(415\) 0 0
\(416\) 17.9000 + 17.9000i 0.877618 + 0.877618i
\(417\) −14.5899 14.5899i −0.714468 0.714468i
\(418\) −2.39812 + 0.993336i −0.117296 + 0.0485856i
\(419\) 0.341711 + 0.824964i 0.0166937 + 0.0403021i 0.932007 0.362441i \(-0.118057\pi\)
−0.915313 + 0.402743i \(0.868057\pi\)
\(420\) 0 0
\(421\) 33.6725i 1.64110i 0.571575 + 0.820550i \(0.306332\pi\)
−0.571575 + 0.820550i \(0.693668\pi\)
\(422\) 1.90728 4.60457i 0.0928448 0.224147i
\(423\) 38.3271 38.3271i 1.86353 1.86353i
\(424\) −4.67562 −0.227068
\(425\) 0 0
\(426\) −8.95025 −0.433641
\(427\) −27.9400 + 27.9400i −1.35211 + 1.35211i
\(428\) 10.3148 24.9021i 0.498585 1.20369i
\(429\) 36.3192i 1.75351i
\(430\) 0 0
\(431\) −6.23658 15.0564i −0.300405 0.725243i −0.999943 0.0106472i \(-0.996611\pi\)
0.699538 0.714595i \(-0.253389\pi\)
\(432\) −9.39215 + 3.89036i −0.451880 + 0.187175i
\(433\) 24.7450 + 24.7450i 1.18917 + 1.18917i 0.977298 + 0.211871i \(0.0679556\pi\)
0.211871 + 0.977298i \(0.432044\pi\)
\(434\) −9.45122 9.45122i −0.453673 0.453673i
\(435\) 0 0
\(436\) −1.94653 4.69934i −0.0932219 0.225057i
\(437\) −0.577215 0.239090i −0.0276119 0.0114372i
\(438\) 14.8815i 0.711066i
\(439\) 8.52530 20.5819i 0.406891 0.982321i −0.579060 0.815285i \(-0.696580\pi\)
0.985951 0.167036i \(-0.0534196\pi\)
\(440\) 0 0
\(441\) −22.2714 −1.06054
\(442\) −13.0085 2.84784i −0.618750 0.135458i
\(443\) 8.79907 0.418056 0.209028 0.977910i \(-0.432970\pi\)
0.209028 + 0.977910i \(0.432970\pi\)
\(444\) 33.5171 33.5171i 1.59065 1.59065i
\(445\) 0 0
\(446\) 9.41830i 0.445970i
\(447\) 65.3175 + 27.0554i 3.08941 + 1.27968i
\(448\) −3.05685 7.37988i −0.144422 0.348666i
\(449\) −8.19189 + 3.39319i −0.386599 + 0.160135i −0.567513 0.823364i \(-0.692094\pi\)
0.180914 + 0.983499i \(0.442094\pi\)
\(450\) 0 0
\(451\) −4.19771 4.19771i −0.197662 0.197662i
\(452\) 3.78200 1.56655i 0.177890 0.0736845i
\(453\) 0.230343 + 0.556098i 0.0108225 + 0.0261278i
\(454\) −5.55733 2.30192i −0.260819 0.108035i
\(455\) 0 0
\(456\) 3.84248 9.27656i 0.179941 0.434415i
\(457\) 13.0643 13.0643i 0.611120 0.611120i −0.332118 0.943238i \(-0.607763\pi\)
0.943238 + 0.332118i \(0.107763\pi\)
\(458\) −16.1770 −0.755902
\(459\) 25.0363 35.9575i 1.16859 1.67835i
\(460\) 0 0
\(461\) 17.3736 17.3736i 0.809169 0.809169i −0.175339 0.984508i \(-0.556102\pi\)
0.984508 + 0.175339i \(0.0561022\pi\)
\(462\) 7.78156 18.7863i 0.362031 0.874020i
\(463\) 9.90931i 0.460525i −0.973129 0.230262i \(-0.926042\pi\)
0.973129 0.230262i \(-0.0739584\pi\)
\(464\) 0.392737 + 0.162677i 0.0182324 + 0.00755209i
\(465\) 0 0
\(466\) 15.1675 6.28257i 0.702619 0.291034i
\(467\) 20.7918 + 20.7918i 0.962131 + 0.962131i 0.999309 0.0371777i \(-0.0118367\pi\)
−0.0371777 + 0.999309i \(0.511837\pi\)
\(468\) −28.3989 28.3989i −1.31274 1.31274i
\(469\) −12.5850 + 5.21287i −0.581121 + 0.240708i
\(470\) 0 0
\(471\) −33.6888 13.9543i −1.55230 0.642982i
\(472\) 7.77100i 0.357689i
\(473\) 2.26272 5.46269i 0.104040 0.251175i
\(474\) 11.7439 11.7439i 0.539417 0.539417i
\(475\) 0 0
\(476\) −15.7578 10.9718i −0.722259 0.502890i
\(477\) 11.7301 0.537083
\(478\) 3.12095 3.12095i 0.142749 0.142749i
\(479\) −10.9449 + 26.4232i −0.500083 + 1.20731i 0.449354 + 0.893354i \(0.351654\pi\)
−0.949438 + 0.313955i \(0.898346\pi\)
\(480\) 0 0
\(481\) 42.6886 + 17.6822i 1.94643 + 0.806239i
\(482\) −3.80993 9.19799i −0.173538 0.418957i
\(483\) 4.52176 1.87298i 0.205747 0.0852234i
\(484\) 3.58503 + 3.58503i 0.162956 + 0.162956i
\(485\) 0 0
\(486\) −6.25239 + 2.58982i −0.283614 + 0.117477i
\(487\) 0.236454 + 0.570849i 0.0107147 + 0.0258677i 0.929146 0.369712i \(-0.120544\pi\)
−0.918432 + 0.395580i \(0.870544\pi\)
\(488\) 29.0597 + 12.0369i 1.31547 + 0.544886i
\(489\) 16.4352i 0.743224i
\(490\) 0 0
\(491\) 18.0077 18.0077i 0.812675 0.812675i −0.172359 0.985034i \(-0.555139\pi\)
0.985034 + 0.172359i \(0.0551390\pi\)
\(492\) 9.61515 0.433485
\(493\) −1.80346 + 0.322919i −0.0812239 + 0.0145435i
\(494\) 4.09827 0.184390
\(495\) 0 0
\(496\) 2.02389 4.88611i 0.0908755 0.219393i
\(497\) 12.5802i 0.564301i
\(498\) −0.483388 0.200226i −0.0216611 0.00897234i
\(499\) 13.9527 + 33.6849i 0.624611 + 1.50794i 0.846234 + 0.532811i \(0.178864\pi\)
−0.221624 + 0.975132i \(0.571136\pi\)
\(500\) 0 0
\(501\) 25.2009 + 25.2009i 1.12589 + 1.12589i
\(502\) 1.90053 + 1.90053i 0.0848249 + 0.0848249i
\(503\) −27.8902 + 11.5525i −1.24356 + 0.515100i −0.904826 0.425781i \(-0.859999\pi\)
−0.338736 + 0.940881i \(0.609999\pi\)
\(504\) 20.5510 + 49.6146i 0.915416 + 2.21001i
\(505\) 0 0
\(506\) 1.00719i 0.0447751i
\(507\) 6.64632 16.0456i 0.295174 0.712612i
\(508\) 5.56721 5.56721i 0.247005 0.247005i
\(509\) −40.1857 −1.78120 −0.890600 0.454787i \(-0.849715\pi\)
−0.890600 + 0.454787i \(0.849715\pi\)
\(510\) 0 0
\(511\) −20.9171 −0.925316
\(512\) 7.44682 7.44682i 0.329106 0.329106i
\(513\) −5.16026 + 12.4580i −0.227831 + 0.550033i
\(514\) 18.3606i 0.809852i
\(515\) 0 0
\(516\) 3.66488 + 8.84780i 0.161337 + 0.389503i
\(517\) −21.2157 + 8.78783i −0.933065 + 0.386488i
\(518\) −18.2925 18.2925i −0.803725 0.803725i
\(519\) −23.9770 23.9770i −1.05247 1.05247i
\(520\) 0 0
\(521\) −13.5302 32.6647i −0.592767 1.43107i −0.880820 0.473451i \(-0.843008\pi\)
0.288053 0.957614i \(-0.406992\pi\)
\(522\) 1.98222 + 0.821064i 0.0867596 + 0.0359370i
\(523\) 24.5035i 1.07146i −0.844388 0.535732i \(-0.820036\pi\)
0.844388 0.535732i \(-0.179964\pi\)
\(524\) −5.50173 + 13.2824i −0.240344 + 0.580243i
\(525\) 0 0
\(526\) −10.9496 −0.477424
\(527\) 4.01749 + 22.4372i 0.175005 + 0.977379i
\(528\) 8.04585 0.350150
\(529\) 16.0920 16.0920i 0.699654 0.699654i
\(530\) 0 0
\(531\) 19.4957i 0.846041i
\(532\) 5.45951 + 2.26140i 0.236700 + 0.0980443i
\(533\) 3.58684 + 8.65939i 0.155363 + 0.375080i
\(534\) −28.3465 + 11.7415i −1.22667 + 0.508105i
\(535\) 0 0
\(536\) 7.66756 + 7.66756i 0.331188 + 0.331188i
\(537\) −59.8678 + 24.7981i −2.58349 + 1.07011i
\(538\) 5.36930 + 12.9626i 0.231487 + 0.558859i
\(539\) 8.71734 + 3.61084i 0.375483 + 0.155530i
\(540\) 0 0
\(541\) 9.77786 23.6058i 0.420383 1.01489i −0.561852 0.827238i \(-0.689911\pi\)
0.982235 0.187657i \(-0.0600892\pi\)
\(542\) 3.04826 3.04826i 0.130934 0.130934i
\(543\) −69.6778 −2.99016
\(544\) −5.16891 + 23.6108i −0.221615 + 1.01230i
\(545\) 0 0
\(546\) −22.7016 + 22.7016i −0.971539 + 0.971539i
\(547\) 4.50103 10.8664i 0.192450 0.464616i −0.797971 0.602696i \(-0.794093\pi\)
0.990421 + 0.138080i \(0.0440932\pi\)
\(548\) 4.43384i 0.189404i
\(549\) −72.9042 30.1979i −3.11148 1.28882i
\(550\) 0 0
\(551\) 0.520936 0.215779i 0.0221926 0.00919248i
\(552\) −2.75494 2.75494i −0.117258 0.117258i
\(553\) 16.5070 + 16.5070i 0.701947 + 0.701947i
\(554\) −0.0851647 + 0.0352764i −0.00361830 + 0.00149875i
\(555\) 0 0
\(556\) −8.93065 3.69919i −0.378744 0.156881i
\(557\) 35.6812i 1.51186i 0.654651 + 0.755931i \(0.272816\pi\)
−0.654651 + 0.755931i \(0.727184\pi\)
\(558\) 10.2150 24.6612i 0.432436 1.04399i
\(559\) −6.60117 + 6.60117i −0.279200 + 0.279200i
\(560\) 0 0
\(561\) −29.1971 + 18.7094i −1.23270 + 0.789910i
\(562\) −1.36392 −0.0575335
\(563\) 21.3003 21.3003i 0.897702 0.897702i −0.0975306 0.995233i \(-0.531094\pi\)
0.995233 + 0.0975306i \(0.0310944\pi\)
\(564\) 14.2335 34.3626i 0.599337 1.44693i
\(565\) 0 0
\(566\) −19.7813 8.19368i −0.831470 0.344406i
\(567\) −16.4654 39.7510i −0.691482 1.66939i
\(568\) −9.25206 + 3.83233i −0.388208 + 0.160801i
\(569\) −17.2524 17.2524i −0.723257 0.723257i 0.246010 0.969267i \(-0.420880\pi\)
−0.969267 + 0.246010i \(0.920880\pi\)
\(570\) 0 0
\(571\) −30.7483 + 12.7364i −1.28678 + 0.533001i −0.918024 0.396526i \(-0.870216\pi\)
−0.368755 + 0.929527i \(0.620216\pi\)
\(572\) 6.51144 + 15.7200i 0.272257 + 0.657287i
\(573\) −9.94795 4.12058i −0.415582 0.172140i
\(574\) 5.24762i 0.219032i
\(575\) 0 0
\(576\) 11.2801 11.2801i 0.470006 0.470006i
\(577\) 18.0611 0.751895 0.375947 0.926641i \(-0.377317\pi\)
0.375947 + 0.926641i \(0.377317\pi\)
\(578\) −4.41176 11.9246i −0.183505 0.495998i
\(579\) −37.8051 −1.57113
\(580\) 0 0
\(581\) 0.281432 0.679438i 0.0116758 0.0281878i
\(582\) 34.0550i 1.41163i
\(583\) −4.59131 1.90178i −0.190152 0.0787637i
\(584\) 6.37198 + 15.3833i 0.263675 + 0.636567i
\(585\) 0 0
\(586\) −0.748897 0.748897i −0.0309366 0.0309366i
\(587\) 29.5785 + 29.5785i 1.22084 + 1.22084i 0.967335 + 0.253500i \(0.0815817\pi\)
0.253500 + 0.967335i \(0.418418\pi\)
\(588\) −14.1193 + 5.84840i −0.582270 + 0.241184i
\(589\) −2.68454 6.48105i −0.110614 0.267047i
\(590\) 0 0
\(591\) 52.2008i 2.14725i
\(592\) 3.91717 9.45688i 0.160995 0.388675i
\(593\) −14.6130 + 14.6130i −0.600085 + 0.600085i −0.940335 0.340250i \(-0.889488\pi\)
0.340250 + 0.940335i \(0.389488\pi\)
\(594\) 21.7381 0.891925
\(595\) 0 0
\(596\) 33.1219 1.35673
\(597\) −25.1747 + 25.1747i −1.03033 + 1.03033i
\(598\) 0.608550 1.46917i 0.0248854 0.0600788i
\(599\) 9.21817i 0.376644i −0.982107 0.188322i \(-0.939695\pi\)
0.982107 0.188322i \(-0.0603049\pi\)
\(600\) 0 0
\(601\) −0.620216 1.49733i −0.0252991 0.0610775i 0.910725 0.413013i \(-0.135524\pi\)
−0.936024 + 0.351936i \(0.885524\pi\)
\(602\) 4.82883 2.00017i 0.196808 0.0815207i
\(603\) −19.2362 19.2362i −0.783357 0.783357i
\(604\) 0.199399 + 0.199399i 0.00811342 + 0.00811342i
\(605\) 0 0
\(606\) −0.250141 0.603894i −0.0101613 0.0245315i
\(607\) −23.1115 9.57311i −0.938068 0.388560i −0.139334 0.990245i \(-0.544496\pi\)
−0.798733 + 0.601685i \(0.794496\pi\)
\(608\) 7.43849i 0.301671i
\(609\) −1.69036 + 4.08089i −0.0684968 + 0.165366i
\(610\) 0 0
\(611\) 36.2566 1.46678
\(612\) 8.20067 37.4593i 0.331492 1.51420i
\(613\) −4.83538 −0.195299 −0.0976495 0.995221i \(-0.531132\pi\)
−0.0976495 + 0.995221i \(0.531132\pi\)
\(614\) 11.4954 11.4954i 0.463917 0.463917i
\(615\) 0 0
\(616\) 22.7517i 0.916694i
\(617\) −15.5336 6.43422i −0.625358 0.259032i 0.0474212 0.998875i \(-0.484900\pi\)
−0.672779 + 0.739843i \(0.734900\pi\)
\(618\) 12.3957 + 29.9259i 0.498629 + 1.20380i
\(619\) 11.7540 4.86865i 0.472431 0.195687i −0.133748 0.991015i \(-0.542701\pi\)
0.606179 + 0.795328i \(0.292701\pi\)
\(620\) 0 0
\(621\) 3.69975 + 3.69975i 0.148466 + 0.148466i
\(622\) 5.97771 2.47605i 0.239684 0.0992804i
\(623\) −16.5036 39.8431i −0.661201 1.59628i
\(624\) −11.7363 4.86134i −0.469829 0.194609i
\(625\) 0 0
\(626\) −2.94287 + 7.10471i −0.117621 + 0.283961i
\(627\) 7.54638 7.54638i 0.301373 0.301373i
\(628\) −17.0833 −0.681697
\(629\) 7.77569 + 43.4263i 0.310037 + 1.73152i
\(630\) 0 0
\(631\) −2.99812 + 2.99812i −0.119353 + 0.119353i −0.764261 0.644907i \(-0.776896\pi\)
0.644907 + 0.764261i \(0.276896\pi\)
\(632\) 7.11142 17.1685i 0.282877 0.682925i
\(633\) 20.4914i 0.814459i
\(634\) 0.779196 + 0.322754i 0.0309458 + 0.0128182i
\(635\) 0 0
\(636\) 7.43644 3.08028i 0.294874 0.122141i
\(637\) −10.5341 10.5341i −0.417377 0.417377i
\(638\) −0.642752 0.642752i −0.0254468 0.0254468i
\(639\) 23.2113 9.61444i 0.918226 0.380342i
\(640\) 0 0
\(641\) 19.6050 + 8.12065i 0.774350 + 0.320746i 0.734633 0.678465i \(-0.237354\pi\)
0.0397171 + 0.999211i \(0.487354\pi\)
\(642\) 43.0300i 1.69826i
\(643\) 3.12525 7.54502i 0.123248 0.297547i −0.850198 0.526462i \(-0.823518\pi\)
0.973446 + 0.228916i \(0.0735181\pi\)
\(644\) 1.62136 1.62136i 0.0638905 0.0638905i
\(645\) 0 0
\(646\) 2.11117 + 3.29462i 0.0830630 + 0.129625i
\(647\) −23.4331 −0.921249 −0.460624 0.887595i \(-0.652374\pi\)
−0.460624 + 0.887595i \(0.652374\pi\)
\(648\) −24.2188 + 24.2188i −0.951404 + 0.951404i
\(649\) 3.16081 7.63088i 0.124073 0.299538i
\(650\) 0 0
\(651\) 50.7710 + 21.0300i 1.98987 + 0.824232i
\(652\) 2.94656 + 7.11362i 0.115396 + 0.278591i
\(653\) −15.5279 + 6.43188i −0.607655 + 0.251699i −0.665225 0.746643i \(-0.731665\pi\)
0.0575706 + 0.998341i \(0.481665\pi\)
\(654\) −5.74192 5.74192i −0.224527 0.224527i
\(655\) 0 0
\(656\) 1.91833 0.794598i 0.0748981 0.0310238i
\(657\) −15.9859 38.5933i −0.623668 1.50567i
\(658\) −18.7539 7.76814i −0.731105 0.302833i
\(659\) 14.0972i 0.549150i 0.961566 + 0.274575i \(0.0885371\pi\)
−0.961566 + 0.274575i \(0.911463\pi\)
\(660\) 0 0
\(661\) −7.34734 + 7.34734i −0.285779 + 0.285779i −0.835408 0.549630i \(-0.814769\pi\)
0.549630 + 0.835408i \(0.314769\pi\)
\(662\) −25.6235 −0.995886
\(663\) 53.8936 9.64991i 2.09305 0.374771i
\(664\) −0.585422 −0.0227188
\(665\) 0 0
\(666\) 19.7707 47.7308i 0.766101 1.84953i
\(667\) 0.218788i 0.00847151i
\(668\) 15.4258 + 6.38959i 0.596843 + 0.247220i
\(669\) −14.8187 35.7755i −0.572923 1.38316i
\(670\) 0 0
\(671\) 23.6398 + 23.6398i 0.912603 + 0.912603i
\(672\) 41.2041 + 41.2041i 1.58948 + 1.58948i
\(673\) 18.3153 7.58646i 0.706005 0.292437i −0.000645530 1.00000i \(-0.500205\pi\)
0.706650 + 0.707563i \(0.250205\pi\)
\(674\) −3.93438 9.49842i −0.151546 0.365866i
\(675\) 0 0
\(676\) 8.13660i 0.312946i
\(677\) −1.28043 + 3.09124i −0.0492111 + 0.118806i −0.946573 0.322489i \(-0.895481\pi\)
0.897362 + 0.441295i \(0.145481\pi\)
\(678\) 4.62105 4.62105i 0.177471 0.177471i
\(679\) −47.8669 −1.83696
\(680\) 0 0
\(681\) 24.7314 0.947709
\(682\) −7.99658 + 7.99658i −0.306205 + 0.306205i
\(683\) −19.2424 + 46.4553i −0.736290 + 1.77756i −0.115910 + 0.993260i \(0.536978\pi\)
−0.620380 + 0.784302i \(0.713022\pi\)
\(684\) 11.8014i 0.451239i
\(685\) 0 0
\(686\) −3.28470 7.92996i −0.125410 0.302767i
\(687\) 61.4484 25.4528i 2.34440 0.971084i
\(688\) 1.46237 + 1.46237i 0.0557522 + 0.0557522i
\(689\) 5.54818 + 5.54818i 0.211369 + 0.211369i
\(690\) 0 0
\(691\) −14.8926 35.9539i −0.566540 1.36775i −0.904454 0.426572i \(-0.859721\pi\)
0.337913 0.941177i \(-0.390279\pi\)
\(692\) −14.6766 6.07926i −0.557922 0.231099i
\(693\) 57.0790i 2.16825i
\(694\) −5.40333 + 13.0448i −0.205107 + 0.495173i
\(695\) 0 0
\(696\) 3.51620 0.133281
\(697\) −5.11360 + 7.34424i −0.193692 + 0.278183i
\(698\) 5.27270 0.199575
\(699\) −47.7287 + 47.7287i −1.80527 + 1.80527i
\(700\) 0 0
\(701\) 37.5419i 1.41794i 0.705239 + 0.708969i \(0.250840\pi\)
−0.705239 + 0.708969i \(0.749160\pi\)
\(702\) −31.7089 13.1343i −1.19678 0.495721i
\(703\) −5.19582 12.5438i −0.195964 0.473099i
\(704\) −6.24404 + 2.58637i −0.235331 + 0.0974773i
\(705\) 0 0
\(706\) −4.55227 4.55227i −0.171327 0.171327i
\(707\) 0.848818 0.351592i 0.0319231 0.0132230i
\(708\) 5.11950 + 12.3596i 0.192403 + 0.464501i
\(709\) 12.7076 + 5.26367i 0.477245 + 0.197681i 0.608321 0.793691i \(-0.291843\pi\)
−0.131076 + 0.991372i \(0.541843\pi\)
\(710\) 0 0
\(711\) −17.8409 + 43.0718i −0.669087 + 1.61532i
\(712\) −24.2749 + 24.2749i −0.909741 + 0.909741i
\(713\) −2.72198 −0.101939
\(714\) −29.9443 6.55547i −1.12064 0.245332i
\(715\) 0 0
\(716\) −21.4667 + 21.4667i −0.802246 + 0.802246i
\(717\) −6.94446 + 16.7654i −0.259346 + 0.626116i
\(718\) 6.86660i 0.256259i
\(719\) −0.488717 0.202433i −0.0182261 0.00754949i 0.373552 0.927609i \(-0.378140\pi\)
−0.391778 + 0.920060i \(0.628140\pi\)
\(720\) 0 0
\(721\) −42.0631 + 17.4231i −1.56651 + 0.648870i
\(722\) 9.19671 + 9.19671i 0.342266 + 0.342266i
\(723\) 28.9441 + 28.9441i 1.07644 + 1.07644i
\(724\) −30.1586 + 12.4921i −1.12084 + 0.464265i
\(725\) 0 0
\(726\) 7.47778 + 3.09740i 0.277527 + 0.114955i
\(727\) 26.7632i 0.992591i −0.868154 0.496296i \(-0.834693\pi\)
0.868154 0.496296i \(-0.165307\pi\)
\(728\) −13.7467 + 33.1875i −0.509487 + 1.23001i
\(729\) −8.55986 + 8.55986i −0.317032 + 0.317032i
\(730\) 0 0
\(731\) −8.70721 1.90620i −0.322048 0.0705033i
\(732\) −54.1486 −2.00139
\(733\) 12.2673 12.2673i 0.453105 0.453105i −0.443279 0.896384i \(-0.646185\pi\)
0.896384 + 0.443279i \(0.146185\pi\)
\(734\) 1.95086 4.70978i 0.0720074 0.173841i
\(735\) 0 0
\(736\) −2.66658 1.10454i −0.0982916 0.0407137i
\(737\) 4.41056 + 10.6480i 0.162465 + 0.392225i
\(738\) 9.68219 4.01050i 0.356407 0.147628i
\(739\) 21.3876 + 21.3876i 0.786757 + 0.786757i 0.980961 0.194204i \(-0.0622124\pi\)
−0.194204 + 0.980961i \(0.562212\pi\)
\(740\) 0 0
\(741\) −15.5673 + 6.44819i −0.571880 + 0.236880i
\(742\) −1.68111 4.05856i −0.0617155 0.148994i
\(743\) −6.63416 2.74796i −0.243384 0.100813i 0.257657 0.966236i \(-0.417049\pi\)
−0.501041 + 0.865424i \(0.667049\pi\)
\(744\) 43.7457i 1.60379i
\(745\) 0 0
\(746\) −5.53430 + 5.53430i −0.202625 + 0.202625i
\(747\) 1.46869 0.0537366
\(748\) −9.28309 + 13.3325i −0.339423 + 0.487486i
\(749\) 60.4819 2.20996
\(750\) 0 0
\(751\) 11.9767 28.9144i 0.437037 1.05510i −0.539930 0.841710i \(-0.681549\pi\)
0.976967 0.213390i \(-0.0684505\pi\)
\(752\) 8.03197i 0.292896i
\(753\) −10.2095 4.22890i −0.372054 0.154110i
\(754\) 0.549215 + 1.32592i 0.0200012 + 0.0482873i
\(755\) 0 0
\(756\) −34.9936 34.9936i −1.27271 1.27271i
\(757\) 7.61956 + 7.61956i 0.276938 + 0.276938i 0.831885 0.554948i \(-0.187262\pi\)
−0.554948 + 0.831885i \(0.687262\pi\)
\(758\) 17.5108 7.25323i 0.636022 0.263449i
\(759\) −1.58471 3.82582i −0.0575212 0.138868i
\(760\) 0 0
\(761\) 33.1409i 1.20136i 0.799491 + 0.600678i \(0.205102\pi\)
−0.799491 + 0.600678i \(0.794898\pi\)
\(762\) 4.80998 11.6123i 0.174247 0.420670i
\(763\) 8.07068 8.07068i 0.292178 0.292178i
\(764\) −5.04452 −0.182504
\(765\) 0 0
\(766\) 5.75182 0.207822
\(767\) −9.22123 + 9.22123i −0.332959 + 0.332959i
\(768\) 14.5077 35.0247i 0.523502 1.26385i
\(769\) 11.4864i 0.414210i 0.978319 + 0.207105i \(0.0664042\pi\)
−0.978319 + 0.207105i \(0.933596\pi\)
\(770\) 0 0
\(771\) 28.8885 + 69.7429i 1.04039 + 2.51173i
\(772\) −16.3632 + 6.77785i −0.588924 + 0.243940i
\(773\) 2.26913 + 2.26913i 0.0816149 + 0.0816149i 0.746736 0.665121i \(-0.231620\pi\)
−0.665121 + 0.746736i \(0.731620\pi\)
\(774\) 7.38087 + 7.38087i 0.265300 + 0.265300i
\(775\) 0 0
\(776\) 14.5817 + 35.2034i 0.523454 + 1.26373i
\(777\) 98.2653 + 40.7028i 3.52525 + 1.46021i
\(778\) 11.8454i 0.424678i
\(779\) 1.05397 2.54451i 0.0377625 0.0911667i
\(780\) 0 0
\(781\) −10.6440 −0.380873
\(782\) 1.49456 0.267608i 0.0534452 0.00956963i
\(783\) −4.72208 −0.168754
\(784\) −2.33364 + 2.33364i −0.0833443 + 0.0833443i
\(785\) 0 0
\(786\) 22.9515i 0.818651i
\(787\) −3.11375 1.28976i −0.110993 0.0459748i 0.326496 0.945199i \(-0.394132\pi\)
−0.437489 + 0.899224i \(0.644132\pi\)
\(788\) −9.35875 22.5940i −0.333392 0.804879i
\(789\) 41.5920 17.2280i 1.48071 0.613332i
\(790\) 0 0
\(791\) 6.49523 + 6.49523i 0.230944 + 0.230944i
\(792\) 41.9784 17.3880i 1.49164 0.617857i
\(793\) −20.1996 48.7661i −0.717308 1.73174i
\(794\) −20.1518 8.34716i −0.715161 0.296230i
\(795\) 0 0
\(796\) −6.38293 + 15.4097i −0.226237 + 0.546184i
\(797\) 15.0966 15.0966i 0.534747 0.534747i −0.387234 0.921981i \(-0.626569\pi\)
0.921981 + 0.387234i \(0.126569\pi\)
\(798\) 9.43385 0.333955
\(799\) 18.6771 + 29.1468i 0.660748 + 1.03114i
\(800\) 0 0
\(801\) 60.9002 60.9002i 2.15180 2.15180i
\(802\) −4.68987 + 11.3224i −0.165605 + 0.399806i
\(803\) 17.6977i 0.624538i
\(804\) −17.2464 7.14369i −0.608233 0.251939i
\(805\) 0 0
\(806\) 16.4960 6.83288i 0.581048 0.240678i
\(807\) −40.7907 40.7907i −1.43590 1.43590i
\(808\) −0.517153 0.517153i −0.0181934 0.0181934i
\(809\) −2.52190 + 1.04460i −0.0886652 + 0.0367263i −0.426575 0.904452i \(-0.640280\pi\)
0.337910 + 0.941178i \(0.390280\pi\)
\(810\) 0 0
\(811\) −34.4933 14.2876i −1.21122 0.501705i −0.316614 0.948554i \(-0.602546\pi\)
−0.894609 + 0.446849i \(0.852546\pi\)
\(812\) 2.06938i 0.0726211i
\(813\) −6.78272 + 16.3749i −0.237880 + 0.574294i
\(814\) −15.4771 + 15.4771i −0.542471 + 0.542471i
\(815\) 0 0
\(816\) −2.13776 11.9391i −0.0748365 0.417953i
\(817\) 2.74317 0.0959715
\(818\) 17.9796 17.9796i 0.628641 0.628641i
\(819\) 34.4874 83.2600i 1.20509 2.90934i
\(820\) 0 0
\(821\) −39.0148 16.1605i −1.36163 0.564004i −0.422121 0.906540i \(-0.638714\pi\)
−0.939505 + 0.342536i \(0.888714\pi\)
\(822\) 2.70876 + 6.53952i 0.0944788 + 0.228092i
\(823\) −19.1803 + 7.94473i −0.668582 + 0.276936i −0.691045 0.722812i \(-0.742849\pi\)
0.0224627 + 0.999748i \(0.492849\pi\)
\(824\) 25.6275 + 25.6275i 0.892775 + 0.892775i
\(825\) 0 0
\(826\) 6.74543 2.79405i 0.234704 0.0972174i
\(827\) 4.40367 + 10.6314i 0.153131 + 0.369690i 0.981765 0.190101i \(-0.0608815\pi\)
−0.828634 + 0.559791i \(0.810881\pi\)
\(828\) 4.23063 + 1.75238i 0.147025 + 0.0608996i
\(829\) 11.7508i 0.408121i −0.978958 0.204060i \(-0.934586\pi\)
0.978958 0.204060i \(-0.0654139\pi\)
\(830\) 0 0
\(831\) 0.267995 0.267995i 0.00929664 0.00929664i
\(832\) 10.6708 0.369942
\(833\) 3.04191 13.8949i 0.105396 0.481431i
\(834\) −15.4318 −0.534361
\(835\) 0 0
\(836\) 1.91335 4.61924i 0.0661747 0.159760i
\(837\) 58.7483i 2.03064i
\(838\) 0.617003 + 0.255571i 0.0213140 + 0.00882855i
\(839\) −14.0060 33.8134i −0.483540 1.16737i −0.957917 0.287046i \(-0.907327\pi\)
0.474377 0.880322i \(-0.342673\pi\)
\(840\) 0 0
\(841\) −20.3665 20.3665i −0.702292 0.702292i
\(842\) 17.8079 + 17.8079i 0.613701 + 0.613701i
\(843\) 5.18086 2.14598i 0.178438 0.0739116i
\(844\) 3.67377 + 8.86927i 0.126457 + 0.305293i
\(845\) 0 0
\(846\) 40.5390i 1.39376i
\(847\) −4.35362 + 10.5106i −0.149592 + 0.361148i
\(848\) 1.22910 1.22910i 0.0422074 0.0422074i
\(849\) 88.0312 3.02122
\(850\) 0 0
\(851\) −5.26829 −0.180595
\(852\) 12.1904 12.1904i 0.417637 0.417637i
\(853\) −14.5715 + 35.1787i −0.498918 + 1.20450i 0.451149 + 0.892449i \(0.351014\pi\)
−0.950067 + 0.312046i \(0.898986\pi\)
\(854\) 29.5524i 1.01126i
\(855\) 0 0
\(856\) −18.4247 44.4811i −0.629742 1.52033i
\(857\) 18.6880 7.74080i 0.638368 0.264421i −0.0399356 0.999202i \(-0.512715\pi\)
0.678304 + 0.734781i \(0.262715\pi\)
\(858\) 19.2076 + 19.2076i 0.655736 + 0.655736i
\(859\) 1.84360 + 1.84360i 0.0629028 + 0.0629028i 0.737858 0.674956i \(-0.235837\pi\)
−0.674956 + 0.737858i \(0.735837\pi\)
\(860\) 0 0
\(861\) 8.25657 + 19.9331i 0.281383 + 0.679319i
\(862\) −11.2609 4.66443i −0.383548 0.158871i
\(863\) 11.2563i 0.383169i −0.981476 0.191584i \(-0.938637\pi\)
0.981476 0.191584i \(-0.0613626\pi\)
\(864\) −23.8391 + 57.5526i −0.811022 + 1.95798i
\(865\) 0 0
\(866\) 26.1730 0.889396
\(867\) 35.5202 + 38.3542i 1.20633 + 1.30258i
\(868\) 25.7455 0.873860
\(869\) 13.9664 13.9664i 0.473777 0.473777i
\(870\) 0 0
\(871\) 18.1970i 0.616580i
\(872\) −8.39412 3.47696i −0.284261 0.117745i
\(873\) −36.5822 88.3174i −1.23812 2.98909i
\(874\) −0.431707 + 0.178819i −0.0146027 + 0.00604864i
\(875\) 0 0
\(876\) −20.2689 20.2689i −0.684824 0.684824i
\(877\) 5.54426 2.29651i 0.187216 0.0775476i −0.287106 0.957899i \(-0.592693\pi\)
0.474322 + 0.880351i \(0.342693\pi\)
\(878\) −6.37620 15.3935i −0.215186 0.519506i
\(879\) 4.02300 + 1.66638i 0.135692 + 0.0562056i
\(880\) 0 0
\(881\) 13.1380 31.7181i 0.442632 1.06861i −0.532390 0.846499i \(-0.678706\pi\)
0.975022 0.222109i \(-0.0712941\pi\)
\(882\) −11.7784 + 11.7784i −0.396598 + 0.396598i
\(883\) 11.8244 0.397921 0.198961 0.980007i \(-0.436243\pi\)
0.198961 + 0.980007i \(0.436243\pi\)
\(884\) 21.5966 13.8390i 0.726374 0.465456i
\(885\) 0 0
\(886\) 4.65343 4.65343i 0.156335 0.156335i
\(887\) 9.27440 22.3904i 0.311404 0.751796i −0.688250 0.725474i \(-0.741621\pi\)
0.999654 0.0263216i \(-0.00837938\pi\)
\(888\) 84.6680i 2.84127i
\(889\) 16.3220 + 6.76077i 0.547421 + 0.226749i
\(890\) 0 0
\(891\) −33.6329 + 13.9312i −1.12675 + 0.466713i
\(892\) −12.8279 12.8279i −0.429511 0.429511i
\(893\) −7.53337 7.53337i −0.252095 0.252095i
\(894\) 48.8519 20.2351i 1.63385 0.676764i
\(895\) 0 0
\(896\) 29.4952 + 12.2173i 0.985367 + 0.408152i
\(897\) 6.53813i 0.218302i
\(898\) −2.53782 + 6.12683i −0.0846880 + 0.204455i
\(899\) 1.73707 1.73707i 0.0579345 0.0579345i
\(900\) 0 0
\(901\) −1.60213 + 7.31828i −0.0533747 + 0.243807i
\(902\) −4.43996 −0.147835
\(903\) −15.1953 + 15.1953i −0.505668 + 0.505668i
\(904\) 2.79823 6.75553i 0.0930678 0.224686i
\(905\) 0 0
\(906\) 0.415914 + 0.172277i 0.0138178 + 0.00572353i
\(907\) 17.1364 + 41.3709i 0.569005 + 1.37370i 0.902395 + 0.430910i \(0.141808\pi\)
−0.333390 + 0.942789i \(0.608192\pi\)
\(908\) 10.7045 4.43394i 0.355240 0.147145i
\(909\) 1.29742 + 1.29742i 0.0430326 + 0.0430326i
\(910\) 0 0
\(911\) 9.19129 3.80716i 0.304521 0.126137i −0.225190 0.974315i \(-0.572300\pi\)
0.529711 + 0.848178i \(0.322300\pi\)
\(912\) 1.42848 + 3.44865i 0.0473016 + 0.114196i
\(913\) −0.574865 0.238117i −0.0190253 0.00788052i
\(914\) 13.8182i 0.457066i
\(915\) 0 0
\(916\) 22.0334 22.0334i 0.728005 0.728005i
\(917\) −32.2600 −1.06532
\(918\) −5.77575 32.2569i −0.190628 1.06464i
\(919\) −33.3601 −1.10045 −0.550224 0.835017i \(-0.685458\pi\)
−0.550224 + 0.835017i \(0.685458\pi\)
\(920\) 0 0
\(921\) −25.5786 + 61.7522i −0.842844 + 2.03480i
\(922\) 18.3762i 0.605189i
\(923\) 15.5262 + 6.43116i 0.511051 + 0.211684i
\(924\) 14.9887 + 36.1860i 0.493094 + 1.19043i
\(925\) 0 0
\(926\) −5.24059 5.24059i −0.172217 0.172217i
\(927\) −64.2934 64.2934i −2.11167 2.11167i
\(928\) 2.40659 0.996842i 0.0790001 0.0327229i
\(929\) −9.52731 23.0010i −0.312581 0.754637i −0.999608 0.0280049i \(-0.991085\pi\)
0.687027 0.726632i \(-0.258915\pi\)
\(930\) 0 0
\(931\) 4.37755i 0.143468i
\(932\) −12.1014 + 29.2154i −0.396395 + 0.956982i
\(933\) −18.8106 + 18.8106i −0.615830 + 0.615830i
\(934\) 21.9917 0.719592
\(935\) 0 0
\(936\) −71.7390 −2.34486
\(937\) 22.0943 22.0943i 0.721788 0.721788i −0.247181 0.968969i \(-0.579504\pi\)
0.968969 + 0.247181i \(0.0795043\pi\)
\(938\) −3.89878 + 9.41250i −0.127300 + 0.307329i
\(939\) 31.6176i 1.03180i
\(940\) 0 0
\(941\) −0.663467 1.60175i −0.0216284 0.0522156i 0.912696 0.408638i \(-0.133996\pi\)
−0.934325 + 0.356423i \(0.883996\pi\)
\(942\) −25.1963 + 10.4367i −0.820940 + 0.340045i
\(943\) −0.755666 0.755666i −0.0246079 0.0246079i
\(944\) 2.04279 + 2.04279i 0.0664873 + 0.0664873i
\(945\) 0 0
\(946\) −1.69232 4.08562i −0.0550221 0.132835i
\(947\) −10.0253 4.15260i −0.325777 0.134941i 0.213800 0.976877i \(-0.431416\pi\)
−0.539577 + 0.841936i \(0.681416\pi\)
\(948\) 31.9910i 1.03902i
\(949\) 10.6930 25.8153i 0.347111 0.838000i
\(950\) 0 0
\(951\) −3.46760 −0.112445
\(952\) −33.7610 + 6.04508i −1.09420 + 0.195922i
\(953\) 16.9007 0.547466 0.273733 0.961806i \(-0.411742\pi\)
0.273733 + 0.961806i \(0.411742\pi\)
\(954\) 6.20351 6.20351i 0.200846 0.200846i
\(955\) 0 0
\(956\) 8.50159i 0.274961i
\(957\) 3.45280 + 1.43020i 0.111613 + 0.0462316i
\(958\) 8.18582 + 19.7623i 0.264472 + 0.638491i
\(959\) −9.19177 + 3.80736i −0.296818 + 0.122946i
\(960\) 0 0
\(961\) 0.309144 + 0.309144i 0.00997239 + 0.00997239i
\(962\) 31.9274 13.2248i 1.02938 0.426384i
\(963\) 46.2233 + 111.593i 1.48952 + 3.59603i
\(964\) 17.7171 + 7.33864i 0.570628 + 0.236362i
\(965\) 0 0
\(966\) 1.40083 3.38189i 0.0450708 0.108811i
\(967\) −22.0869 + 22.0869i −0.710267 + 0.710267i −0.966591 0.256324i \(-0.917489\pi\)
0.256324 + 0.966591i \(0.417489\pi\)
\(968\) 9.05619 0.291077
\(969\) −13.2030 9.19292i −0.424142 0.295319i
\(970\) 0 0
\(971\) −12.2957 + 12.2957i −0.394589 + 0.394589i −0.876319 0.481731i \(-0.840008\pi\)
0.481731 + 0.876319i \(0.340008\pi\)
\(972\) 4.98849 12.0433i 0.160006 0.386288i
\(973\) 21.6906i 0.695368i
\(974\) 0.426947 + 0.176847i 0.0136802 + 0.00566654i
\(975\) 0 0
\(976\) −10.8032 + 4.47485i −0.345803 + 0.143236i
\(977\) 6.48656 + 6.48656i 0.207523 + 0.207523i 0.803214 0.595691i \(-0.203122\pi\)
−0.595691 + 0.803214i \(0.703122\pi\)
\(978\) 8.69182 + 8.69182i 0.277934 + 0.277934i
\(979\) −33.7109 + 13.9635i −1.07740 + 0.446275i
\(980\) 0 0
\(981\) 21.0589 + 8.72290i 0.672360 + 0.278501i
\(982\) 19.0469i 0.607811i
\(983\) −14.2729 + 34.4578i −0.455235 + 1.09903i 0.515070 + 0.857148i \(0.327766\pi\)
−0.970305 + 0.241886i \(0.922234\pi\)
\(984\) 12.1445 12.1445i 0.387152 0.387152i
\(985\) 0 0
\(986\) −0.782993 + 1.12455i −0.0249356 + 0.0358129i
\(987\) 83.4593 2.65654
\(988\) −5.58194 + 5.58194i −0.177585 + 0.177585i
\(989\) 0.407332 0.983386i 0.0129524 0.0312699i
\(990\) 0 0
\(991\) −32.3988 13.4200i −1.02918 0.426301i −0.196765 0.980451i \(-0.563044\pi\)
−0.832417 + 0.554149i \(0.813044\pi\)
\(992\) −12.4019 29.9408i −0.393760 0.950621i
\(993\) 97.3310 40.3158i 3.08871 1.27938i
\(994\) −6.65312 6.65312i −0.211024 0.211024i
\(995\) 0 0
\(996\) 0.931097 0.385673i 0.0295029 0.0122205i
\(997\) −14.2961 34.5139i −0.452763 1.09307i −0.971267 0.237991i \(-0.923511\pi\)
0.518505 0.855075i \(-0.326489\pi\)
\(998\) 25.1934 + 10.4355i 0.797484 + 0.330329i
\(999\) 113.705i 3.59747i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.b.76.5 24
5.2 odd 4 425.2.n.c.399.5 24
5.3 odd 4 425.2.n.f.399.2 24
5.4 even 2 85.2.l.a.76.2 yes 24
15.14 odd 2 765.2.be.b.586.5 24
17.7 odd 16 7225.2.a.bs.1.4 12
17.10 odd 16 7225.2.a.bq.1.4 12
17.15 even 8 inner 425.2.m.b.151.5 24
85.24 odd 16 1445.2.a.p.1.9 12
85.32 odd 8 425.2.n.f.49.2 24
85.44 odd 16 1445.2.a.q.1.9 12
85.49 even 8 85.2.l.a.66.2 24
85.74 odd 16 1445.2.d.j.866.8 24
85.79 odd 16 1445.2.d.j.866.7 24
85.83 odd 8 425.2.n.c.49.5 24
255.134 odd 8 765.2.be.b.406.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.2 24 85.49 even 8
85.2.l.a.76.2 yes 24 5.4 even 2
425.2.m.b.76.5 24 1.1 even 1 trivial
425.2.m.b.151.5 24 17.15 even 8 inner
425.2.n.c.49.5 24 85.83 odd 8
425.2.n.c.399.5 24 5.2 odd 4
425.2.n.f.49.2 24 85.32 odd 8
425.2.n.f.399.2 24 5.3 odd 4
765.2.be.b.406.5 24 255.134 odd 8
765.2.be.b.586.5 24 15.14 odd 2
1445.2.a.p.1.9 12 85.24 odd 16
1445.2.a.q.1.9 12 85.44 odd 16
1445.2.d.j.866.7 24 85.79 odd 16
1445.2.d.j.866.8 24 85.74 odd 16
7225.2.a.bq.1.4 12 17.10 odd 16
7225.2.a.bs.1.4 12 17.7 odd 16