Properties

Label 425.2.m.b.376.3
Level $425$
Weight $2$
Character 425.376
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(26,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,-8,0,0,-24,0,-8,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 376.3
Character \(\chi\) \(=\) 425.376
Dual form 425.2.m.b.26.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.213325 - 0.213325i) q^{2} +(-0.980249 + 0.406032i) q^{3} -1.90899i q^{4} +(0.295728 + 0.122495i) q^{6} +(0.960473 - 2.31879i) q^{7} +(-0.833883 + 0.833883i) q^{8} +(-1.32529 + 1.32529i) q^{9} +(2.25941 + 0.935880i) q^{11} +(0.775110 + 1.87128i) q^{12} -5.61335i q^{13} +(-0.699548 + 0.289762i) q^{14} -3.46219 q^{16} +(-2.76113 + 3.06205i) q^{17} +0.565436 q^{18} +(-5.04243 - 5.04243i) q^{19} +2.66297i q^{21} +(-0.282343 - 0.681636i) q^{22} +(-0.795280 - 0.329416i) q^{23} +(0.478830 - 1.15600i) q^{24} +(-1.19747 + 1.19747i) q^{26} +(1.97910 - 4.77798i) q^{27} +(-4.42653 - 1.83353i) q^{28} +(-1.43561 - 3.46587i) q^{29} +(-2.07626 + 0.860015i) q^{31} +(2.40634 + 2.40634i) q^{32} -2.59479 q^{33} +(1.24223 - 0.0641935i) q^{34} +(2.52997 + 2.52997i) q^{36} +(-4.71693 + 1.95382i) q^{37} +2.15135i q^{38} +(2.27920 + 5.50249i) q^{39} +(4.72598 - 11.4095i) q^{41} +(0.568078 - 0.568078i) q^{42} +(1.85272 - 1.85272i) q^{43} +(1.78658 - 4.31319i) q^{44} +(0.0993804 + 0.239926i) q^{46} -2.30114i q^{47} +(3.39381 - 1.40576i) q^{48} +(0.495478 + 0.495478i) q^{49} +(1.46330 - 4.12268i) q^{51} -10.7158 q^{52} +(-1.96204 - 1.96204i) q^{53} +(-1.44145 + 0.597069i) q^{54} +(1.13268 + 2.73452i) q^{56} +(6.99022 + 2.89544i) q^{57} +(-0.433105 + 1.04561i) q^{58} +(-5.26206 + 5.26206i) q^{59} +(-0.346822 + 0.837303i) q^{61} +(0.626380 + 0.259455i) q^{62} +(1.80017 + 4.34599i) q^{63} +5.89773i q^{64} +(0.553532 + 0.553532i) q^{66} +6.69889 q^{67} +(5.84541 + 5.27096i) q^{68} +0.913326 q^{69} +(0.222439 - 0.0921372i) q^{71} -2.21028i q^{72} +(2.47116 + 5.96591i) q^{73} +(1.42304 + 0.589441i) q^{74} +(-9.62592 + 9.62592i) q^{76} +(4.34022 - 4.34022i) q^{77} +(0.687606 - 1.66003i) q^{78} +(13.5899 + 5.62912i) q^{79} -0.135560i q^{81} +(-3.44210 + 1.42577i) q^{82} +(9.82767 + 9.82767i) q^{83} +5.08358 q^{84} -0.790460 q^{86} +(2.81451 + 2.81451i) q^{87} +(-2.66450 + 1.10367i) q^{88} -0.395163i q^{89} +(-13.0162 - 5.39148i) q^{91} +(-0.628850 + 1.51818i) q^{92} +(1.68606 - 1.68606i) q^{93} +(-0.490889 + 0.490889i) q^{94} +(-3.33586 - 1.38176i) q^{96} +(-3.42855 - 8.27725i) q^{97} -0.211396i q^{98} +(-4.23471 + 1.75407i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} - 24 q^{12} - 24 q^{16} + 8 q^{17} - 8 q^{18} - 8 q^{19} + 32 q^{22} + 16 q^{23} - 8 q^{24} + 16 q^{26} - 24 q^{27} - 48 q^{28} - 8 q^{29} + 16 q^{34} - 24 q^{36} - 24 q^{37}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.213325 0.213325i −0.150843 0.150843i 0.627651 0.778495i \(-0.284016\pi\)
−0.778495 + 0.627651i \(0.784016\pi\)
\(3\) −0.980249 + 0.406032i −0.565947 + 0.234423i −0.647265 0.762265i \(-0.724087\pi\)
0.0813177 + 0.996688i \(0.474087\pi\)
\(4\) 1.90899i 0.954493i
\(5\) 0 0
\(6\) 0.295728 + 0.122495i 0.120731 + 0.0500082i
\(7\) 0.960473 2.31879i 0.363025 0.876420i −0.631830 0.775107i \(-0.717696\pi\)
0.994855 0.101312i \(-0.0323042\pi\)
\(8\) −0.833883 + 0.833883i −0.294822 + 0.294822i
\(9\) −1.32529 + 1.32529i −0.441765 + 0.441765i
\(10\) 0 0
\(11\) 2.25941 + 0.935880i 0.681239 + 0.282179i 0.696345 0.717707i \(-0.254808\pi\)
−0.0151056 + 0.999886i \(0.504808\pi\)
\(12\) 0.775110 + 1.87128i 0.223755 + 0.540192i
\(13\) 5.61335i 1.55686i −0.627729 0.778432i \(-0.716015\pi\)
0.627729 0.778432i \(-0.283985\pi\)
\(14\) −0.699548 + 0.289762i −0.186962 + 0.0774422i
\(15\) 0 0
\(16\) −3.46219 −0.865549
\(17\) −2.76113 + 3.06205i −0.669673 + 0.742656i
\(18\) 0.565436 0.133275
\(19\) −5.04243 5.04243i −1.15681 1.15681i −0.985157 0.171655i \(-0.945089\pi\)
−0.171655 0.985157i \(-0.554911\pi\)
\(20\) 0 0
\(21\) 2.66297i 0.581108i
\(22\) −0.282343 0.681636i −0.0601957 0.145325i
\(23\) −0.795280 0.329416i −0.165827 0.0686880i 0.298226 0.954495i \(-0.403605\pi\)
−0.464053 + 0.885807i \(0.653605\pi\)
\(24\) 0.478830 1.15600i 0.0977407 0.235967i
\(25\) 0 0
\(26\) −1.19747 + 1.19747i −0.234843 + 0.234843i
\(27\) 1.97910 4.77798i 0.380879 0.919522i
\(28\) −4.42653 1.83353i −0.836536 0.346505i
\(29\) −1.43561 3.46587i −0.266586 0.643597i 0.732732 0.680518i \(-0.238245\pi\)
−0.999318 + 0.0369210i \(0.988245\pi\)
\(30\) 0 0
\(31\) −2.07626 + 0.860015i −0.372907 + 0.154463i −0.561263 0.827638i \(-0.689684\pi\)
0.188356 + 0.982101i \(0.439684\pi\)
\(32\) 2.40634 + 2.40634i 0.425385 + 0.425385i
\(33\) −2.59479 −0.451694
\(34\) 1.24223 0.0641935i 0.213041 0.0110091i
\(35\) 0 0
\(36\) 2.52997 + 2.52997i 0.421661 + 0.421661i
\(37\) −4.71693 + 1.95382i −0.775459 + 0.321206i −0.735081 0.677979i \(-0.762856\pi\)
−0.0403776 + 0.999184i \(0.512856\pi\)
\(38\) 2.15135i 0.348995i
\(39\) 2.27920 + 5.50249i 0.364965 + 0.881103i
\(40\) 0 0
\(41\) 4.72598 11.4095i 0.738074 1.78187i 0.124518 0.992217i \(-0.460262\pi\)
0.613556 0.789651i \(-0.289738\pi\)
\(42\) 0.568078 0.568078i 0.0876564 0.0876564i
\(43\) 1.85272 1.85272i 0.282536 0.282536i −0.551583 0.834120i \(-0.685976\pi\)
0.834120 + 0.551583i \(0.185976\pi\)
\(44\) 1.78658 4.31319i 0.269337 0.650238i
\(45\) 0 0
\(46\) 0.0993804 + 0.239926i 0.0146528 + 0.0353751i
\(47\) 2.30114i 0.335655i −0.985816 0.167828i \(-0.946325\pi\)
0.985816 0.167828i \(-0.0536752\pi\)
\(48\) 3.39381 1.40576i 0.489855 0.202904i
\(49\) 0.495478 + 0.495478i 0.0707826 + 0.0707826i
\(50\) 0 0
\(51\) 1.46330 4.12268i 0.204904 0.577291i
\(52\) −10.7158 −1.48602
\(53\) −1.96204 1.96204i −0.269507 0.269507i 0.559394 0.828902i \(-0.311034\pi\)
−0.828902 + 0.559394i \(0.811034\pi\)
\(54\) −1.44145 + 0.597069i −0.196157 + 0.0812508i
\(55\) 0 0
\(56\) 1.13268 + 2.73452i 0.151360 + 0.365416i
\(57\) 6.99022 + 2.89544i 0.925877 + 0.383511i
\(58\) −0.433105 + 1.04561i −0.0568695 + 0.137295i
\(59\) −5.26206 + 5.26206i −0.685062 + 0.685062i −0.961136 0.276075i \(-0.910966\pi\)
0.276075 + 0.961136i \(0.410966\pi\)
\(60\) 0 0
\(61\) −0.346822 + 0.837303i −0.0444061 + 0.107206i −0.944526 0.328436i \(-0.893478\pi\)
0.900120 + 0.435642i \(0.143478\pi\)
\(62\) 0.626380 + 0.259455i 0.0795504 + 0.0329508i
\(63\) 1.80017 + 4.34599i 0.226800 + 0.547543i
\(64\) 5.89773i 0.737216i
\(65\) 0 0
\(66\) 0.553532 + 0.553532i 0.0681351 + 0.0681351i
\(67\) 6.69889 0.818399 0.409200 0.912445i \(-0.365808\pi\)
0.409200 + 0.912445i \(0.365808\pi\)
\(68\) 5.84541 + 5.27096i 0.708860 + 0.639198i
\(69\) 0.913326 0.109952
\(70\) 0 0
\(71\) 0.222439 0.0921372i 0.0263986 0.0109347i −0.369445 0.929253i \(-0.620452\pi\)
0.395844 + 0.918318i \(0.370452\pi\)
\(72\) 2.21028i 0.260484i
\(73\) 2.47116 + 5.96591i 0.289228 + 0.698257i 0.999987 0.00517825i \(-0.00164830\pi\)
−0.710759 + 0.703436i \(0.751648\pi\)
\(74\) 1.42304 + 0.589441i 0.165425 + 0.0685211i
\(75\) 0 0
\(76\) −9.62592 + 9.62592i −1.10417 + 1.10417i
\(77\) 4.34022 4.34022i 0.494614 0.494614i
\(78\) 0.687606 1.66003i 0.0778560 0.187961i
\(79\) 13.5899 + 5.62912i 1.52898 + 0.633325i 0.979366 0.202093i \(-0.0647743\pi\)
0.549615 + 0.835418i \(0.314774\pi\)
\(80\) 0 0
\(81\) 0.135560i 0.0150623i
\(82\) −3.44210 + 1.42577i −0.380117 + 0.157449i
\(83\) 9.82767 + 9.82767i 1.07873 + 1.07873i 0.996624 + 0.0821031i \(0.0261637\pi\)
0.0821031 + 0.996624i \(0.473836\pi\)
\(84\) 5.08358 0.554664
\(85\) 0 0
\(86\) −0.790460 −0.0852375
\(87\) 2.81451 + 2.81451i 0.301748 + 0.301748i
\(88\) −2.66450 + 1.10367i −0.284037 + 0.117652i
\(89\) 0.395163i 0.0418872i −0.999781 0.0209436i \(-0.993333\pi\)
0.999781 0.0209436i \(-0.00666704\pi\)
\(90\) 0 0
\(91\) −13.0162 5.39148i −1.36447 0.565181i
\(92\) −0.628850 + 1.51818i −0.0655621 + 0.158281i
\(93\) 1.68606 1.68606i 0.174836 0.174836i
\(94\) −0.490889 + 0.490889i −0.0506314 + 0.0506314i
\(95\) 0 0
\(96\) −3.33586 1.38176i −0.340465 0.141025i
\(97\) −3.42855 8.27725i −0.348116 0.840427i −0.996842 0.0794052i \(-0.974698\pi\)
0.648726 0.761022i \(-0.275302\pi\)
\(98\) 0.211396i 0.0213542i
\(99\) −4.23471 + 1.75407i −0.425604 + 0.176291i
\(100\) 0 0
\(101\) 15.2882 1.52124 0.760619 0.649199i \(-0.224896\pi\)
0.760619 + 0.649199i \(0.224896\pi\)
\(102\) −1.19163 + 0.567311i −0.117989 + 0.0561721i
\(103\) 14.7746 1.45579 0.727894 0.685690i \(-0.240499\pi\)
0.727894 + 0.685690i \(0.240499\pi\)
\(104\) 4.68088 + 4.68088i 0.458998 + 0.458998i
\(105\) 0 0
\(106\) 0.837105i 0.0813068i
\(107\) −0.562841 1.35882i −0.0544119 0.131362i 0.894336 0.447396i \(-0.147649\pi\)
−0.948748 + 0.316034i \(0.897649\pi\)
\(108\) −9.12109 3.77808i −0.877677 0.363546i
\(109\) 3.61166 8.71931i 0.345934 0.835158i −0.651157 0.758943i \(-0.725716\pi\)
0.997091 0.0762157i \(-0.0242838\pi\)
\(110\) 0 0
\(111\) 3.83046 3.83046i 0.363571 0.363571i
\(112\) −3.32535 + 8.02809i −0.314216 + 0.758584i
\(113\) −13.8222 5.72534i −1.30028 0.538595i −0.378249 0.925704i \(-0.623474\pi\)
−0.922034 + 0.387109i \(0.873474\pi\)
\(114\) −0.873517 2.10886i −0.0818124 0.197513i
\(115\) 0 0
\(116\) −6.61630 + 2.74056i −0.614308 + 0.254455i
\(117\) 7.43935 + 7.43935i 0.687768 + 0.687768i
\(118\) 2.24505 0.206674
\(119\) 4.44825 + 9.34350i 0.407771 + 0.856517i
\(120\) 0 0
\(121\) −3.54909 3.54909i −0.322645 0.322645i
\(122\) 0.252603 0.104632i 0.0228696 0.00947291i
\(123\) 13.1031i 1.18146i
\(124\) 1.64176 + 3.96355i 0.147434 + 0.355937i
\(125\) 0 0
\(126\) 0.543087 1.31113i 0.0483820 0.116804i
\(127\) −4.21071 + 4.21071i −0.373640 + 0.373640i −0.868801 0.495161i \(-0.835109\pi\)
0.495161 + 0.868801i \(0.335109\pi\)
\(128\) 6.07081 6.07081i 0.536589 0.536589i
\(129\) −1.06386 + 2.56839i −0.0936677 + 0.226134i
\(130\) 0 0
\(131\) −1.60241 3.86856i −0.140003 0.337998i 0.838290 0.545225i \(-0.183556\pi\)
−0.978293 + 0.207228i \(0.933556\pi\)
\(132\) 4.95341i 0.431139i
\(133\) −16.5354 + 6.84920i −1.43380 + 0.593901i
\(134\) −1.42904 1.42904i −0.123450 0.123450i
\(135\) 0 0
\(136\) −0.250931 4.85585i −0.0215172 0.416386i
\(137\) −7.25998 −0.620262 −0.310131 0.950694i \(-0.600373\pi\)
−0.310131 + 0.950694i \(0.600373\pi\)
\(138\) −0.194835 0.194835i −0.0165855 0.0165855i
\(139\) 9.60207 3.97731i 0.814437 0.337351i 0.0637140 0.997968i \(-0.479705\pi\)
0.750723 + 0.660617i \(0.229705\pi\)
\(140\) 0 0
\(141\) 0.934336 + 2.25569i 0.0786853 + 0.189963i
\(142\) −0.0671069 0.0277966i −0.00563149 0.00233264i
\(143\) 5.25343 12.6829i 0.439314 1.06060i
\(144\) 4.58843 4.58843i 0.382369 0.382369i
\(145\) 0 0
\(146\) 0.745517 1.79984i 0.0616994 0.148956i
\(147\) −0.686873 0.284512i −0.0566523 0.0234661i
\(148\) 3.72981 + 9.00455i 0.306588 + 0.740170i
\(149\) 6.01765i 0.492985i 0.969145 + 0.246492i \(0.0792781\pi\)
−0.969145 + 0.246492i \(0.920722\pi\)
\(150\) 0 0
\(151\) 7.36684 + 7.36684i 0.599505 + 0.599505i 0.940181 0.340676i \(-0.110656\pi\)
−0.340676 + 0.940181i \(0.610656\pi\)
\(152\) 8.40959 0.682108
\(153\) −0.398806 7.71743i −0.0322416 0.623917i
\(154\) −1.85175 −0.149218
\(155\) 0 0
\(156\) 10.5042 4.35097i 0.841006 0.348356i
\(157\) 13.4073i 1.07002i −0.844847 0.535008i \(-0.820309\pi\)
0.844847 0.535008i \(-0.179691\pi\)
\(158\) −1.69823 4.09989i −0.135104 0.326170i
\(159\) 2.71994 + 1.12664i 0.215706 + 0.0893482i
\(160\) 0 0
\(161\) −1.52769 + 1.52769i −0.120399 + 0.120399i
\(162\) −0.0289184 + 0.0289184i −0.00227204 + 0.00227204i
\(163\) −0.602777 + 1.45523i −0.0472132 + 0.113983i −0.945727 0.324963i \(-0.894648\pi\)
0.898513 + 0.438946i \(0.144648\pi\)
\(164\) −21.7806 9.02182i −1.70078 0.704486i
\(165\) 0 0
\(166\) 4.19297i 0.325438i
\(167\) 16.2648 6.73711i 1.25861 0.521333i 0.349127 0.937075i \(-0.386478\pi\)
0.909482 + 0.415742i \(0.136478\pi\)
\(168\) −2.22061 2.22061i −0.171324 0.171324i
\(169\) −18.5098 −1.42383
\(170\) 0 0
\(171\) 13.3654 1.02208
\(172\) −3.53681 3.53681i −0.269679 0.269679i
\(173\) 17.4086 7.21087i 1.32355 0.548232i 0.394741 0.918792i \(-0.370834\pi\)
0.928808 + 0.370560i \(0.120834\pi\)
\(174\) 1.20081i 0.0910333i
\(175\) 0 0
\(176\) −7.82253 3.24020i −0.589646 0.244239i
\(177\) 3.02156 7.29469i 0.227114 0.548303i
\(178\) −0.0842980 + 0.0842980i −0.00631840 + 0.00631840i
\(179\) 2.34324 2.34324i 0.175142 0.175142i −0.614092 0.789234i \(-0.710478\pi\)
0.789234 + 0.614092i \(0.210478\pi\)
\(180\) 0 0
\(181\) −14.6575 6.07133i −1.08948 0.451278i −0.235656 0.971836i \(-0.575724\pi\)
−0.853826 + 0.520558i \(0.825724\pi\)
\(182\) 1.62654 + 3.92681i 0.120567 + 0.291075i
\(183\) 0.961587i 0.0710826i
\(184\) 0.937865 0.388477i 0.0691404 0.0286389i
\(185\) 0 0
\(186\) −0.719356 −0.0527457
\(187\) −9.10425 + 4.33435i −0.665769 + 0.316959i
\(188\) −4.39284 −0.320380
\(189\) −9.17824 9.17824i −0.667619 0.667619i
\(190\) 0 0
\(191\) 27.4943i 1.98941i 0.102748 + 0.994707i \(0.467236\pi\)
−0.102748 + 0.994707i \(0.532764\pi\)
\(192\) −2.39467 5.78124i −0.172820 0.417225i
\(193\) −13.6376 5.64889i −0.981658 0.406616i −0.166619 0.986021i \(-0.553285\pi\)
−0.815040 + 0.579405i \(0.803285\pi\)
\(194\) −1.03435 + 2.49714i −0.0742618 + 0.179284i
\(195\) 0 0
\(196\) 0.945861 0.945861i 0.0675615 0.0675615i
\(197\) 0.144044 0.347754i 0.0102627 0.0247764i −0.918665 0.395037i \(-0.870732\pi\)
0.928928 + 0.370261i \(0.120732\pi\)
\(198\) 1.27756 + 0.529181i 0.0907919 + 0.0376072i
\(199\) 2.88162 + 6.95685i 0.204273 + 0.493158i 0.992503 0.122223i \(-0.0390022\pi\)
−0.788230 + 0.615381i \(0.789002\pi\)
\(200\) 0 0
\(201\) −6.56658 + 2.71996i −0.463171 + 0.191852i
\(202\) −3.26136 3.26136i −0.229469 0.229469i
\(203\) −9.41549 −0.660838
\(204\) −7.87014 2.79343i −0.551020 0.195579i
\(205\) 0 0
\(206\) −3.15180 3.15180i −0.219596 0.219596i
\(207\) 1.49055 0.617408i 0.103601 0.0429128i
\(208\) 19.4345i 1.34754i
\(209\) −6.67383 16.1120i −0.461638 1.11449i
\(210\) 0 0
\(211\) 3.32647 8.03080i 0.229003 0.552863i −0.767053 0.641584i \(-0.778278\pi\)
0.996057 + 0.0887204i \(0.0282778\pi\)
\(212\) −3.74551 + 3.74551i −0.257243 + 0.257243i
\(213\) −0.180635 + 0.180635i −0.0123769 + 0.0123769i
\(214\) −0.169802 + 0.409938i −0.0116074 + 0.0280228i
\(215\) 0 0
\(216\) 2.33394 + 5.63462i 0.158804 + 0.383387i
\(217\) 5.64043i 0.382897i
\(218\) −2.63050 + 1.08959i −0.178160 + 0.0737963i
\(219\) −4.84471 4.84471i −0.327375 0.327375i
\(220\) 0 0
\(221\) 17.1884 + 15.4992i 1.15622 + 1.04259i
\(222\) −1.63426 −0.109684
\(223\) −4.57010 4.57010i −0.306037 0.306037i 0.537333 0.843370i \(-0.319432\pi\)
−0.843370 + 0.537333i \(0.819432\pi\)
\(224\) 7.89101 3.26856i 0.527241 0.218390i
\(225\) 0 0
\(226\) 1.72726 + 4.16997i 0.114896 + 0.277382i
\(227\) −2.82763 1.17124i −0.187676 0.0777381i 0.286866 0.957971i \(-0.407386\pi\)
−0.474543 + 0.880233i \(0.657386\pi\)
\(228\) 5.52736 13.3442i 0.366058 0.883743i
\(229\) 5.34518 5.34518i 0.353219 0.353219i −0.508087 0.861306i \(-0.669647\pi\)
0.861306 + 0.508087i \(0.169647\pi\)
\(230\) 0 0
\(231\) −2.49222 + 6.01676i −0.163976 + 0.395874i
\(232\) 4.08727 + 1.69300i 0.268342 + 0.111151i
\(233\) −8.55214 20.6467i −0.560270 1.35261i −0.909551 0.415593i \(-0.863574\pi\)
0.349281 0.937018i \(-0.386426\pi\)
\(234\) 3.17400i 0.207491i
\(235\) 0 0
\(236\) 10.0452 + 10.0452i 0.653886 + 0.653886i
\(237\) −15.6071 −1.01379
\(238\) 1.04428 2.94212i 0.0676904 0.190709i
\(239\) −3.45981 −0.223797 −0.111898 0.993720i \(-0.535693\pi\)
−0.111898 + 0.993720i \(0.535693\pi\)
\(240\) 0 0
\(241\) −16.6541 + 6.89834i −1.07278 + 0.444361i −0.847972 0.530042i \(-0.822176\pi\)
−0.224810 + 0.974403i \(0.572176\pi\)
\(242\) 1.51422i 0.0973376i
\(243\) 5.99235 + 14.4668i 0.384410 + 0.928047i
\(244\) 1.59840 + 0.662079i 0.102327 + 0.0423853i
\(245\) 0 0
\(246\) 2.79521 2.79521i 0.178216 0.178216i
\(247\) −28.3049 + 28.3049i −1.80100 + 1.80100i
\(248\) 1.01421 2.44851i 0.0644022 0.155481i
\(249\) −13.6239 5.64321i −0.863381 0.357624i
\(250\) 0 0
\(251\) 24.0478i 1.51788i −0.651159 0.758941i \(-0.725717\pi\)
0.651159 0.758941i \(-0.274283\pi\)
\(252\) 8.29643 3.43649i 0.522626 0.216479i
\(253\) −1.48857 1.48857i −0.0935859 0.0935859i
\(254\) 1.79650 0.112722
\(255\) 0 0
\(256\) 9.20534 0.575334
\(257\) 10.4664 + 10.4664i 0.652873 + 0.652873i 0.953684 0.300811i \(-0.0972573\pi\)
−0.300811 + 0.953684i \(0.597257\pi\)
\(258\) 0.774848 0.320953i 0.0482399 0.0199816i
\(259\) 12.8142i 0.796233i
\(260\) 0 0
\(261\) 6.49591 + 2.69070i 0.402087 + 0.166550i
\(262\) −0.483426 + 1.16709i −0.0298661 + 0.0721032i
\(263\) −17.3357 + 17.3357i −1.06896 + 1.06896i −0.0715243 + 0.997439i \(0.522786\pi\)
−0.997439 + 0.0715243i \(0.977214\pi\)
\(264\) 2.16375 2.16375i 0.133170 0.133170i
\(265\) 0 0
\(266\) 4.98852 + 2.06631i 0.305866 + 0.126694i
\(267\) 0.160449 + 0.387358i 0.00981932 + 0.0237059i
\(268\) 12.7881i 0.781156i
\(269\) 6.09269 2.52367i 0.371478 0.153871i −0.189131 0.981952i \(-0.560567\pi\)
0.560609 + 0.828081i \(0.310567\pi\)
\(270\) 0 0
\(271\) −26.1956 −1.59127 −0.795634 0.605778i \(-0.792862\pi\)
−0.795634 + 0.605778i \(0.792862\pi\)
\(272\) 9.55957 10.6014i 0.579634 0.642805i
\(273\) 14.9482 0.904707
\(274\) 1.54873 + 1.54873i 0.0935624 + 0.0935624i
\(275\) 0 0
\(276\) 1.74353i 0.104948i
\(277\) −3.66038 8.83695i −0.219931 0.530961i 0.774949 0.632024i \(-0.217776\pi\)
−0.994880 + 0.101063i \(0.967776\pi\)
\(278\) −2.89682 1.19990i −0.173740 0.0719653i
\(279\) 1.61188 3.89143i 0.0965009 0.232974i
\(280\) 0 0
\(281\) 8.78037 8.78037i 0.523793 0.523793i −0.394922 0.918715i \(-0.629228\pi\)
0.918715 + 0.394922i \(0.129228\pi\)
\(282\) 0.281877 0.680511i 0.0167855 0.0405238i
\(283\) −15.5612 6.44566i −0.925017 0.383155i −0.131231 0.991352i \(-0.541893\pi\)
−0.793786 + 0.608197i \(0.791893\pi\)
\(284\) −0.175889 0.424633i −0.0104371 0.0251973i
\(285\) 0 0
\(286\) −3.82626 + 1.58489i −0.226252 + 0.0937165i
\(287\) −21.9171 21.9171i −1.29372 1.29372i
\(288\) −6.37822 −0.375840
\(289\) −1.75231 16.9094i −0.103077 0.994673i
\(290\) 0 0
\(291\) 6.72166 + 6.72166i 0.394031 + 0.394031i
\(292\) 11.3888 4.71741i 0.666482 0.276066i
\(293\) 20.8806i 1.21986i 0.792456 + 0.609930i \(0.208802\pi\)
−0.792456 + 0.609930i \(0.791198\pi\)
\(294\) 0.0858335 + 0.207220i 0.00500591 + 0.0120853i
\(295\) 0 0
\(296\) 2.30412 5.56263i 0.133924 0.323321i
\(297\) 8.94323 8.94323i 0.518939 0.518939i
\(298\) 1.28371 1.28371i 0.0743635 0.0743635i
\(299\) −1.84913 + 4.46419i −0.106938 + 0.258171i
\(300\) 0 0
\(301\) −2.51657 6.07554i −0.145053 0.350188i
\(302\) 3.14306i 0.180863i
\(303\) −14.9863 + 6.20752i −0.860940 + 0.356613i
\(304\) 17.4579 + 17.4579i 1.00128 + 1.00128i
\(305\) 0 0
\(306\) −1.56124 + 1.73139i −0.0892504 + 0.0989772i
\(307\) 29.9529 1.70950 0.854751 0.519038i \(-0.173710\pi\)
0.854751 + 0.519038i \(0.173710\pi\)
\(308\) −8.28541 8.28541i −0.472105 0.472105i
\(309\) −14.4828 + 5.99898i −0.823899 + 0.341270i
\(310\) 0 0
\(311\) 0.0804873 + 0.194314i 0.00456402 + 0.0110185i 0.926145 0.377167i \(-0.123102\pi\)
−0.921581 + 0.388186i \(0.873102\pi\)
\(312\) −6.48902 2.68784i −0.367369 0.152169i
\(313\) 12.4082 29.9561i 0.701354 1.69322i −0.0191979 0.999816i \(-0.506111\pi\)
0.720551 0.693402i \(-0.243889\pi\)
\(314\) −2.86010 + 2.86010i −0.161405 + 0.161405i
\(315\) 0 0
\(316\) 10.7459 25.9429i 0.604504 1.45940i
\(317\) 30.8937 + 12.7966i 1.73516 + 0.718728i 0.999127 + 0.0417842i \(0.0133042\pi\)
0.736035 + 0.676943i \(0.236696\pi\)
\(318\) −0.339892 0.820571i −0.0190602 0.0460154i
\(319\) 9.17441i 0.513668i
\(320\) 0 0
\(321\) 1.10345 + 1.10345i 0.0615886 + 0.0615886i
\(322\) 0.651789 0.0363228
\(323\) 29.3630 1.51736i 1.63380 0.0844283i
\(324\) −0.258783 −0.0143768
\(325\) 0 0
\(326\) 0.439025 0.181850i 0.0243153 0.0100717i
\(327\) 10.0135i 0.553750i
\(328\) 5.57330 + 13.4551i 0.307734 + 0.742935i
\(329\) −5.33585 2.21018i −0.294175 0.121851i
\(330\) 0 0
\(331\) 0.626030 0.626030i 0.0344097 0.0344097i −0.689693 0.724102i \(-0.742254\pi\)
0.724102 + 0.689693i \(0.242254\pi\)
\(332\) 18.7609 18.7609i 1.02964 1.02964i
\(333\) 3.66194 8.84071i 0.200673 0.484468i
\(334\) −4.90688 2.03250i −0.268493 0.111213i
\(335\) 0 0
\(336\) 9.21973i 0.502977i
\(337\) −15.8506 + 6.56551i −0.863434 + 0.357646i −0.770050 0.637984i \(-0.779769\pi\)
−0.0933847 + 0.995630i \(0.529769\pi\)
\(338\) 3.94859 + 3.94859i 0.214775 + 0.214775i
\(339\) 15.8739 0.862150
\(340\) 0 0
\(341\) −5.49600 −0.297625
\(342\) −2.85117 2.85117i −0.154174 0.154174i
\(343\) 17.8563 7.39633i 0.964151 0.399364i
\(344\) 3.08990i 0.166596i
\(345\) 0 0
\(346\) −5.25194 2.17542i −0.282346 0.116951i
\(347\) −11.8288 + 28.5572i −0.635003 + 1.53303i 0.198257 + 0.980150i \(0.436472\pi\)
−0.833260 + 0.552882i \(0.813528\pi\)
\(348\) 5.37287 5.37287i 0.288016 0.288016i
\(349\) 2.38415 2.38415i 0.127621 0.127621i −0.640411 0.768032i \(-0.721236\pi\)
0.768032 + 0.640411i \(0.221236\pi\)
\(350\) 0 0
\(351\) −26.8205 11.1094i −1.43157 0.592976i
\(352\) 3.18487 + 7.68896i 0.169754 + 0.409823i
\(353\) 23.7918i 1.26631i 0.774025 + 0.633155i \(0.218240\pi\)
−0.774025 + 0.633155i \(0.781760\pi\)
\(354\) −2.20071 + 0.911565i −0.116967 + 0.0484491i
\(355\) 0 0
\(356\) −0.754360 −0.0399810
\(357\) −8.15416 7.35282i −0.431564 0.389152i
\(358\) −0.999743 −0.0528381
\(359\) 22.4244 + 22.4244i 1.18351 + 1.18351i 0.978827 + 0.204688i \(0.0656178\pi\)
0.204688 + 0.978827i \(0.434382\pi\)
\(360\) 0 0
\(361\) 31.8521i 1.67643i
\(362\) 1.83164 + 4.42197i 0.0962689 + 0.232414i
\(363\) 4.92004 + 2.03795i 0.258235 + 0.106964i
\(364\) −10.2923 + 24.8477i −0.539461 + 1.30237i
\(365\) 0 0
\(366\) −0.205130 + 0.205130i −0.0107223 + 0.0107223i
\(367\) 1.72853 4.17304i 0.0902286 0.217831i −0.872323 0.488930i \(-0.837387\pi\)
0.962551 + 0.271099i \(0.0873872\pi\)
\(368\) 2.75341 + 1.14050i 0.143532 + 0.0594528i
\(369\) 8.85767 + 21.3843i 0.461112 + 1.11322i
\(370\) 0 0
\(371\) −6.43405 + 2.66507i −0.334039 + 0.138364i
\(372\) −3.21866 3.21866i −0.166880 0.166880i
\(373\) 5.12748 0.265491 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(374\) 2.86679 + 1.01754i 0.148238 + 0.0526156i
\(375\) 0 0
\(376\) 1.91888 + 1.91888i 0.0989586 + 0.0989586i
\(377\) −19.4552 + 8.05860i −1.00199 + 0.415039i
\(378\) 3.91589i 0.201412i
\(379\) 2.11629 + 5.10917i 0.108706 + 0.262441i 0.968867 0.247584i \(-0.0796365\pi\)
−0.860160 + 0.510024i \(0.829636\pi\)
\(380\) 0 0
\(381\) 2.41786 5.83722i 0.123871 0.299050i
\(382\) 5.86521 5.86521i 0.300090 0.300090i
\(383\) −14.4493 + 14.4493i −0.738326 + 0.738326i −0.972254 0.233928i \(-0.924842\pi\)
0.233928 + 0.972254i \(0.424842\pi\)
\(384\) −3.48596 + 8.41585i −0.177892 + 0.429469i
\(385\) 0 0
\(386\) 1.70420 + 4.11429i 0.0867413 + 0.209412i
\(387\) 4.91079i 0.249629i
\(388\) −15.8011 + 6.54505i −0.802181 + 0.332274i
\(389\) −3.66726 3.66726i −0.185937 0.185937i 0.608000 0.793937i \(-0.291972\pi\)
−0.793937 + 0.608000i \(0.791972\pi\)
\(390\) 0 0
\(391\) 3.20456 1.52563i 0.162062 0.0771543i
\(392\) −0.826343 −0.0417366
\(393\) 3.14152 + 3.14152i 0.158469 + 0.158469i
\(394\) −0.104913 + 0.0434563i −0.00528543 + 0.00218930i
\(395\) 0 0
\(396\) 3.34850 + 8.08399i 0.168268 + 0.406236i
\(397\) 5.70360 + 2.36251i 0.286255 + 0.118571i 0.521191 0.853440i \(-0.325488\pi\)
−0.234936 + 0.972011i \(0.575488\pi\)
\(398\) 0.869348 2.09879i 0.0435765 0.105203i
\(399\) 13.4278 13.4278i 0.672233 0.672233i
\(400\) 0 0
\(401\) −3.63413 + 8.77356i −0.181480 + 0.438131i −0.988272 0.152705i \(-0.951202\pi\)
0.806792 + 0.590835i \(0.201202\pi\)
\(402\) 1.98105 + 0.820577i 0.0988058 + 0.0409267i
\(403\) 4.82757 + 11.6548i 0.240478 + 0.580566i
\(404\) 29.1850i 1.45201i
\(405\) 0 0
\(406\) 2.00856 + 2.00856i 0.0996831 + 0.0996831i
\(407\) −12.4860 −0.618910
\(408\) 2.21761 + 4.65806i 0.109788 + 0.230608i
\(409\) 14.3886 0.711469 0.355734 0.934587i \(-0.384231\pi\)
0.355734 + 0.934587i \(0.384231\pi\)
\(410\) 0 0
\(411\) 7.11659 2.94779i 0.351035 0.145404i
\(412\) 28.2046i 1.38954i
\(413\) 7.14753 + 17.2557i 0.351707 + 0.849096i
\(414\) −0.449680 0.186264i −0.0221006 0.00915436i
\(415\) 0 0
\(416\) 13.5076 13.5076i 0.662266 0.662266i
\(417\) −7.79750 + 7.79750i −0.381845 + 0.381845i
\(418\) −2.01340 + 4.86079i −0.0984789 + 0.237749i
\(419\) 19.6078 + 8.12181i 0.957903 + 0.396776i 0.806196 0.591649i \(-0.201523\pi\)
0.151707 + 0.988425i \(0.451523\pi\)
\(420\) 0 0
\(421\) 20.1672i 0.982887i 0.870909 + 0.491444i \(0.163531\pi\)
−0.870909 + 0.491444i \(0.836469\pi\)
\(422\) −2.42279 + 1.00355i −0.117939 + 0.0488521i
\(423\) 3.04968 + 3.04968i 0.148281 + 0.148281i
\(424\) 3.27223 0.158914
\(425\) 0 0
\(426\) 0.0770678 0.00373395
\(427\) 1.60842 + 1.60842i 0.0778367 + 0.0778367i
\(428\) −2.59397 + 1.07446i −0.125384 + 0.0519358i
\(429\) 14.5655i 0.703227i
\(430\) 0 0
\(431\) −18.4485 7.64163i −0.888635 0.368085i −0.108795 0.994064i \(-0.534699\pi\)
−0.779839 + 0.625980i \(0.784699\pi\)
\(432\) −6.85204 + 16.5423i −0.329669 + 0.795891i
\(433\) −12.8860 + 12.8860i −0.619263 + 0.619263i −0.945342 0.326080i \(-0.894272\pi\)
0.326080 + 0.945342i \(0.394272\pi\)
\(434\) 1.20324 1.20324i 0.0577575 0.0577575i
\(435\) 0 0
\(436\) −16.6450 6.89460i −0.797152 0.330191i
\(437\) 2.34909 + 5.67120i 0.112372 + 0.271290i
\(438\) 2.06699i 0.0987648i
\(439\) 13.6117 5.63815i 0.649651 0.269094i −0.0334251 0.999441i \(-0.510642\pi\)
0.683077 + 0.730347i \(0.260642\pi\)
\(440\) 0 0
\(441\) −1.31331 −0.0625386
\(442\) −0.360341 6.97307i −0.0171397 0.331675i
\(443\) 23.3335 1.10861 0.554305 0.832314i \(-0.312984\pi\)
0.554305 + 0.832314i \(0.312984\pi\)
\(444\) −7.31228 7.31228i −0.347026 0.347026i
\(445\) 0 0
\(446\) 1.94983i 0.0923272i
\(447\) −2.44336 5.89879i −0.115567 0.279003i
\(448\) 13.6756 + 5.66461i 0.646110 + 0.267628i
\(449\) −0.655009 + 1.58133i −0.0309118 + 0.0746277i −0.938582 0.345057i \(-0.887859\pi\)
0.907670 + 0.419685i \(0.137859\pi\)
\(450\) 0 0
\(451\) 21.3559 21.3559i 1.00561 1.00561i
\(452\) −10.9296 + 26.3864i −0.514085 + 1.24111i
\(453\) −10.2125 4.23016i −0.479826 0.198750i
\(454\) 0.353348 + 0.853058i 0.0165835 + 0.0400360i
\(455\) 0 0
\(456\) −8.24349 + 3.41457i −0.386037 + 0.159902i
\(457\) −9.34572 9.34572i −0.437174 0.437174i 0.453886 0.891060i \(-0.350037\pi\)
−0.891060 + 0.453886i \(0.850037\pi\)
\(458\) −2.28052 −0.106562
\(459\) 9.16585 + 19.2527i 0.427825 + 0.898641i
\(460\) 0 0
\(461\) −20.7116 20.7116i −0.964634 0.964634i 0.0347616 0.999396i \(-0.488933\pi\)
−0.999396 + 0.0347616i \(0.988933\pi\)
\(462\) 1.81518 0.751871i 0.0844497 0.0349802i
\(463\) 9.80371i 0.455617i −0.973706 0.227808i \(-0.926844\pi\)
0.973706 0.227808i \(-0.0731560\pi\)
\(464\) 4.97037 + 11.9995i 0.230744 + 0.557064i
\(465\) 0 0
\(466\) −2.58007 + 6.22884i −0.119519 + 0.288545i
\(467\) 9.67459 9.67459i 0.447687 0.447687i −0.446898 0.894585i \(-0.647471\pi\)
0.894585 + 0.446898i \(0.147471\pi\)
\(468\) 14.2016 14.2016i 0.656469 0.656469i
\(469\) 6.43410 15.5333i 0.297099 0.717261i
\(470\) 0 0
\(471\) 5.44378 + 13.1424i 0.250836 + 0.605572i
\(472\) 8.77589i 0.403943i
\(473\) 5.91997 2.45213i 0.272201 0.112749i
\(474\) 3.32938 + 3.32938i 0.152923 + 0.152923i
\(475\) 0 0
\(476\) 17.8366 8.49165i 0.817539 0.389214i
\(477\) 5.20057 0.238118
\(478\) 0.738063 + 0.738063i 0.0337582 + 0.0337582i
\(479\) −10.1719 + 4.21334i −0.464766 + 0.192513i −0.602763 0.797920i \(-0.705934\pi\)
0.137997 + 0.990433i \(0.455934\pi\)
\(480\) 0 0
\(481\) 10.9675 + 26.4778i 0.500074 + 1.20728i
\(482\) 5.02431 + 2.08114i 0.228851 + 0.0947932i
\(483\) 0.877226 2.11781i 0.0399151 0.0963637i
\(484\) −6.77516 + 6.77516i −0.307962 + 0.307962i
\(485\) 0 0
\(486\) 1.80781 4.36445i 0.0820041 0.197975i
\(487\) −9.32586 3.86290i −0.422595 0.175045i 0.161243 0.986915i \(-0.448450\pi\)
−0.583838 + 0.811870i \(0.698450\pi\)
\(488\) −0.409004 0.987423i −0.0185147 0.0446985i
\(489\) 1.67124i 0.0755760i
\(490\) 0 0
\(491\) −12.0793 12.0793i −0.545132 0.545132i 0.379897 0.925029i \(-0.375959\pi\)
−0.925029 + 0.379897i \(0.875959\pi\)
\(492\) 25.0136 1.12770
\(493\) 14.5766 + 5.17382i 0.656497 + 0.233017i
\(494\) 12.0763 0.543338
\(495\) 0 0
\(496\) 7.18841 2.97754i 0.322769 0.133695i
\(497\) 0.604284i 0.0271059i
\(498\) 1.70248 + 4.11016i 0.0762901 + 0.184180i
\(499\) −28.9724 12.0008i −1.29698 0.537227i −0.375923 0.926651i \(-0.622674\pi\)
−0.921059 + 0.389424i \(0.872674\pi\)
\(500\) 0 0
\(501\) −13.2081 + 13.2081i −0.590094 + 0.590094i
\(502\) −5.12999 + 5.12999i −0.228963 + 0.228963i
\(503\) 3.31991 8.01498i 0.148028 0.357370i −0.832422 0.554143i \(-0.813046\pi\)
0.980449 + 0.196773i \(0.0630461\pi\)
\(504\) −5.12518 2.12292i −0.228293 0.0945623i
\(505\) 0 0
\(506\) 0.635099i 0.0282336i
\(507\) 18.1442 7.51556i 0.805811 0.333778i
\(508\) 8.03817 + 8.03817i 0.356636 + 0.356636i
\(509\) −14.1196 −0.625840 −0.312920 0.949780i \(-0.601307\pi\)
−0.312920 + 0.949780i \(0.601307\pi\)
\(510\) 0 0
\(511\) 16.2072 0.716963
\(512\) −14.1053 14.1053i −0.623374 0.623374i
\(513\) −34.0721 + 14.1131i −1.50432 + 0.623109i
\(514\) 4.46546i 0.196963i
\(515\) 0 0
\(516\) 4.90301 + 2.03089i 0.215843 + 0.0894051i
\(517\) 2.15359 5.19922i 0.0947147 0.228662i
\(518\) 2.73358 2.73358i 0.120106 0.120106i
\(519\) −14.1369 + 14.1369i −0.620541 + 0.620541i
\(520\) 0 0
\(521\) −16.2808 6.74373i −0.713275 0.295448i −0.00361608 0.999993i \(-0.501151\pi\)
−0.709659 + 0.704545i \(0.751151\pi\)
\(522\) −0.811747 1.95973i −0.0355292 0.0857751i
\(523\) 26.3853i 1.15375i −0.816833 0.576875i \(-0.804272\pi\)
0.816833 0.576875i \(-0.195728\pi\)
\(524\) −7.38502 + 3.05898i −0.322616 + 0.133632i
\(525\) 0 0
\(526\) 7.39626 0.322492
\(527\) 3.09942 8.73223i 0.135013 0.380382i
\(528\) 8.98366 0.390963
\(529\) −15.7395 15.7395i −0.684326 0.684326i
\(530\) 0 0
\(531\) 13.9476i 0.605272i
\(532\) 13.0750 + 31.5659i 0.566874 + 1.36856i
\(533\) −64.0457 26.5286i −2.77413 1.14908i
\(534\) 0.0484053 0.116861i 0.00209470 0.00505706i
\(535\) 0 0
\(536\) −5.58609 + 5.58609i −0.241282 + 0.241282i
\(537\) −1.34553 + 3.24839i −0.0580638 + 0.140178i
\(538\) −1.83808 0.761359i −0.0792454 0.0328245i
\(539\) 0.655783 + 1.58320i 0.0282466 + 0.0681932i
\(540\) 0 0
\(541\) −4.07266 + 1.68695i −0.175097 + 0.0725277i −0.468510 0.883458i \(-0.655209\pi\)
0.293413 + 0.955986i \(0.405209\pi\)
\(542\) 5.58816 + 5.58816i 0.240032 + 0.240032i
\(543\) 16.8331 0.722379
\(544\) −14.0125 + 0.724113i −0.600783 + 0.0310461i
\(545\) 0 0
\(546\) −3.18882 3.18882i −0.136469 0.136469i
\(547\) 20.9386 8.67306i 0.895271 0.370833i 0.112871 0.993610i \(-0.463995\pi\)
0.782400 + 0.622776i \(0.213995\pi\)
\(548\) 13.8592i 0.592035i
\(549\) −0.650032 1.56932i −0.0277427 0.0669768i
\(550\) 0 0
\(551\) −10.2374 + 24.7154i −0.436130 + 1.05291i
\(552\) −0.761607 + 0.761607i −0.0324162 + 0.0324162i
\(553\) 26.1055 26.1055i 1.11012 1.11012i
\(554\) −1.10429 + 2.66599i −0.0469167 + 0.113267i
\(555\) 0 0
\(556\) −7.59262 18.3302i −0.321999 0.777374i
\(557\) 11.4954i 0.487076i 0.969891 + 0.243538i \(0.0783080\pi\)
−0.969891 + 0.243538i \(0.921692\pi\)
\(558\) −1.17399 + 0.486284i −0.0496991 + 0.0205860i
\(559\) −10.4000 10.4000i −0.439871 0.439871i
\(560\) 0 0
\(561\) 7.16455 7.94537i 0.302487 0.335454i
\(562\) −3.74614 −0.158021
\(563\) −9.57715 9.57715i −0.403629 0.403629i 0.475881 0.879510i \(-0.342129\pi\)
−0.879510 + 0.475881i \(0.842129\pi\)
\(564\) 4.30607 1.78363i 0.181318 0.0751045i
\(565\) 0 0
\(566\) 1.94457 + 4.69461i 0.0817364 + 0.197329i
\(567\) −0.314336 0.130202i −0.0132009 0.00546797i
\(568\) −0.108656 + 0.262320i −0.00455912 + 0.0110067i
\(569\) −11.2263 + 11.2263i −0.470632 + 0.470632i −0.902119 0.431487i \(-0.857989\pi\)
0.431487 + 0.902119i \(0.357989\pi\)
\(570\) 0 0
\(571\) 1.35486 3.27093i 0.0566993 0.136884i −0.892991 0.450074i \(-0.851398\pi\)
0.949691 + 0.313190i \(0.101398\pi\)
\(572\) −24.2115 10.0287i −1.01233 0.419322i
\(573\) −11.1636 26.9512i −0.466364 1.12590i
\(574\) 9.35092i 0.390300i
\(575\) 0 0
\(576\) −7.81622 7.81622i −0.325676 0.325676i
\(577\) −18.5078 −0.770492 −0.385246 0.922814i \(-0.625883\pi\)
−0.385246 + 0.922814i \(0.625883\pi\)
\(578\) −3.23339 + 3.98101i −0.134491 + 0.165588i
\(579\) 15.6619 0.650887
\(580\) 0 0
\(581\) 32.2275 13.3491i 1.33702 0.553813i
\(582\) 2.86779i 0.118874i
\(583\) −2.59683 6.26931i −0.107550 0.259648i
\(584\) −7.03554 2.91422i −0.291133 0.120591i
\(585\) 0 0
\(586\) 4.45436 4.45436i 0.184008 0.184008i
\(587\) 9.70579 9.70579i 0.400601 0.400601i −0.477844 0.878445i \(-0.658582\pi\)
0.878445 + 0.477844i \(0.158582\pi\)
\(588\) −0.543129 + 1.31123i −0.0223983 + 0.0540742i
\(589\) 14.8059 + 6.13282i 0.610068 + 0.252699i
\(590\) 0 0
\(591\) 0.399372i 0.0164280i
\(592\) 16.3309 6.76450i 0.671197 0.278019i
\(593\) 14.3711 + 14.3711i 0.590150 + 0.590150i 0.937672 0.347522i \(-0.112977\pi\)
−0.347522 + 0.937672i \(0.612977\pi\)
\(594\) −3.81563 −0.156557
\(595\) 0 0
\(596\) 11.4876 0.470550
\(597\) −5.64942 5.64942i −0.231215 0.231215i
\(598\) 1.34679 0.557858i 0.0550742 0.0228125i
\(599\) 26.7277i 1.09206i −0.837764 0.546032i \(-0.816138\pi\)
0.837764 0.546032i \(-0.183862\pi\)
\(600\) 0 0
\(601\) 25.5537 + 10.5847i 1.04236 + 0.431758i 0.837157 0.546962i \(-0.184216\pi\)
0.205199 + 0.978720i \(0.434216\pi\)
\(602\) −0.759216 + 1.83291i −0.0309433 + 0.0747038i
\(603\) −8.87800 + 8.87800i −0.361540 + 0.361540i
\(604\) 14.0632 14.0632i 0.572223 0.572223i
\(605\) 0 0
\(606\) 4.52117 + 1.87273i 0.183660 + 0.0760744i
\(607\) 9.03844 + 21.8207i 0.366859 + 0.885676i 0.994261 + 0.106981i \(0.0341183\pi\)
−0.627402 + 0.778696i \(0.715882\pi\)
\(608\) 24.2676i 0.984180i
\(609\) 9.22953 3.82300i 0.373999 0.154916i
\(610\) 0 0
\(611\) −12.9171 −0.522570
\(612\) −14.7325 + 0.761315i −0.595524 + 0.0307744i
\(613\) −12.0396 −0.486275 −0.243137 0.969992i \(-0.578177\pi\)
−0.243137 + 0.969992i \(0.578177\pi\)
\(614\) −6.38969 6.38969i −0.257867 0.257867i
\(615\) 0 0
\(616\) 7.23847i 0.291646i
\(617\) −5.94989 14.3643i −0.239534 0.578285i 0.757701 0.652602i \(-0.226322\pi\)
−0.997235 + 0.0743165i \(0.976322\pi\)
\(618\) 4.36928 + 1.80981i 0.175758 + 0.0728014i
\(619\) 12.8172 30.9434i 0.515166 1.24372i −0.425676 0.904876i \(-0.639964\pi\)
0.940842 0.338845i \(-0.110036\pi\)
\(620\) 0 0
\(621\) −3.14788 + 3.14788i −0.126320 + 0.126320i
\(622\) 0.0242820 0.0586218i 0.000973618 0.00235052i
\(623\) −0.916299 0.379543i −0.0367107 0.0152061i
\(624\) −7.89105 19.0507i −0.315895 0.762637i
\(625\) 0 0
\(626\) −9.03735 + 3.74339i −0.361205 + 0.149616i
\(627\) 13.0840 + 13.0840i 0.522525 + 0.522525i
\(628\) −25.5942 −1.02132
\(629\) 7.04138 19.8382i 0.280758 0.791002i
\(630\) 0 0
\(631\) −0.385100 0.385100i −0.0153306 0.0153306i 0.699400 0.714731i \(-0.253451\pi\)
−0.714731 + 0.699400i \(0.753451\pi\)
\(632\) −16.0264 + 6.63836i −0.637496 + 0.264060i
\(633\) 9.22284i 0.366575i
\(634\) −3.86056 9.32021i −0.153322 0.370153i
\(635\) 0 0
\(636\) 2.15074 5.19233i 0.0852822 0.205889i
\(637\) 2.78130 2.78130i 0.110199 0.110199i
\(638\) −1.95713 + 1.95713i −0.0774835 + 0.0774835i
\(639\) −0.172688 + 0.416906i −0.00683144 + 0.0164926i
\(640\) 0 0
\(641\) 4.75450 + 11.4784i 0.187792 + 0.453369i 0.989534 0.144301i \(-0.0460933\pi\)
−0.801742 + 0.597670i \(0.796093\pi\)
\(642\) 0.470786i 0.0185805i
\(643\) −35.4438 + 14.6813i −1.39777 + 0.578975i −0.949171 0.314760i \(-0.898076\pi\)
−0.448597 + 0.893734i \(0.648076\pi\)
\(644\) 2.91634 + 2.91634i 0.114920 + 0.114920i
\(645\) 0 0
\(646\) −6.58754 5.94016i −0.259183 0.233712i
\(647\) −19.6602 −0.772923 −0.386462 0.922305i \(-0.626303\pi\)
−0.386462 + 0.922305i \(0.626303\pi\)
\(648\) 0.113041 + 0.113041i 0.00444069 + 0.00444069i
\(649\) −16.8138 + 6.96452i −0.660001 + 0.273381i
\(650\) 0 0
\(651\) −2.29020 5.52902i −0.0897599 0.216700i
\(652\) 2.77802 + 1.15069i 0.108796 + 0.0450646i
\(653\) −11.9119 + 28.7578i −0.466147 + 1.12538i 0.499684 + 0.866208i \(0.333449\pi\)
−0.965831 + 0.259171i \(0.916551\pi\)
\(654\) 2.13614 2.13614i 0.0835296 0.0835296i
\(655\) 0 0
\(656\) −16.3623 + 39.5020i −0.638839 + 1.54229i
\(657\) −11.1816 4.63158i −0.436236 0.180695i
\(658\) 0.666782 + 1.60975i 0.0259939 + 0.0627548i
\(659\) 4.15956i 0.162033i 0.996713 + 0.0810167i \(0.0258167\pi\)
−0.996713 + 0.0810167i \(0.974183\pi\)
\(660\) 0 0
\(661\) 4.85106 + 4.85106i 0.188685 + 0.188685i 0.795127 0.606443i \(-0.207404\pi\)
−0.606443 + 0.795127i \(0.707404\pi\)
\(662\) −0.267095 −0.0103810
\(663\) −23.1421 8.21405i −0.898764 0.319007i
\(664\) −16.3903 −0.636066
\(665\) 0 0
\(666\) −2.66713 + 1.10476i −0.103349 + 0.0428086i
\(667\) 3.22925i 0.125037i
\(668\) −12.8610 31.0493i −0.497608 1.20133i
\(669\) 6.33545 + 2.62423i 0.244943 + 0.101459i
\(670\) 0 0
\(671\) −1.56723 + 1.56723i −0.0605023 + 0.0605023i
\(672\) −6.40801 + 6.40801i −0.247195 + 0.247195i
\(673\) 6.61298 15.9651i 0.254912 0.615411i −0.743676 0.668540i \(-0.766919\pi\)
0.998588 + 0.0531290i \(0.0169194\pi\)
\(674\) 4.78190 + 1.98073i 0.184192 + 0.0762948i
\(675\) 0 0
\(676\) 35.3348i 1.35903i
\(677\) −7.51469 + 3.11269i −0.288813 + 0.119630i −0.522386 0.852709i \(-0.674958\pi\)
0.233573 + 0.972339i \(0.424958\pi\)
\(678\) −3.38629 3.38629i −0.130050 0.130050i
\(679\) −22.4862 −0.862942
\(680\) 0 0
\(681\) 3.24734 0.124438
\(682\) 1.17243 + 1.17243i 0.0448948 + 0.0448948i
\(683\) 26.9190 11.1502i 1.03003 0.426652i 0.197306 0.980342i \(-0.436781\pi\)
0.832723 + 0.553690i \(0.186781\pi\)
\(684\) 25.5143i 0.975566i
\(685\) 0 0
\(686\) −5.38702 2.23138i −0.205677 0.0851943i
\(687\) −3.06929 + 7.40992i −0.117101 + 0.282706i
\(688\) −6.41446 + 6.41446i −0.244549 + 0.244549i
\(689\) −11.0136 + 11.0136i −0.419587 + 0.419587i
\(690\) 0 0
\(691\) 34.5393 + 14.3066i 1.31394 + 0.544250i 0.926031 0.377448i \(-0.123198\pi\)
0.387906 + 0.921699i \(0.373198\pi\)
\(692\) −13.7654 33.2327i −0.523283 1.26332i
\(693\) 11.5041i 0.437006i
\(694\) 8.61534 3.56859i 0.327034 0.135462i
\(695\) 0 0
\(696\) −4.69395 −0.177924
\(697\) 21.8875 + 45.9744i 0.829048 + 1.74140i
\(698\) −1.01720 −0.0385015
\(699\) 16.7665 + 16.7665i 0.634166 + 0.634166i
\(700\) 0 0
\(701\) 14.6423i 0.553031i 0.961009 + 0.276515i \(0.0891797\pi\)
−0.961009 + 0.276515i \(0.910820\pi\)
\(702\) 3.35156 + 8.09139i 0.126497 + 0.305390i
\(703\) 33.6368 + 13.9328i 1.26863 + 0.525486i
\(704\) −5.51956 + 13.3254i −0.208026 + 0.502220i
\(705\) 0 0
\(706\) 5.07538 5.07538i 0.191014 0.191014i
\(707\) 14.6840 35.4502i 0.552247 1.33324i
\(708\) −13.9255 5.76812i −0.523351 0.216779i
\(709\) −10.8526 26.2006i −0.407579 0.983983i −0.985773 0.168083i \(-0.946242\pi\)
0.578194 0.815899i \(-0.303758\pi\)
\(710\) 0 0
\(711\) −25.4708 + 10.5504i −0.955231 + 0.395670i
\(712\) 0.329520 + 0.329520i 0.0123493 + 0.0123493i
\(713\) 1.93451 0.0724480
\(714\) 0.170946 + 3.30802i 0.00639748 + 0.123800i
\(715\) 0 0
\(716\) −4.47321 4.47321i −0.167172 0.167172i
\(717\) 3.39148 1.40480i 0.126657 0.0524631i
\(718\) 9.56736i 0.357051i
\(719\) −4.83536 11.6736i −0.180329 0.435352i 0.807706 0.589586i \(-0.200709\pi\)
−0.988034 + 0.154234i \(0.950709\pi\)
\(720\) 0 0
\(721\) 14.1906 34.2593i 0.528487 1.27588i
\(722\) 6.79485 6.79485i 0.252878 0.252878i
\(723\) 13.5242 13.5242i 0.502969 0.502969i
\(724\) −11.5901 + 27.9809i −0.430742 + 1.03990i
\(725\) 0 0
\(726\) −0.614822 1.48431i −0.0228182 0.0550879i
\(727\) 15.0242i 0.557218i −0.960405 0.278609i \(-0.910127\pi\)
0.960405 0.278609i \(-0.0898734\pi\)
\(728\) 15.3498 6.35811i 0.568903 0.235647i
\(729\) −11.4604 11.4604i −0.424460 0.424460i
\(730\) 0 0
\(731\) 0.557517 + 10.7887i 0.0206205 + 0.399035i
\(732\) −1.83566 −0.0678478
\(733\) 1.24931 + 1.24931i 0.0461442 + 0.0461442i 0.729802 0.683658i \(-0.239612\pi\)
−0.683658 + 0.729802i \(0.739612\pi\)
\(734\) −1.25895 + 0.521475i −0.0464688 + 0.0192480i
\(735\) 0 0
\(736\) −1.12103 2.70640i −0.0413216 0.0997592i
\(737\) 15.1356 + 6.26935i 0.557526 + 0.230935i
\(738\) 2.67224 6.45136i 0.0983665 0.237478i
\(739\) −13.9406 + 13.9406i −0.512812 + 0.512812i −0.915387 0.402575i \(-0.868115\pi\)
0.402575 + 0.915387i \(0.368115\pi\)
\(740\) 0 0
\(741\) 16.2532 39.2386i 0.597075 1.44147i
\(742\) 1.94107 + 0.804017i 0.0712589 + 0.0295164i
\(743\) 10.8535 + 26.2027i 0.398176 + 0.961282i 0.988099 + 0.153822i \(0.0491583\pi\)
−0.589922 + 0.807460i \(0.700842\pi\)
\(744\) 2.81195i 0.103091i
\(745\) 0 0
\(746\) −1.09382 1.09382i −0.0400475 0.0400475i
\(747\) −26.0491 −0.953087
\(748\) 8.27422 + 17.3799i 0.302535 + 0.635472i
\(749\) −3.69141 −0.134881
\(750\) 0 0
\(751\) 16.5853 6.86987i 0.605207 0.250685i −0.0589704 0.998260i \(-0.518782\pi\)
0.664178 + 0.747575i \(0.268782\pi\)
\(752\) 7.96698i 0.290526i
\(753\) 9.76418 + 23.5728i 0.355826 + 0.859041i
\(754\) 5.86937 + 2.43117i 0.213750 + 0.0885381i
\(755\) 0 0
\(756\) −17.5211 + 17.5211i −0.637237 + 0.637237i
\(757\) 31.0649 31.0649i 1.12907 1.12907i 0.138743 0.990328i \(-0.455694\pi\)
0.990328 0.138743i \(-0.0443062\pi\)
\(758\) 0.638456 1.54137i 0.0231898 0.0559851i
\(759\) 2.06358 + 0.854764i 0.0749033 + 0.0310260i
\(760\) 0 0
\(761\) 13.2781i 0.481331i −0.970608 0.240666i \(-0.922634\pi\)
0.970608 0.240666i \(-0.0773657\pi\)
\(762\) −1.76101 + 0.729435i −0.0637948 + 0.0264247i
\(763\) −16.7493 16.7493i −0.606367 0.606367i
\(764\) 52.4861 1.89888
\(765\) 0 0
\(766\) 6.16480 0.222743
\(767\) 29.5378 + 29.5378i 1.06655 + 1.06655i
\(768\) −9.02353 + 3.73767i −0.325609 + 0.134871i
\(769\) 24.8906i 0.897578i 0.893638 + 0.448789i \(0.148144\pi\)
−0.893638 + 0.448789i \(0.851856\pi\)
\(770\) 0 0
\(771\) −14.5093 6.00995i −0.522540 0.216443i
\(772\) −10.7836 + 26.0340i −0.388112 + 0.936985i
\(773\) 37.9750 37.9750i 1.36587 1.36587i 0.499624 0.866242i \(-0.333471\pi\)
0.866242 0.499624i \(-0.166529\pi\)
\(774\) 1.04759 1.04759i 0.0376549 0.0376549i
\(775\) 0 0
\(776\) 9.76127 + 4.04325i 0.350409 + 0.145144i
\(777\) −5.20296 12.5611i −0.186655 0.450626i
\(778\) 1.56463i 0.0560949i
\(779\) −81.3621 + 33.7013i −2.91510 + 1.20747i
\(780\) 0 0
\(781\) 0.588811 0.0210693
\(782\) −1.00907 0.358158i −0.0360841 0.0128077i
\(783\) −19.4011 −0.693339
\(784\) −1.71544 1.71544i −0.0612658 0.0612658i
\(785\) 0 0
\(786\) 1.34033i 0.0478079i
\(787\) −19.6997 47.5592i −0.702217 1.69530i −0.718588 0.695436i \(-0.755211\pi\)
0.0163714 0.999866i \(-0.494789\pi\)
\(788\) −0.663857 0.274979i −0.0236489 0.00979571i
\(789\) 9.95443 24.0321i 0.354387 0.855566i
\(790\) 0 0
\(791\) −26.5517 + 26.5517i −0.944070 + 0.944070i
\(792\) 2.06856 4.99394i 0.0735031 0.177452i
\(793\) 4.70008 + 1.94684i 0.166905 + 0.0691342i
\(794\) −0.712737 1.72070i −0.0252941 0.0610654i
\(795\) 0 0
\(796\) 13.2805 5.50097i 0.470716 0.194977i
\(797\) −13.3772 13.3772i −0.473846 0.473846i 0.429311 0.903157i \(-0.358756\pi\)
−0.903157 + 0.429311i \(0.858756\pi\)
\(798\) −5.72898 −0.202804
\(799\) 7.04620 + 6.35374i 0.249276 + 0.224779i
\(800\) 0 0
\(801\) 0.523707 + 0.523707i 0.0185043 + 0.0185043i
\(802\) 2.64687 1.09637i 0.0934642 0.0387141i
\(803\) 15.7922i 0.557294i
\(804\) 5.19237 + 12.5355i 0.183121 + 0.442093i
\(805\) 0 0
\(806\) 1.45641 3.51609i 0.0513000 0.123849i
\(807\) −4.94766 + 4.94766i −0.174166 + 0.174166i
\(808\) −12.7486 + 12.7486i −0.448495 + 0.448495i
\(809\) 11.5703 27.9333i 0.406791 0.982081i −0.579185 0.815196i \(-0.696629\pi\)
0.985976 0.166885i \(-0.0533709\pi\)
\(810\) 0 0
\(811\) −6.57121 15.8643i −0.230746 0.557071i 0.765519 0.643413i \(-0.222482\pi\)
−0.996266 + 0.0863422i \(0.972482\pi\)
\(812\) 17.9740i 0.630765i
\(813\) 25.6782 10.6362i 0.900573 0.373030i
\(814\) 2.66358 + 2.66358i 0.0933586 + 0.0933586i
\(815\) 0 0
\(816\) −5.06624 + 14.2735i −0.177354 + 0.499673i
\(817\) −18.6844 −0.653683
\(818\) −3.06944 3.06944i −0.107320 0.107320i
\(819\) 24.3956 10.1050i 0.852450 0.353096i
\(820\) 0 0
\(821\) −16.7555 40.4514i −0.584771 1.41176i −0.888443 0.458986i \(-0.848213\pi\)
0.303672 0.952777i \(-0.401787\pi\)
\(822\) −2.14698 0.889309i −0.0748846 0.0310182i
\(823\) −9.67025 + 23.3460i −0.337084 + 0.813792i 0.660909 + 0.750466i \(0.270171\pi\)
−0.997993 + 0.0633260i \(0.979829\pi\)
\(824\) −12.3203 + 12.3203i −0.429199 + 0.429199i
\(825\) 0 0
\(826\) 2.15632 5.20581i 0.0750278 0.181133i
\(827\) 20.3879 + 8.44496i 0.708958 + 0.293660i 0.707874 0.706339i \(-0.249655\pi\)
0.00108492 + 0.999999i \(0.499655\pi\)
\(828\) −1.17862 2.84544i −0.0409599 0.0988860i
\(829\) 20.9555i 0.727816i 0.931435 + 0.363908i \(0.118558\pi\)
−0.931435 + 0.363908i \(0.881442\pi\)
\(830\) 0 0
\(831\) 7.17617 + 7.17617i 0.248939 + 0.248939i
\(832\) 33.1060 1.14774
\(833\) −2.88526 + 0.149099i −0.0999684 + 0.00516597i
\(834\) 3.32680 0.115198
\(835\) 0 0
\(836\) −30.7576 + 12.7402i −1.06378 + 0.440630i
\(837\) 11.6224i 0.401728i
\(838\) −2.45024 5.91541i −0.0846422 0.204344i
\(839\) 18.6855 + 7.73980i 0.645096 + 0.267207i 0.681152 0.732142i \(-0.261479\pi\)
−0.0360558 + 0.999350i \(0.511479\pi\)
\(840\) 0 0
\(841\) 10.5548 10.5548i 0.363958 0.363958i
\(842\) 4.30216 4.30216i 0.148262 0.148262i
\(843\) −5.04183 + 12.1721i −0.173650 + 0.419228i
\(844\) −15.3307 6.35018i −0.527704 0.218582i
\(845\) 0 0
\(846\) 1.30115i 0.0447343i
\(847\) −11.6384 + 4.82078i −0.399900 + 0.165644i
\(848\) 6.79298 + 6.79298i 0.233272 + 0.233272i
\(849\) 17.8710 0.613331
\(850\) 0 0
\(851\) 4.39490 0.150655
\(852\) 0.344829 + 0.344829i 0.0118137 + 0.0118137i
\(853\) −10.6192 + 4.39863i −0.363595 + 0.150606i −0.556999 0.830513i \(-0.688047\pi\)
0.193404 + 0.981119i \(0.438047\pi\)
\(854\) 0.686230i 0.0234823i
\(855\) 0 0
\(856\) 1.60244 + 0.663753i 0.0547703 + 0.0226866i
\(857\) 10.7482 25.9484i 0.367151 0.886380i −0.627064 0.778968i \(-0.715744\pi\)
0.994215 0.107412i \(-0.0342565\pi\)
\(858\) 3.10717 3.10717i 0.106077 0.106077i
\(859\) −2.22749 + 2.22749i −0.0760011 + 0.0760011i −0.744086 0.668084i \(-0.767115\pi\)
0.668084 + 0.744086i \(0.267115\pi\)
\(860\) 0 0
\(861\) 30.3833 + 12.5852i 1.03546 + 0.428901i
\(862\) 2.30538 + 5.56568i 0.0785216 + 0.189568i
\(863\) 34.5368i 1.17565i −0.808989 0.587823i \(-0.799985\pi\)
0.808989 0.587823i \(-0.200015\pi\)
\(864\) 16.2598 6.73504i 0.553171 0.229131i
\(865\) 0 0
\(866\) 5.49781 0.186823
\(867\) 8.58348 + 15.8640i 0.291510 + 0.538769i
\(868\) 10.7675 0.365473
\(869\) 25.4370 + 25.4370i 0.862892 + 0.862892i
\(870\) 0 0
\(871\) 37.6032i 1.27414i
\(872\) 4.25919 + 10.2826i 0.144234 + 0.348212i
\(873\) 15.5136 + 6.42595i 0.525057 + 0.217486i
\(874\) 0.708688 1.71093i 0.0239717 0.0578729i
\(875\) 0 0
\(876\) −9.24848 + 9.24848i −0.312477 + 0.312477i
\(877\) 6.05591 14.6203i 0.204493 0.493691i −0.788046 0.615617i \(-0.788907\pi\)
0.992539 + 0.121926i \(0.0389070\pi\)
\(878\) −4.10647 1.70096i −0.138587 0.0574045i
\(879\) −8.47821 20.4682i −0.285963 0.690376i
\(880\) 0 0
\(881\) 29.1623 12.0794i 0.982504 0.406967i 0.167152 0.985931i \(-0.446543\pi\)
0.815353 + 0.578965i \(0.196543\pi\)
\(882\) 0.280162 + 0.280162i 0.00943353 + 0.00943353i
\(883\) 20.2779 0.682406 0.341203 0.939990i \(-0.389166\pi\)
0.341203 + 0.939990i \(0.389166\pi\)
\(884\) 29.5878 32.8124i 0.995144 1.10360i
\(885\) 0 0
\(886\) −4.97762 4.97762i −0.167226 0.167226i
\(887\) −45.1215 + 18.6899i −1.51503 + 0.627547i −0.976589 0.215115i \(-0.930987\pi\)
−0.538443 + 0.842662i \(0.680987\pi\)
\(888\) 6.38831i 0.214378i
\(889\) 5.71946 + 13.8080i 0.191825 + 0.463106i
\(890\) 0 0
\(891\) 0.126868 0.306287i 0.00425024 0.0102610i
\(892\) −8.72426 + 8.72426i −0.292110 + 0.292110i
\(893\) −11.6033 + 11.6033i −0.388290 + 0.388290i
\(894\) −0.737129 + 1.77959i −0.0246533 + 0.0595183i
\(895\) 0 0
\(896\) −8.24607 19.9078i −0.275482 0.665072i
\(897\) 5.12682i 0.171180i
\(898\) 0.477067 0.197608i 0.0159199 0.00659425i
\(899\) 5.96141 + 5.96141i 0.198824 + 0.198824i
\(900\) 0 0
\(901\) 11.4253 0.590416i 0.380633 0.0196696i
\(902\) −9.11148 −0.303379
\(903\) 4.93373 + 4.93373i 0.164184 + 0.164184i
\(904\) 16.3004 6.75183i 0.542142 0.224563i
\(905\) 0 0
\(906\) 1.27618 + 3.08098i 0.0423984 + 0.102359i
\(907\) 38.5317 + 15.9603i 1.27942 + 0.529955i 0.915816 0.401598i \(-0.131545\pi\)
0.363608 + 0.931552i \(0.381545\pi\)
\(908\) −2.23588 + 5.39790i −0.0742004 + 0.179136i
\(909\) −20.2614 + 20.2614i −0.672029 + 0.672029i
\(910\) 0 0
\(911\) 2.44973 5.91417i 0.0811632 0.195945i −0.878088 0.478498i \(-0.841181\pi\)
0.959252 + 0.282553i \(0.0911813\pi\)
\(912\) −24.2015 10.0246i −0.801392 0.331947i
\(913\) 13.0073 + 31.4023i 0.430478 + 1.03926i
\(914\) 3.98735i 0.131890i
\(915\) 0 0
\(916\) −10.2039 10.2039i −0.337145 0.337145i
\(917\) −10.5094 −0.347052
\(918\) 2.15178 6.06239i 0.0710195 0.200089i
\(919\) −23.6812 −0.781170 −0.390585 0.920567i \(-0.627727\pi\)
−0.390585 + 0.920567i \(0.627727\pi\)
\(920\) 0 0
\(921\) −29.3613 + 12.1618i −0.967488 + 0.400746i
\(922\) 8.83658i 0.291017i
\(923\) −0.517199 1.24863i −0.0170238 0.0410991i
\(924\) 11.4859 + 4.75762i 0.377859 + 0.156514i
\(925\) 0 0
\(926\) −2.09137 + 2.09137i −0.0687268 + 0.0687268i
\(927\) −19.5807 + 19.5807i −0.643116 + 0.643116i
\(928\) 4.88550 11.7946i 0.160374 0.387178i
\(929\) 50.7164 + 21.0074i 1.66395 + 0.689232i 0.998369 0.0570920i \(-0.0181828\pi\)
0.665583 + 0.746324i \(0.268183\pi\)
\(930\) 0 0
\(931\) 4.99683i 0.163764i
\(932\) −39.4142 + 16.3259i −1.29106 + 0.534773i
\(933\) −0.157795 0.157795i −0.00516598 0.00516598i
\(934\) −4.12766 −0.135061
\(935\) 0 0
\(936\) −12.4071 −0.405539
\(937\) −4.78966 4.78966i −0.156471 0.156471i 0.624530 0.781001i \(-0.285291\pi\)
−0.781001 + 0.624530i \(0.785291\pi\)
\(938\) −4.68619 + 1.94108i −0.153010 + 0.0633786i
\(939\) 34.4025i 1.12268i
\(940\) 0 0
\(941\) −23.2992 9.65084i −0.759532 0.314608i −0.0309078 0.999522i \(-0.509840\pi\)
−0.728624 + 0.684914i \(0.759840\pi\)
\(942\) 1.64232 3.96490i 0.0535096 0.129184i
\(943\) −7.51696 + 7.51696i −0.244786 + 0.244786i
\(944\) 18.2183 18.2183i 0.592954 0.592954i
\(945\) 0 0
\(946\) −1.78598 0.739776i −0.0580671 0.0240522i
\(947\) −9.37621 22.6362i −0.304686 0.735577i −0.999860 0.0167354i \(-0.994673\pi\)
0.695174 0.718841i \(-0.255327\pi\)
\(948\) 29.7937i 0.967654i
\(949\) 33.4888 13.8715i 1.08709 0.450288i
\(950\) 0 0
\(951\) −35.4793 −1.15050
\(952\) −11.5007 4.08206i −0.372740 0.132300i
\(953\) −30.3936 −0.984545 −0.492272 0.870441i \(-0.663834\pi\)
−0.492272 + 0.870441i \(0.663834\pi\)
\(954\) −1.10941 1.10941i −0.0359185 0.0359185i
\(955\) 0 0
\(956\) 6.60473i 0.213612i
\(957\) 3.72511 + 8.99320i 0.120416 + 0.290709i
\(958\) 3.06873 + 1.27111i 0.0991462 + 0.0410677i
\(959\) −6.97302 + 16.8344i −0.225171 + 0.543610i
\(960\) 0 0
\(961\) −18.3491 + 18.3491i −0.591906 + 0.591906i
\(962\) 3.30874 7.98801i 0.106678 0.257544i
\(963\) 2.54677 + 1.05491i 0.0820684 + 0.0339939i
\(964\) 13.1688 + 31.7923i 0.424139 + 1.02396i
\(965\) 0 0
\(966\) −0.638915 + 0.264647i −0.0205568 + 0.00851489i
\(967\) 31.0785 + 31.0785i 0.999416 + 0.999416i 1.00000 0.000584066i \(-0.000185914\pi\)
−0.000584066 1.00000i \(0.500186\pi\)
\(968\) 5.91906 0.190246
\(969\) −28.1669 + 13.4097i −0.904852 + 0.430782i
\(970\) 0 0
\(971\) 29.9769 + 29.9769i 0.962005 + 0.962005i 0.999304 0.0372988i \(-0.0118753\pi\)
−0.0372988 + 0.999304i \(0.511875\pi\)
\(972\) 27.6169 11.4393i 0.885814 0.366916i
\(973\) 26.0853i 0.836255i
\(974\) 1.16538 + 2.81349i 0.0373413 + 0.0901500i
\(975\) 0 0
\(976\) 1.20077 2.89891i 0.0384356 0.0927918i
\(977\) −16.7792 + 16.7792i −0.536813 + 0.536813i −0.922591 0.385778i \(-0.873933\pi\)
0.385778 + 0.922591i \(0.373933\pi\)
\(978\) −0.356517 + 0.356517i −0.0114001 + 0.0114001i
\(979\) 0.369825 0.892837i 0.0118197 0.0285352i
\(980\) 0 0
\(981\) 6.76915 + 16.3422i 0.216122 + 0.521765i
\(982\) 5.15363i 0.164459i
\(983\) 25.9264 10.7391i 0.826925 0.342524i 0.0712405 0.997459i \(-0.477304\pi\)
0.755685 + 0.654935i \(0.227304\pi\)
\(984\) −10.9264 10.9264i −0.348322 0.348322i
\(985\) 0 0
\(986\) −2.00585 4.21325i −0.0638791 0.134177i
\(987\) 6.12786 0.195052
\(988\) 54.0337 + 54.0337i 1.71904 + 1.71904i
\(989\) −2.08374 + 0.863114i −0.0662591 + 0.0274454i
\(990\) 0 0
\(991\) 17.0472 + 41.1557i 0.541523 + 1.30735i 0.923648 + 0.383242i \(0.125193\pi\)
−0.382124 + 0.924111i \(0.624807\pi\)
\(992\) −7.06567 2.92670i −0.224335 0.0929227i
\(993\) −0.359477 + 0.867854i −0.0114076 + 0.0275405i
\(994\) −0.128909 + 0.128909i −0.00408874 + 0.00408874i
\(995\) 0 0
\(996\) −10.7728 + 26.0079i −0.341349 + 0.824090i
\(997\) 18.9837 + 7.86332i 0.601221 + 0.249034i 0.662470 0.749089i \(-0.269508\pi\)
−0.0612487 + 0.998123i \(0.519508\pi\)
\(998\) 3.62047 + 8.74058i 0.114604 + 0.276678i
\(999\) 26.4042i 0.835392i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.b.376.3 24
5.2 odd 4 425.2.n.f.274.4 24
5.3 odd 4 425.2.n.c.274.3 24
5.4 even 2 85.2.l.a.36.4 yes 24
15.14 odd 2 765.2.be.b.631.3 24
17.3 odd 16 7225.2.a.bs.1.6 12
17.9 even 8 inner 425.2.m.b.26.3 24
17.14 odd 16 7225.2.a.bq.1.6 12
85.9 even 8 85.2.l.a.26.4 24
85.14 odd 16 1445.2.a.q.1.7 12
85.29 odd 16 1445.2.d.j.866.11 24
85.39 odd 16 1445.2.d.j.866.12 24
85.43 odd 8 425.2.n.f.349.4 24
85.54 odd 16 1445.2.a.p.1.7 12
85.77 odd 8 425.2.n.c.349.3 24
255.179 odd 8 765.2.be.b.451.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.4 24 85.9 even 8
85.2.l.a.36.4 yes 24 5.4 even 2
425.2.m.b.26.3 24 17.9 even 8 inner
425.2.m.b.376.3 24 1.1 even 1 trivial
425.2.n.c.274.3 24 5.3 odd 4
425.2.n.c.349.3 24 85.77 odd 8
425.2.n.f.274.4 24 5.2 odd 4
425.2.n.f.349.4 24 85.43 odd 8
765.2.be.b.451.3 24 255.179 odd 8
765.2.be.b.631.3 24 15.14 odd 2
1445.2.a.p.1.7 12 85.54 odd 16
1445.2.a.q.1.7 12 85.14 odd 16
1445.2.d.j.866.11 24 85.29 odd 16
1445.2.d.j.866.12 24 85.39 odd 16
7225.2.a.bq.1.6 12 17.14 odd 16
7225.2.a.bs.1.6 12 17.3 odd 16