Properties

Label 425.2.m.b.26.5
Level $425$
Weight $2$
Character 425.26
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 26.5
Character \(\chi\) \(=\) 425.26
Dual form 425.2.m.b.376.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.27691 - 1.27691i) q^{2} +(-0.635552 - 0.263254i) q^{3} -1.26102i q^{4} +(-1.14770 + 0.475393i) q^{6} +(-1.66158 - 4.01142i) q^{7} +(0.943613 + 0.943613i) q^{8} +(-1.78670 - 1.78670i) q^{9} +(0.0485041 - 0.0200910i) q^{11} +(-0.331970 + 0.801445i) q^{12} -3.02508i q^{13} +(-7.24394 - 3.00054i) q^{14} +4.93187 q^{16} +(-3.12202 + 2.69314i) q^{17} -4.56292 q^{18} +(5.52988 - 5.52988i) q^{19} +2.98689i q^{21} +(0.0362810 - 0.0875901i) q^{22} +(-0.962654 + 0.398744i) q^{23} +(-0.351305 - 0.848125i) q^{24} +(-3.86277 - 3.86277i) q^{26} +(1.45495 + 3.51255i) q^{27} +(-5.05848 + 2.09529i) q^{28} +(-0.161016 + 0.388726i) q^{29} +(-1.27892 - 0.529745i) q^{31} +(4.41035 - 4.41035i) q^{32} -0.0361159 q^{33} +(-0.547638 + 7.42546i) q^{34} +(-2.25306 + 2.25306i) q^{36} +(-0.311301 - 0.128945i) q^{37} -14.1224i q^{38} +(-0.796365 + 1.92260i) q^{39} +(2.52291 + 6.09084i) q^{41} +(3.81400 + 3.81400i) q^{42} +(7.06729 + 7.06729i) q^{43} +(-0.0253352 - 0.0611647i) q^{44} +(-0.720064 + 1.73839i) q^{46} +6.13168i q^{47} +(-3.13446 - 1.29834i) q^{48} +(-8.38087 + 8.38087i) q^{49} +(2.69319 - 0.889748i) q^{51} -3.81469 q^{52} +(8.52974 - 8.52974i) q^{53} +(6.34307 + 2.62739i) q^{54} +(2.21733 - 5.35312i) q^{56} +(-4.97030 + 2.05876i) q^{57} +(0.290767 + 0.701974i) q^{58} +(3.60468 + 3.60468i) q^{59} +(-2.28486 - 5.51614i) q^{61} +(-2.30951 + 0.956630i) q^{62} +(-4.19844 + 10.1359i) q^{63} -1.39954i q^{64} +(-0.0461170 + 0.0461170i) q^{66} -0.916040 q^{67} +(3.39611 + 3.93693i) q^{68} +0.716788 q^{69} +(3.86169 + 1.59956i) q^{71} -3.37190i q^{72} +(-2.06289 + 4.98025i) q^{73} +(-0.562156 + 0.232853i) q^{74} +(-6.97330 - 6.97330i) q^{76} +(-0.161187 - 0.161187i) q^{77} +(1.43810 + 3.47188i) q^{78} +(9.22305 - 3.82031i) q^{79} +4.96488i q^{81} +(10.9990 + 4.55595i) q^{82} +(4.61746 - 4.61746i) q^{83} +3.76653 q^{84} +18.0487 q^{86} +(0.204668 - 0.204668i) q^{87} +(0.0647272 + 0.0268109i) q^{88} -10.2159i q^{89} +(-12.1349 + 5.02642i) q^{91} +(0.502825 + 1.21393i) q^{92} +(0.673362 + 0.673362i) q^{93} +(7.82963 + 7.82963i) q^{94} +(-3.96405 + 1.64196i) q^{96} +(7.35663 - 17.7605i) q^{97} +21.4033i q^{98} +(-0.122559 - 0.0507655i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} - 24 q^{9} - 8 q^{11} - 24 q^{12} - 24 q^{16} + 8 q^{17} - 8 q^{18} - 8 q^{19} + 32 q^{22} + 16 q^{23} - 8 q^{24} + 16 q^{26} - 24 q^{27} - 48 q^{28} - 8 q^{29} + 16 q^{34} - 24 q^{36} - 24 q^{37}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.27691 1.27691i 0.902915 0.902915i −0.0927724 0.995687i \(-0.529573\pi\)
0.995687 + 0.0927724i \(0.0295729\pi\)
\(3\) −0.635552 0.263254i −0.366936 0.151990i 0.191594 0.981474i \(-0.438634\pi\)
−0.558530 + 0.829484i \(0.688634\pi\)
\(4\) 1.26102i 0.630511i
\(5\) 0 0
\(6\) −1.14770 + 0.475393i −0.468546 + 0.194078i
\(7\) −1.66158 4.01142i −0.628020 1.51617i −0.842080 0.539353i \(-0.818669\pi\)
0.214060 0.976821i \(-0.431331\pi\)
\(8\) 0.943613 + 0.943613i 0.333617 + 0.333617i
\(9\) −1.78670 1.78670i −0.595565 0.595565i
\(10\) 0 0
\(11\) 0.0485041 0.0200910i 0.0146245 0.00605768i −0.375359 0.926879i \(-0.622481\pi\)
0.389984 + 0.920822i \(0.372481\pi\)
\(12\) −0.331970 + 0.801445i −0.0958313 + 0.231357i
\(13\) 3.02508i 0.839006i −0.907754 0.419503i \(-0.862204\pi\)
0.907754 0.419503i \(-0.137796\pi\)
\(14\) −7.24394 3.00054i −1.93602 0.801928i
\(15\) 0 0
\(16\) 4.93187 1.23297
\(17\) −3.12202 + 2.69314i −0.757200 + 0.653183i
\(18\) −4.56292 −1.07549
\(19\) 5.52988 5.52988i 1.26864 1.26864i 0.321851 0.946790i \(-0.395695\pi\)
0.946790 0.321851i \(-0.104305\pi\)
\(20\) 0 0
\(21\) 2.98689i 0.651792i
\(22\) 0.0362810 0.0875901i 0.00773514 0.0186743i
\(23\) −0.962654 + 0.398744i −0.200727 + 0.0831439i −0.480782 0.876840i \(-0.659647\pi\)
0.280055 + 0.959984i \(0.409647\pi\)
\(24\) −0.351305 0.848125i −0.0717098 0.173123i
\(25\) 0 0
\(26\) −3.86277 3.86277i −0.757551 0.757551i
\(27\) 1.45495 + 3.51255i 0.280005 + 0.675991i
\(28\) −5.05848 + 2.09529i −0.955964 + 0.395973i
\(29\) −0.161016 + 0.388726i −0.0298999 + 0.0721847i −0.938124 0.346299i \(-0.887438\pi\)
0.908224 + 0.418484i \(0.137438\pi\)
\(30\) 0 0
\(31\) −1.27892 0.529745i −0.229701 0.0951451i 0.264865 0.964286i \(-0.414673\pi\)
−0.494565 + 0.869141i \(0.664673\pi\)
\(32\) 4.41035 4.41035i 0.779647 0.779647i
\(33\) −0.0361159 −0.00628698
\(34\) −0.547638 + 7.42546i −0.0939192 + 1.27346i
\(35\) 0 0
\(36\) −2.25306 + 2.25306i −0.375510 + 0.375510i
\(37\) −0.311301 0.128945i −0.0511775 0.0211984i 0.356948 0.934124i \(-0.383817\pi\)
−0.408125 + 0.912926i \(0.633817\pi\)
\(38\) 14.1224i 2.29095i
\(39\) −0.796365 + 1.92260i −0.127520 + 0.307862i
\(40\) 0 0
\(41\) 2.52291 + 6.09084i 0.394012 + 0.951230i 0.989057 + 0.147537i \(0.0471345\pi\)
−0.595044 + 0.803693i \(0.702865\pi\)
\(42\) 3.81400 + 3.81400i 0.588513 + 0.588513i
\(43\) 7.06729 + 7.06729i 1.07775 + 1.07775i 0.996711 + 0.0810414i \(0.0258246\pi\)
0.0810414 + 0.996711i \(0.474175\pi\)
\(44\) −0.0253352 0.0611647i −0.00381943 0.00922092i
\(45\) 0 0
\(46\) −0.720064 + 1.73839i −0.106168 + 0.256311i
\(47\) 6.13168i 0.894398i 0.894435 + 0.447199i \(0.147578\pi\)
−0.894435 + 0.447199i \(0.852422\pi\)
\(48\) −3.13446 1.29834i −0.452420 0.187399i
\(49\) −8.38087 + 8.38087i −1.19727 + 1.19727i
\(50\) 0 0
\(51\) 2.69319 0.889748i 0.377122 0.124590i
\(52\) −3.81469 −0.529002
\(53\) 8.52974 8.52974i 1.17165 1.17165i 0.189834 0.981816i \(-0.439205\pi\)
0.981816 0.189834i \(-0.0607949\pi\)
\(54\) 6.34307 + 2.62739i 0.863183 + 0.357542i
\(55\) 0 0
\(56\) 2.21733 5.35312i 0.296304 0.715340i
\(57\) −4.97030 + 2.05876i −0.658332 + 0.272690i
\(58\) 0.290767 + 0.701974i 0.0381796 + 0.0921737i
\(59\) 3.60468 + 3.60468i 0.469290 + 0.469290i 0.901684 0.432395i \(-0.142331\pi\)
−0.432395 + 0.901684i \(0.642331\pi\)
\(60\) 0 0
\(61\) −2.28486 5.51614i −0.292547 0.706270i 0.707453 0.706760i \(-0.249844\pi\)
−1.00000 0.000490243i \(0.999844\pi\)
\(62\) −2.30951 + 0.956630i −0.293308 + 0.121492i
\(63\) −4.19844 + 10.1359i −0.528954 + 1.27701i
\(64\) 1.39954i 0.174943i
\(65\) 0 0
\(66\) −0.0461170 + 0.0461170i −0.00567661 + 0.00567661i
\(67\) −0.916040 −0.111912 −0.0559561 0.998433i \(-0.517821\pi\)
−0.0559561 + 0.998433i \(0.517821\pi\)
\(68\) 3.39611 + 3.93693i 0.411839 + 0.477423i
\(69\) 0.716788 0.0862912
\(70\) 0 0
\(71\) 3.86169 + 1.59956i 0.458298 + 0.189833i 0.599875 0.800094i \(-0.295217\pi\)
−0.141577 + 0.989927i \(0.545217\pi\)
\(72\) 3.37190i 0.397382i
\(73\) −2.06289 + 4.98025i −0.241443 + 0.582895i −0.997427 0.0716959i \(-0.977159\pi\)
0.755984 + 0.654590i \(0.227159\pi\)
\(74\) −0.562156 + 0.232853i −0.0653493 + 0.0270686i
\(75\) 0 0
\(76\) −6.97330 6.97330i −0.799892 0.799892i
\(77\) −0.161187 0.161187i −0.0183690 0.0183690i
\(78\) 1.43810 + 3.47188i 0.162833 + 0.393113i
\(79\) 9.22305 3.82031i 1.03767 0.429819i 0.202198 0.979345i \(-0.435192\pi\)
0.835477 + 0.549526i \(0.185192\pi\)
\(80\) 0 0
\(81\) 4.96488i 0.551653i
\(82\) 10.9990 + 4.55595i 1.21464 + 0.503120i
\(83\) 4.61746 4.61746i 0.506833 0.506833i −0.406720 0.913553i \(-0.633328\pi\)
0.913553 + 0.406720i \(0.133328\pi\)
\(84\) 3.76653 0.410962
\(85\) 0 0
\(86\) 18.0487 1.94624
\(87\) 0.204668 0.204668i 0.0219427 0.0219427i
\(88\) 0.0647272 + 0.0268109i 0.00689994 + 0.00285805i
\(89\) 10.2159i 1.08289i −0.840738 0.541443i \(-0.817878\pi\)
0.840738 0.541443i \(-0.182122\pi\)
\(90\) 0 0
\(91\) −12.1349 + 5.02642i −1.27208 + 0.526912i
\(92\) 0.502825 + 1.21393i 0.0524231 + 0.126561i
\(93\) 0.673362 + 0.673362i 0.0698244 + 0.0698244i
\(94\) 7.82963 + 7.82963i 0.807565 + 0.807565i
\(95\) 0 0
\(96\) −3.96405 + 1.64196i −0.404579 + 0.167582i
\(97\) 7.35663 17.7605i 0.746952 1.80330i 0.172036 0.985091i \(-0.444965\pi\)
0.574916 0.818212i \(-0.305035\pi\)
\(98\) 21.4033i 2.16206i
\(99\) −0.122559 0.0507655i −0.0123176 0.00510212i
\(100\) 0 0
\(101\) −13.2926 −1.32266 −0.661331 0.750094i \(-0.730008\pi\)
−0.661331 + 0.750094i \(0.730008\pi\)
\(102\) 2.30284 4.57510i 0.228015 0.453003i
\(103\) 6.91299 0.681157 0.340579 0.940216i \(-0.389377\pi\)
0.340579 + 0.940216i \(0.389377\pi\)
\(104\) 2.85450 2.85450i 0.279907 0.279907i
\(105\) 0 0
\(106\) 21.7835i 2.11580i
\(107\) −5.64104 + 13.6187i −0.545339 + 1.31657i 0.375572 + 0.926793i \(0.377446\pi\)
−0.920911 + 0.389773i \(0.872554\pi\)
\(108\) 4.42940 1.83472i 0.426220 0.176546i
\(109\) −1.81709 4.38684i −0.174046 0.420183i 0.812652 0.582749i \(-0.198023\pi\)
−0.986698 + 0.162566i \(0.948023\pi\)
\(110\) 0 0
\(111\) 0.163903 + 0.163903i 0.0155569 + 0.0155569i
\(112\) −8.19471 19.7838i −0.774328 1.86939i
\(113\) −2.78393 + 1.15314i −0.261890 + 0.108478i −0.509765 0.860314i \(-0.670268\pi\)
0.247875 + 0.968792i \(0.420268\pi\)
\(114\) −3.71778 + 8.97551i −0.348202 + 0.840633i
\(115\) 0 0
\(116\) 0.490192 + 0.203044i 0.0455132 + 0.0188522i
\(117\) −5.40490 + 5.40490i −0.499683 + 0.499683i
\(118\) 9.20574 0.847457
\(119\) 15.9908 + 8.04884i 1.46588 + 0.737836i
\(120\) 0 0
\(121\) −7.77623 + 7.77623i −0.706930 + 0.706930i
\(122\) −9.96122 4.12607i −0.901846 0.373557i
\(123\) 4.53522i 0.408927i
\(124\) −0.668020 + 1.61274i −0.0599900 + 0.144829i
\(125\) 0 0
\(126\) 7.58167 + 18.3038i 0.675429 + 1.63063i
\(127\) −0.00585984 0.00585984i −0.000519977 0.000519977i 0.706847 0.707367i \(-0.250117\pi\)
−0.707367 + 0.706847i \(0.750117\pi\)
\(128\) 7.03360 + 7.03360i 0.621689 + 0.621689i
\(129\) −2.63114 6.35213i −0.231659 0.559274i
\(130\) 0 0
\(131\) 3.13210 7.56157i 0.273653 0.660657i −0.725981 0.687715i \(-0.758614\pi\)
0.999634 + 0.0270577i \(0.00861380\pi\)
\(132\) 0.0455430i 0.00396401i
\(133\) −31.3710 12.9943i −2.72021 1.12675i
\(134\) −1.16971 + 1.16971i −0.101047 + 0.101047i
\(135\) 0 0
\(136\) −5.48726 0.404693i −0.470528 0.0347021i
\(137\) 2.23387 0.190852 0.0954260 0.995437i \(-0.469579\pi\)
0.0954260 + 0.995437i \(0.469579\pi\)
\(138\) 0.915277 0.915277i 0.0779136 0.0779136i
\(139\) −18.2335 7.55257i −1.54655 0.640601i −0.563859 0.825871i \(-0.690684\pi\)
−0.982688 + 0.185270i \(0.940684\pi\)
\(140\) 0 0
\(141\) 1.61419 3.89701i 0.135940 0.328187i
\(142\) 6.97355 2.88854i 0.585207 0.242401i
\(143\) −0.0607770 0.146729i −0.00508243 0.0122701i
\(144\) −8.81175 8.81175i −0.734313 0.734313i
\(145\) 0 0
\(146\) 3.72523 + 8.99349i 0.308302 + 0.744306i
\(147\) 7.53279 3.12018i 0.621294 0.257348i
\(148\) −0.162602 + 0.392557i −0.0133658 + 0.0322680i
\(149\) 10.1835i 0.834263i 0.908846 + 0.417132i \(0.136965\pi\)
−0.908846 + 0.417132i \(0.863035\pi\)
\(150\) 0 0
\(151\) 10.8529 10.8529i 0.883200 0.883200i −0.110659 0.993858i \(-0.535296\pi\)
0.993858 + 0.110659i \(0.0352961\pi\)
\(152\) 10.4361 0.846482
\(153\) 10.3899 + 0.766271i 0.839975 + 0.0619494i
\(154\) −0.411645 −0.0331713
\(155\) 0 0
\(156\) 2.42443 + 1.00423i 0.194110 + 0.0804030i
\(157\) 9.41222i 0.751177i 0.926787 + 0.375588i \(0.122559\pi\)
−0.926787 + 0.375588i \(0.877441\pi\)
\(158\) 6.89884 16.6553i 0.548842 1.32502i
\(159\) −7.66659 + 3.17561i −0.608000 + 0.251842i
\(160\) 0 0
\(161\) 3.19906 + 3.19906i 0.252121 + 0.252121i
\(162\) 6.33972 + 6.33972i 0.498096 + 0.498096i
\(163\) 4.76262 + 11.4980i 0.373037 + 0.900592i 0.993232 + 0.116144i \(0.0370534\pi\)
−0.620195 + 0.784448i \(0.712947\pi\)
\(164\) 7.68068 3.18144i 0.599761 0.248429i
\(165\) 0 0
\(166\) 11.7922i 0.915253i
\(167\) −11.6432 4.82277i −0.900977 0.373197i −0.116382 0.993205i \(-0.537130\pi\)
−0.784596 + 0.620008i \(0.787130\pi\)
\(168\) −2.81846 + 2.81846i −0.217449 + 0.217449i
\(169\) 3.84890 0.296069
\(170\) 0 0
\(171\) −19.7604 −1.51112
\(172\) 8.91201 8.91201i 0.679534 0.679534i
\(173\) −11.2681 4.66741i −0.856699 0.354856i −0.0892832 0.996006i \(-0.528458\pi\)
−0.767416 + 0.641150i \(0.778458\pi\)
\(174\) 0.522687i 0.0396248i
\(175\) 0 0
\(176\) 0.239216 0.0990864i 0.0180316 0.00746892i
\(177\) −1.34202 3.23991i −0.100872 0.243527i
\(178\) −13.0449 13.0449i −0.977754 0.977754i
\(179\) 9.80106 + 9.80106i 0.732566 + 0.732566i 0.971127 0.238562i \(-0.0766759\pi\)
−0.238562 + 0.971127i \(0.576676\pi\)
\(180\) 0 0
\(181\) 1.88863 0.782297i 0.140381 0.0581476i −0.311387 0.950283i \(-0.600794\pi\)
0.451768 + 0.892136i \(0.350794\pi\)
\(182\) −9.07686 + 21.9135i −0.672822 + 1.62434i
\(183\) 4.10730i 0.303620i
\(184\) −1.28463 0.532112i −0.0947043 0.0392278i
\(185\) 0 0
\(186\) 1.71965 0.126091
\(187\) −0.0973225 + 0.193353i −0.00711693 + 0.0141394i
\(188\) 7.73218 0.563927
\(189\) 11.6728 11.6728i 0.849071 0.849071i
\(190\) 0 0
\(191\) 3.08056i 0.222902i 0.993770 + 0.111451i \(0.0355498\pi\)
−0.993770 + 0.111451i \(0.964450\pi\)
\(192\) −0.368435 + 0.889482i −0.0265895 + 0.0641928i
\(193\) −19.0706 + 7.89931i −1.37273 + 0.568605i −0.942528 0.334126i \(-0.891559\pi\)
−0.430205 + 0.902731i \(0.641559\pi\)
\(194\) −13.2848 32.0724i −0.953794 2.30266i
\(195\) 0 0
\(196\) 10.5685 + 10.5685i 0.754890 + 0.754890i
\(197\) 6.97881 + 16.8483i 0.497219 + 1.20039i 0.950975 + 0.309268i \(0.100084\pi\)
−0.453756 + 0.891126i \(0.649916\pi\)
\(198\) −0.221320 + 0.0916738i −0.0157285 + 0.00651497i
\(199\) −10.2053 + 24.6377i −0.723432 + 1.74652i −0.0601040 + 0.998192i \(0.519143\pi\)
−0.663328 + 0.748328i \(0.730857\pi\)
\(200\) 0 0
\(201\) 0.582192 + 0.241152i 0.0410646 + 0.0170095i
\(202\) −16.9735 + 16.9735i −1.19425 + 1.19425i
\(203\) 1.82689 0.128222
\(204\) −1.12199 3.39617i −0.0785551 0.237779i
\(205\) 0 0
\(206\) 8.82730 8.82730i 0.615027 0.615027i
\(207\) 2.43240 + 1.00754i 0.169064 + 0.0700285i
\(208\) 14.9193i 1.03447i
\(209\) 0.157121 0.379323i 0.0108683 0.0262383i
\(210\) 0 0
\(211\) 2.98710 + 7.21149i 0.205640 + 0.496460i 0.992728 0.120382i \(-0.0384119\pi\)
−0.787087 + 0.616842i \(0.788412\pi\)
\(212\) −10.7562 10.7562i −0.738738 0.738738i
\(213\) −2.03321 2.03321i −0.139313 0.139313i
\(214\) 10.1868 + 24.5930i 0.696352 + 1.68114i
\(215\) 0 0
\(216\) −1.94158 + 4.68739i −0.132108 + 0.318937i
\(217\) 6.01049i 0.408019i
\(218\) −7.92189 3.28135i −0.536538 0.222241i
\(219\) 2.62215 2.62215i 0.177188 0.177188i
\(220\) 0 0
\(221\) 8.14696 + 9.44435i 0.548024 + 0.635295i
\(222\) 0.418579 0.0280932
\(223\) −3.37213 + 3.37213i −0.225815 + 0.225815i −0.810942 0.585127i \(-0.801045\pi\)
0.585127 + 0.810942i \(0.301045\pi\)
\(224\) −25.0199 10.3636i −1.67171 0.692447i
\(225\) 0 0
\(226\) −2.08238 + 5.02731i −0.138518 + 0.334411i
\(227\) 10.3577 4.29029i 0.687464 0.284757i −0.0114793 0.999934i \(-0.503654\pi\)
0.698943 + 0.715177i \(0.253654\pi\)
\(228\) 2.59614 + 6.26765i 0.171934 + 0.415085i
\(229\) −14.6007 14.6007i −0.964838 0.964838i 0.0345640 0.999402i \(-0.488996\pi\)
−0.999402 + 0.0345640i \(0.988996\pi\)
\(230\) 0 0
\(231\) 0.0600097 + 0.144876i 0.00394835 + 0.00953215i
\(232\) −0.518744 + 0.214871i −0.0340572 + 0.0141069i
\(233\) 1.17044 2.82569i 0.0766781 0.185117i −0.880892 0.473317i \(-0.843057\pi\)
0.957570 + 0.288199i \(0.0930566\pi\)
\(234\) 13.8032i 0.902342i
\(235\) 0 0
\(236\) 4.54558 4.54558i 0.295892 0.295892i
\(237\) −6.86745 −0.446089
\(238\) 30.6966 10.1412i 1.98976 0.657358i
\(239\) 4.94072 0.319588 0.159794 0.987150i \(-0.448917\pi\)
0.159794 + 0.987150i \(0.448917\pi\)
\(240\) 0 0
\(241\) 1.53527 + 0.635928i 0.0988952 + 0.0409637i 0.431583 0.902073i \(-0.357955\pi\)
−0.332687 + 0.943037i \(0.607955\pi\)
\(242\) 19.8592i 1.27659i
\(243\) 5.67187 13.6931i 0.363850 0.878413i
\(244\) −6.95597 + 2.88126i −0.445311 + 0.184454i
\(245\) 0 0
\(246\) −5.79109 5.79109i −0.369226 0.369226i
\(247\) −16.7283 16.7283i −1.06440 1.06440i
\(248\) −0.706929 1.70668i −0.0448900 0.108374i
\(249\) −4.15021 + 1.71907i −0.263009 + 0.108942i
\(250\) 0 0
\(251\) 9.14240i 0.577063i 0.957470 + 0.288531i \(0.0931670\pi\)
−0.957470 + 0.288531i \(0.906833\pi\)
\(252\) 12.7816 + 5.29432i 0.805167 + 0.333511i
\(253\) −0.0386814 + 0.0386814i −0.00243188 + 0.00243188i
\(254\) −0.0149650 −0.000938989
\(255\) 0 0
\(256\) 20.7617 1.29761
\(257\) 11.7749 11.7749i 0.734498 0.734498i −0.237009 0.971507i \(-0.576167\pi\)
0.971507 + 0.237009i \(0.0761671\pi\)
\(258\) −11.4709 4.75139i −0.714145 0.295809i
\(259\) 1.46301i 0.0909070i
\(260\) 0 0
\(261\) 0.982222 0.406850i 0.0607980 0.0251834i
\(262\) −5.65605 13.6549i −0.349432 0.843603i
\(263\) −15.3640 15.3640i −0.947387 0.947387i 0.0512969 0.998683i \(-0.483665\pi\)
−0.998683 + 0.0512969i \(0.983665\pi\)
\(264\) −0.0340795 0.0340795i −0.00209745 0.00209745i
\(265\) 0 0
\(266\) −56.6507 + 23.4655i −3.47348 + 1.43876i
\(267\) −2.68939 + 6.49276i −0.164588 + 0.397350i
\(268\) 1.15515i 0.0705618i
\(269\) −21.4082 8.86758i −1.30528 0.540666i −0.381779 0.924254i \(-0.624688\pi\)
−0.923504 + 0.383588i \(0.874688\pi\)
\(270\) 0 0
\(271\) −3.95595 −0.240307 −0.120153 0.992755i \(-0.538339\pi\)
−0.120153 + 0.992755i \(0.538339\pi\)
\(272\) −15.3974 + 13.2822i −0.933603 + 0.805353i
\(273\) 9.03556 0.546857
\(274\) 2.85246 2.85246i 0.172323 0.172323i
\(275\) 0 0
\(276\) 0.903885i 0.0544075i
\(277\) 6.47115 15.6227i 0.388814 0.938679i −0.601378 0.798964i \(-0.705382\pi\)
0.990192 0.139714i \(-0.0446185\pi\)
\(278\) −32.9266 + 13.6387i −1.97481 + 0.817992i
\(279\) 1.33854 + 3.23153i 0.0801366 + 0.193467i
\(280\) 0 0
\(281\) 3.30210 + 3.30210i 0.196987 + 0.196987i 0.798707 0.601720i \(-0.205518\pi\)
−0.601720 + 0.798707i \(0.705518\pi\)
\(282\) −2.91496 7.03733i −0.173583 0.419067i
\(283\) 8.03809 3.32949i 0.477815 0.197917i −0.130760 0.991414i \(-0.541742\pi\)
0.608575 + 0.793497i \(0.291742\pi\)
\(284\) 2.01708 4.86967i 0.119692 0.288962i
\(285\) 0 0
\(286\) −0.264967 0.109753i −0.0156678 0.00648982i
\(287\) 20.2409 20.2409i 1.19478 1.19478i
\(288\) −15.7599 −0.928661
\(289\) 2.49398 16.8161i 0.146705 0.989180i
\(290\) 0 0
\(291\) −9.35105 + 9.35105i −0.548168 + 0.548168i
\(292\) 6.28021 + 2.60135i 0.367521 + 0.152232i
\(293\) 0.739100i 0.0431787i 0.999767 + 0.0215893i \(0.00687263\pi\)
−0.999767 + 0.0215893i \(0.993127\pi\)
\(294\) 5.63452 13.6029i 0.328612 0.793339i
\(295\) 0 0
\(296\) −0.172073 0.415421i −0.0100015 0.0241459i
\(297\) 0.141142 + 0.141142i 0.00818987 + 0.00818987i
\(298\) 13.0034 + 13.0034i 0.753269 + 0.753269i
\(299\) 1.20623 + 2.91210i 0.0697582 + 0.168411i
\(300\) 0 0
\(301\) 16.6070 40.0928i 0.957210 2.31091i
\(302\) 27.7165i 1.59491i
\(303\) 8.44813 + 3.49933i 0.485333 + 0.201031i
\(304\) 27.2726 27.2726i 1.56419 1.56419i
\(305\) 0 0
\(306\) 14.2455 12.2886i 0.814361 0.702491i
\(307\) 2.86108 0.163290 0.0816451 0.996661i \(-0.473983\pi\)
0.0816451 + 0.996661i \(0.473983\pi\)
\(308\) −0.203261 + 0.203261i −0.0115818 + 0.0115818i
\(309\) −4.39357 1.81988i −0.249941 0.103529i
\(310\) 0 0
\(311\) 7.84424 18.9377i 0.444806 1.07386i −0.529435 0.848350i \(-0.677596\pi\)
0.974242 0.225507i \(-0.0724038\pi\)
\(312\) −2.56565 + 1.06273i −0.145251 + 0.0601650i
\(313\) −3.23958 7.82103i −0.183112 0.442071i 0.805493 0.592605i \(-0.201901\pi\)
−0.988605 + 0.150534i \(0.951901\pi\)
\(314\) 12.0186 + 12.0186i 0.678249 + 0.678249i
\(315\) 0 0
\(316\) −4.81750 11.6305i −0.271005 0.654265i
\(317\) 19.4863 8.07149i 1.09446 0.453340i 0.238900 0.971044i \(-0.423213\pi\)
0.855560 + 0.517704i \(0.173213\pi\)
\(318\) −5.73460 + 13.8446i −0.321581 + 0.776364i
\(319\) 0.0220898i 0.00123679i
\(320\) 0 0
\(321\) 7.17035 7.17035i 0.400210 0.400210i
\(322\) 8.16985 0.455288
\(323\) −2.37163 + 32.1571i −0.131961 + 1.78927i
\(324\) 6.26082 0.347823
\(325\) 0 0
\(326\) 20.7634 + 8.60048i 1.14998 + 0.476337i
\(327\) 3.26643i 0.180634i
\(328\) −3.36675 + 8.12805i −0.185897 + 0.448796i
\(329\) 24.5967 10.1883i 1.35606 0.561699i
\(330\) 0 0
\(331\) 10.7665 + 10.7665i 0.591780 + 0.591780i 0.938112 0.346332i \(-0.112573\pi\)
−0.346332 + 0.938112i \(0.612573\pi\)
\(332\) −5.82272 5.82272i −0.319563 0.319563i
\(333\) 0.325814 + 0.786585i 0.0178545 + 0.0431046i
\(334\) −21.0256 + 8.70910i −1.15047 + 0.476541i
\(335\) 0 0
\(336\) 14.7309i 0.803638i
\(337\) −10.6003 4.39079i −0.577435 0.239182i 0.0747994 0.997199i \(-0.476168\pi\)
−0.652235 + 0.758017i \(0.726168\pi\)
\(338\) 4.91472 4.91472i 0.267326 0.267326i
\(339\) 2.07290 0.112585
\(340\) 0 0
\(341\) −0.0726759 −0.00393562
\(342\) −25.2324 + 25.2324i −1.36441 + 1.36441i
\(343\) 19.4648 + 8.06258i 1.05100 + 0.435338i
\(344\) 13.3376i 0.719114i
\(345\) 0 0
\(346\) −20.3483 + 8.42854i −1.09393 + 0.453121i
\(347\) 5.73424 + 13.8437i 0.307830 + 0.743168i 0.999775 + 0.0212172i \(0.00675416\pi\)
−0.691945 + 0.721950i \(0.743246\pi\)
\(348\) −0.258091 0.258091i −0.0138351 0.0138351i
\(349\) −3.20791 3.20791i −0.171715 0.171715i 0.616017 0.787733i \(-0.288745\pi\)
−0.787733 + 0.616017i \(0.788745\pi\)
\(350\) 0 0
\(351\) 10.6257 4.40133i 0.567160 0.234925i
\(352\) 0.125311 0.302528i 0.00667912 0.0161248i
\(353\) 7.71469i 0.410612i 0.978698 + 0.205306i \(0.0658189\pi\)
−0.978698 + 0.205306i \(0.934181\pi\)
\(354\) −5.85073 2.42345i −0.310963 0.128805i
\(355\) 0 0
\(356\) −12.8825 −0.682771
\(357\) −8.04411 9.32511i −0.425739 0.493537i
\(358\) 25.0302 1.32289
\(359\) −7.79826 + 7.79826i −0.411577 + 0.411577i −0.882287 0.470711i \(-0.843997\pi\)
0.470711 + 0.882287i \(0.343997\pi\)
\(360\) 0 0
\(361\) 42.1592i 2.21890i
\(362\) 1.41269 3.41055i 0.0742496 0.179254i
\(363\) 6.98933 2.89507i 0.366844 0.151952i
\(364\) 6.33843 + 15.3023i 0.332224 + 0.802059i
\(365\) 0 0
\(366\) 5.24467 + 5.24467i 0.274143 + 0.274143i
\(367\) 6.13386 + 14.8084i 0.320185 + 0.772995i 0.999243 + 0.0389098i \(0.0123885\pi\)
−0.679058 + 0.734085i \(0.737611\pi\)
\(368\) −4.74768 + 1.96655i −0.247490 + 0.102514i
\(369\) 6.37481 15.3902i 0.331860 0.801180i
\(370\) 0 0
\(371\) −48.3892 20.0435i −2.51224 1.04061i
\(372\) 0.849124 0.849124i 0.0440250 0.0440250i
\(373\) 10.2501 0.530732 0.265366 0.964148i \(-0.414507\pi\)
0.265366 + 0.964148i \(0.414507\pi\)
\(374\) 0.122623 + 0.371168i 0.00634066 + 0.0191926i
\(375\) 0 0
\(376\) −5.78593 + 5.78593i −0.298387 + 0.298387i
\(377\) 1.17593 + 0.487085i 0.0605634 + 0.0250862i
\(378\) 29.8103i 1.53328i
\(379\) −5.33919 + 12.8899i −0.274256 + 0.662112i −0.999656 0.0262152i \(-0.991654\pi\)
0.725401 + 0.688327i \(0.241654\pi\)
\(380\) 0 0
\(381\) 0.00218161 + 0.00526686i 0.000111767 + 0.000269830i
\(382\) 3.93362 + 3.93362i 0.201261 + 0.201261i
\(383\) 3.97525 + 3.97525i 0.203126 + 0.203126i 0.801338 0.598212i \(-0.204122\pi\)
−0.598212 + 0.801338i \(0.704122\pi\)
\(384\) −2.61860 6.32185i −0.133630 0.322611i
\(385\) 0 0
\(386\) −14.2648 + 34.4383i −0.726060 + 1.75286i
\(387\) 25.2542i 1.28374i
\(388\) −22.3963 9.27687i −1.13700 0.470962i
\(389\) −25.3255 + 25.3255i −1.28406 + 1.28406i −0.345717 + 0.938339i \(0.612364\pi\)
−0.938339 + 0.345717i \(0.887636\pi\)
\(390\) 0 0
\(391\) 1.93155 3.83745i 0.0976825 0.194068i
\(392\) −15.8166 −0.798858
\(393\) −3.98123 + 3.98123i −0.200827 + 0.200827i
\(394\) 30.4252 + 12.6025i 1.53280 + 0.634907i
\(395\) 0 0
\(396\) −0.0640163 + 0.154549i −0.00321694 + 0.00776638i
\(397\) −3.59405 + 1.48870i −0.180380 + 0.0747159i −0.471046 0.882109i \(-0.656123\pi\)
0.290665 + 0.956825i \(0.406123\pi\)
\(398\) 18.4290 + 44.4915i 0.923761 + 2.23016i
\(399\) 16.5171 + 16.5171i 0.826891 + 0.826891i
\(400\) 0 0
\(401\) 14.0592 + 33.9420i 0.702085 + 1.69498i 0.718890 + 0.695124i \(0.244650\pi\)
−0.0168056 + 0.999859i \(0.505350\pi\)
\(402\) 1.05134 0.435479i 0.0524360 0.0217197i
\(403\) −1.60252 + 3.86883i −0.0798273 + 0.192720i
\(404\) 16.7622i 0.833952i
\(405\) 0 0
\(406\) 2.33278 2.33278i 0.115774 0.115774i
\(407\) −0.0176900 −0.000876860
\(408\) 3.38090 + 1.70175i 0.167380 + 0.0842491i
\(409\) −22.3529 −1.10528 −0.552641 0.833419i \(-0.686380\pi\)
−0.552641 + 0.833419i \(0.686380\pi\)
\(410\) 0 0
\(411\) −1.41974 0.588075i −0.0700306 0.0290076i
\(412\) 8.71743i 0.429477i
\(413\) 8.47041 20.4494i 0.416802 1.00625i
\(414\) 4.39251 1.81944i 0.215880 0.0894204i
\(415\) 0 0
\(416\) −13.3416 13.3416i −0.654128 0.654128i
\(417\) 9.60011 + 9.60011i 0.470119 + 0.470119i
\(418\) −0.283733 0.684993i −0.0138778 0.0335041i
\(419\) 20.2014 8.36768i 0.986901 0.408788i 0.169924 0.985457i \(-0.445648\pi\)
0.816978 + 0.576669i \(0.195648\pi\)
\(420\) 0 0
\(421\) 20.6111i 1.00453i 0.864715 + 0.502263i \(0.167499\pi\)
−0.864715 + 0.502263i \(0.832501\pi\)
\(422\) 13.0227 + 5.39419i 0.633937 + 0.262585i
\(423\) 10.9555 10.9555i 0.532672 0.532672i
\(424\) 16.0975 0.781766
\(425\) 0 0
\(426\) −5.19248 −0.251576
\(427\) −18.3311 + 18.3311i −0.887103 + 0.887103i
\(428\) 17.1734 + 7.11347i 0.830109 + 0.343842i
\(429\) 0.109254i 0.00527481i
\(430\) 0 0
\(431\) 20.6074 8.53585i 0.992621 0.411157i 0.173535 0.984828i \(-0.444481\pi\)
0.819086 + 0.573670i \(0.194481\pi\)
\(432\) 7.17561 + 17.3234i 0.345236 + 0.833475i
\(433\) 6.31536 + 6.31536i 0.303497 + 0.303497i 0.842380 0.538883i \(-0.181154\pi\)
−0.538883 + 0.842380i \(0.681154\pi\)
\(434\) 7.67489 + 7.67489i 0.368406 + 0.368406i
\(435\) 0 0
\(436\) −5.53190 + 2.29139i −0.264930 + 0.109738i
\(437\) −3.11835 + 7.52837i −0.149171 + 0.360131i
\(438\) 6.69652i 0.319972i
\(439\) 20.5695 + 8.52016i 0.981728 + 0.406645i 0.815066 0.579369i \(-0.196701\pi\)
0.166663 + 0.986014i \(0.446701\pi\)
\(440\) 0 0
\(441\) 29.9481 1.42610
\(442\) 22.4626 + 1.65665i 1.06844 + 0.0787987i
\(443\) 6.17421 0.293346 0.146673 0.989185i \(-0.453144\pi\)
0.146673 + 0.989185i \(0.453144\pi\)
\(444\) 0.206685 0.206685i 0.00980882 0.00980882i
\(445\) 0 0
\(446\) 8.61184i 0.407783i
\(447\) 2.68085 6.47214i 0.126800 0.306122i
\(448\) −5.61414 + 2.32545i −0.265243 + 0.109867i
\(449\) 11.5947 + 27.9922i 0.547189 + 1.32103i 0.919561 + 0.392948i \(0.128545\pi\)
−0.372371 + 0.928084i \(0.621455\pi\)
\(450\) 0 0
\(451\) 0.244743 + 0.244743i 0.0115245 + 0.0115245i
\(452\) 1.45414 + 3.51060i 0.0683968 + 0.165125i
\(453\) −9.75470 + 4.04053i −0.458316 + 0.189841i
\(454\) 7.74754 18.7042i 0.363610 0.877833i
\(455\) 0 0
\(456\) −6.63271 2.74736i −0.310605 0.128657i
\(457\) −18.0847 + 18.0847i −0.845965 + 0.845965i −0.989627 0.143662i \(-0.954112\pi\)
0.143662 + 0.989627i \(0.454112\pi\)
\(458\) −37.2876 −1.74233
\(459\) −14.0022 7.04787i −0.653565 0.328966i
\(460\) 0 0
\(461\) −9.93945 + 9.93945i −0.462926 + 0.462926i −0.899613 0.436687i \(-0.856152\pi\)
0.436687 + 0.899613i \(0.356152\pi\)
\(462\) 0.261622 + 0.108367i 0.0121717 + 0.00504170i
\(463\) 25.1233i 1.16758i −0.811905 0.583789i \(-0.801569\pi\)
0.811905 0.583789i \(-0.198431\pi\)
\(464\) −0.794108 + 1.91715i −0.0368656 + 0.0890013i
\(465\) 0 0
\(466\) −2.11362 5.10272i −0.0979114 0.236379i
\(467\) 15.7614 + 15.7614i 0.729352 + 0.729352i 0.970491 0.241139i \(-0.0775209\pi\)
−0.241139 + 0.970491i \(0.577521\pi\)
\(468\) 6.81569 + 6.81569i 0.315055 + 0.315055i
\(469\) 1.52208 + 3.67462i 0.0702830 + 0.169678i
\(470\) 0 0
\(471\) 2.47781 5.98196i 0.114171 0.275634i
\(472\) 6.80285i 0.313126i
\(473\) 0.484782 + 0.200803i 0.0222903 + 0.00923294i
\(474\) −8.76915 + 8.76915i −0.402780 + 0.402780i
\(475\) 0 0
\(476\) 10.1498 20.1648i 0.465213 0.924250i
\(477\) −30.4801 −1.39559
\(478\) 6.30887 6.30887i 0.288561 0.288561i
\(479\) 24.7134 + 10.2366i 1.12919 + 0.467724i 0.867504 0.497430i \(-0.165723\pi\)
0.261681 + 0.965154i \(0.415723\pi\)
\(480\) 0 0
\(481\) −0.390068 + 0.941709i −0.0177856 + 0.0429382i
\(482\) 2.77243 1.14838i 0.126281 0.0523072i
\(483\) −1.19100 2.87534i −0.0541926 0.130832i
\(484\) 9.80599 + 9.80599i 0.445727 + 0.445727i
\(485\) 0 0
\(486\) −10.2424 24.7274i −0.464606 1.12166i
\(487\) 21.3841 8.85760i 0.969008 0.401376i 0.158665 0.987332i \(-0.449281\pi\)
0.810343 + 0.585956i \(0.199281\pi\)
\(488\) 3.04908 7.36113i 0.138025 0.333223i
\(489\) 8.56135i 0.387158i
\(490\) 0 0
\(491\) −5.50823 + 5.50823i −0.248583 + 0.248583i −0.820389 0.571806i \(-0.806243\pi\)
0.571806 + 0.820389i \(0.306243\pi\)
\(492\) −5.71901 −0.257833
\(493\) −0.544201 1.64725i −0.0245096 0.0741883i
\(494\) −42.7213 −1.92212
\(495\) 0 0
\(496\) −6.30746 2.61263i −0.283213 0.117311i
\(497\) 18.1487i 0.814079i
\(498\) −3.10435 + 7.49457i −0.139109 + 0.335840i
\(499\) −8.12796 + 3.36671i −0.363858 + 0.150715i −0.557119 0.830432i \(-0.688093\pi\)
0.193262 + 0.981147i \(0.438093\pi\)
\(500\) 0 0
\(501\) 6.13025 + 6.13025i 0.273879 + 0.273879i
\(502\) 11.6741 + 11.6741i 0.521039 + 0.521039i
\(503\) 3.00003 + 7.24271i 0.133765 + 0.322937i 0.976542 0.215325i \(-0.0690812\pi\)
−0.842778 + 0.538262i \(0.819081\pi\)
\(504\) −13.5261 + 5.60269i −0.602500 + 0.249564i
\(505\) 0 0
\(506\) 0.0987858i 0.00439156i
\(507\) −2.44618 1.01324i −0.108639 0.0449996i
\(508\) −0.00738938 + 0.00738938i −0.000327851 + 0.000327851i
\(509\) 2.52868 0.112082 0.0560409 0.998428i \(-0.482152\pi\)
0.0560409 + 0.998428i \(0.482152\pi\)
\(510\) 0 0
\(511\) 23.4055 1.03540
\(512\) 12.4437 12.4437i 0.549940 0.549940i
\(513\) 27.4697 + 11.3783i 1.21282 + 0.502365i
\(514\) 30.0711i 1.32638i
\(515\) 0 0
\(516\) −8.01017 + 3.31792i −0.352628 + 0.146063i
\(517\) 0.123192 + 0.297412i 0.00541797 + 0.0130801i
\(518\) 1.86814 + 1.86814i 0.0820813 + 0.0820813i
\(519\) 5.93276 + 5.93276i 0.260419 + 0.260419i
\(520\) 0 0
\(521\) 9.33885 3.86828i 0.409142 0.169472i −0.168613 0.985682i \(-0.553929\pi\)
0.577755 + 0.816210i \(0.303929\pi\)
\(522\) 0.734701 1.77373i 0.0321570 0.0776339i
\(523\) 5.80494i 0.253833i 0.991913 + 0.126916i \(0.0405079\pi\)
−0.991913 + 0.126916i \(0.959492\pi\)
\(524\) −9.53530 3.94965i −0.416552 0.172541i
\(525\) 0 0
\(526\) −39.2371 −1.71082
\(527\) 5.41948 1.79043i 0.236076 0.0779925i
\(528\) −0.178119 −0.00775164
\(529\) −15.4958 + 15.4958i −0.673728 + 0.673728i
\(530\) 0 0
\(531\) 12.8809i 0.558985i
\(532\) −16.3861 + 39.5595i −0.710427 + 1.71512i
\(533\) 18.4253 7.63200i 0.798087 0.330579i
\(534\) 4.85658 + 11.7248i 0.210165 + 0.507382i
\(535\) 0 0
\(536\) −0.864387 0.864387i −0.0373358 0.0373358i
\(537\) −3.64892 8.80926i −0.157462 0.380148i
\(538\) −38.6596 + 16.0133i −1.66674 + 0.690384i
\(539\) −0.238126 + 0.574887i −0.0102568 + 0.0247621i
\(540\) 0 0
\(541\) 39.1174 + 16.2030i 1.68179 + 0.696620i 0.999409 0.0343783i \(-0.0109451\pi\)
0.682380 + 0.730998i \(0.260945\pi\)
\(542\) −5.05141 + 5.05141i −0.216976 + 0.216976i
\(543\) −1.40627 −0.0603487
\(544\) −1.89149 + 25.6469i −0.0810971 + 1.09960i
\(545\) 0 0
\(546\) 11.5376 11.5376i 0.493766 0.493766i
\(547\) −18.4832 7.65599i −0.790285 0.327347i −0.0492266 0.998788i \(-0.515676\pi\)
−0.741058 + 0.671441i \(0.765676\pi\)
\(548\) 2.81695i 0.120334i
\(549\) −5.77332 + 13.9380i −0.246399 + 0.594860i
\(550\) 0 0
\(551\) 1.25921 + 3.04001i 0.0536443 + 0.129509i
\(552\) 0.676370 + 0.676370i 0.0287882 + 0.0287882i
\(553\) −30.6498 30.6498i −1.30336 1.30336i
\(554\) −11.6858 28.2120i −0.496482 1.19861i
\(555\) 0 0
\(556\) −9.52395 + 22.9929i −0.403906 + 0.975114i
\(557\) 25.8965i 1.09727i 0.836062 + 0.548636i \(0.184853\pi\)
−0.836062 + 0.548636i \(0.815147\pi\)
\(558\) 5.83560 + 2.41718i 0.247041 + 0.102328i
\(559\) 21.3791 21.3791i 0.904240 0.904240i
\(560\) 0 0
\(561\) 0.112755 0.0972653i 0.00476050 0.00410655i
\(562\) 8.43299 0.355724
\(563\) −19.8208 + 19.8208i −0.835349 + 0.835349i −0.988243 0.152894i \(-0.951141\pi\)
0.152894 + 0.988243i \(0.451141\pi\)
\(564\) −4.91421 2.03553i −0.206925 0.0857113i
\(565\) 0 0
\(566\) 6.01248 14.5154i 0.252724 0.610129i
\(567\) 19.9162 8.24956i 0.836402 0.346449i
\(568\) 2.13457 + 5.15331i 0.0895645 + 0.216228i
\(569\) −27.7130 27.7130i −1.16179 1.16179i −0.984084 0.177706i \(-0.943132\pi\)
−0.177706 0.984084i \(-0.556868\pi\)
\(570\) 0 0
\(571\) 1.48008 + 3.57322i 0.0619392 + 0.149535i 0.951819 0.306661i \(-0.0992118\pi\)
−0.889880 + 0.456196i \(0.849212\pi\)
\(572\) −0.185028 + 0.0766411i −0.00773641 + 0.00320452i
\(573\) 0.810972 1.95786i 0.0338788 0.0817908i
\(574\) 51.6918i 2.15757i
\(575\) 0 0
\(576\) −2.50055 + 2.50055i −0.104190 + 0.104190i
\(577\) −14.4808 −0.602845 −0.301423 0.953491i \(-0.597461\pi\)
−0.301423 + 0.953491i \(0.597461\pi\)
\(578\) −18.2881 24.6573i −0.760684 1.02561i
\(579\) 14.1999 0.590128
\(580\) 0 0
\(581\) −26.1949 10.8503i −1.08675 0.450145i
\(582\) 23.8810i 0.989898i
\(583\) 0.242356 0.585099i 0.0100374 0.0242323i
\(584\) −6.64600 + 2.75286i −0.275013 + 0.113914i
\(585\) 0 0
\(586\) 0.943767 + 0.943767i 0.0389867 + 0.0389867i
\(587\) −22.0937 22.0937i −0.911905 0.911905i 0.0845171 0.996422i \(-0.473065\pi\)
−0.996422 + 0.0845171i \(0.973065\pi\)
\(588\) −3.93462 9.49900i −0.162261 0.391732i
\(589\) −10.0017 + 4.14284i −0.412113 + 0.170703i
\(590\) 0 0
\(591\) 12.5452i 0.516041i
\(592\) −1.53529 0.635939i −0.0631002 0.0261369i
\(593\) −1.41805 + 1.41805i −0.0582323 + 0.0582323i −0.735623 0.677391i \(-0.763111\pi\)
0.677391 + 0.735623i \(0.263111\pi\)
\(594\) 0.360452 0.0147895
\(595\) 0 0
\(596\) 12.8416 0.526012
\(597\) 12.9720 12.9720i 0.530907 0.530907i
\(598\) 5.25876 + 2.17825i 0.215047 + 0.0890753i
\(599\) 36.0451i 1.47276i −0.676567 0.736381i \(-0.736533\pi\)
0.676567 0.736381i \(-0.263467\pi\)
\(600\) 0 0
\(601\) −35.8417 + 14.8461i −1.46201 + 0.605586i −0.965022 0.262168i \(-0.915562\pi\)
−0.496993 + 0.867755i \(0.665562\pi\)
\(602\) −29.9894 72.4007i −1.22228 2.95083i
\(603\) 1.63669 + 1.63669i 0.0666510 + 0.0666510i
\(604\) −13.6858 13.6858i −0.556867 0.556867i
\(605\) 0 0
\(606\) 15.2559 6.31920i 0.619728 0.256700i
\(607\) 11.0800 26.7496i 0.449725 1.08573i −0.522701 0.852516i \(-0.675075\pi\)
0.972425 0.233215i \(-0.0749246\pi\)
\(608\) 48.7774i 1.97818i
\(609\) −1.16108 0.480936i −0.0470494 0.0194885i
\(610\) 0 0
\(611\) 18.5488 0.750405
\(612\) 0.966284 13.1019i 0.0390597 0.529613i
\(613\) −9.10707 −0.367831 −0.183915 0.982942i \(-0.558877\pi\)
−0.183915 + 0.982942i \(0.558877\pi\)
\(614\) 3.65335 3.65335i 0.147437 0.147437i
\(615\) 0 0
\(616\) 0.304197i 0.0122564i
\(617\) 1.93466 4.67068i 0.0778864 0.188035i −0.880140 0.474714i \(-0.842551\pi\)
0.958027 + 0.286680i \(0.0925515\pi\)
\(618\) −7.93404 + 3.28639i −0.319154 + 0.132198i
\(619\) 6.45177 + 15.5760i 0.259319 + 0.626051i 0.998894 0.0470233i \(-0.0149735\pi\)
−0.739575 + 0.673074i \(0.764974\pi\)
\(620\) 0 0
\(621\) −2.80122 2.80122i −0.112409 0.112409i
\(622\) −14.1654 34.1982i −0.567979 1.37122i
\(623\) −40.9803 + 16.9746i −1.64184 + 0.680074i
\(624\) −3.92757 + 9.48199i −0.157229 + 0.379583i
\(625\) 0 0
\(626\) −14.1235 5.85013i −0.564487 0.233818i
\(627\) −0.199717 + 0.199717i −0.00797592 + 0.00797592i
\(628\) 11.8690 0.473625
\(629\) 1.31915 0.435808i 0.0525981 0.0173768i
\(630\) 0 0
\(631\) 1.91845 1.91845i 0.0763722 0.0763722i −0.667889 0.744261i \(-0.732802\pi\)
0.744261 + 0.667889i \(0.232802\pi\)
\(632\) 12.3079 + 5.09809i 0.489581 + 0.202791i
\(633\) 5.36965i 0.213424i
\(634\) 14.5757 35.1889i 0.578876 1.39753i
\(635\) 0 0
\(636\) 4.00451 + 9.66773i 0.158789 + 0.383351i
\(637\) 25.3528 + 25.3528i 1.00451 + 1.00451i
\(638\) 0.0282068 + 0.0282068i 0.00111672 + 0.00111672i
\(639\) −4.04173 9.75760i −0.159888 0.386005i
\(640\) 0 0
\(641\) −8.72988 + 21.0758i −0.344809 + 0.832443i 0.652406 + 0.757870i \(0.273760\pi\)
−0.997215 + 0.0745739i \(0.976240\pi\)
\(642\) 18.3118i 0.722711i
\(643\) 17.8097 + 7.37702i 0.702346 + 0.290921i 0.705133 0.709075i \(-0.250887\pi\)
−0.00278691 + 0.999996i \(0.500887\pi\)
\(644\) 4.03408 4.03408i 0.158965 0.158965i
\(645\) 0 0
\(646\) 38.0335 + 44.0903i 1.49641 + 1.73471i
\(647\) −12.8098 −0.503606 −0.251803 0.967778i \(-0.581024\pi\)
−0.251803 + 0.967778i \(0.581024\pi\)
\(648\) −4.68492 + 4.68492i −0.184041 + 0.184041i
\(649\) 0.247264 + 0.102420i 0.00970595 + 0.00402033i
\(650\) 0 0
\(651\) 1.58229 3.81998i 0.0620148 0.149717i
\(652\) 14.4992 6.00577i 0.567833 0.235204i
\(653\) 15.9656 + 38.5442i 0.624780 + 1.50835i 0.846030 + 0.533136i \(0.178987\pi\)
−0.221249 + 0.975217i \(0.571013\pi\)
\(654\) 4.17095 + 4.17095i 0.163097 + 0.163097i
\(655\) 0 0
\(656\) 12.4427 + 30.0392i 0.485804 + 1.17284i
\(657\) 12.5840 5.21244i 0.490947 0.203357i
\(658\) 18.3983 44.4175i 0.717242 1.73158i
\(659\) 34.3290i 1.33727i −0.743592 0.668633i \(-0.766880\pi\)
0.743592 0.668633i \(-0.233120\pi\)
\(660\) 0 0
\(661\) −19.5875 + 19.5875i −0.761865 + 0.761865i −0.976659 0.214794i \(-0.931092\pi\)
0.214794 + 0.976659i \(0.431092\pi\)
\(662\) 27.4958 1.06865
\(663\) −2.69156 8.14710i −0.104531 0.316407i
\(664\) 8.71419 0.338176
\(665\) 0 0
\(666\) 1.42044 + 0.588365i 0.0550409 + 0.0227987i
\(667\) 0.438413i 0.0169754i
\(668\) −6.08161 + 14.6823i −0.235305 + 0.568076i
\(669\) 3.03089 1.25544i 0.117181 0.0485380i
\(670\) 0 0
\(671\) −0.221650 0.221650i −0.00855671 0.00855671i
\(672\) 13.1732 + 13.1732i 0.508168 + 0.508168i
\(673\) −13.8561 33.4517i −0.534115 1.28947i −0.928777 0.370640i \(-0.879138\pi\)
0.394662 0.918826i \(-0.370862\pi\)
\(674\) −19.1423 + 7.92902i −0.737336 + 0.305414i
\(675\) 0 0
\(676\) 4.85355i 0.186675i
\(677\) −15.8129 6.54992i −0.607739 0.251734i 0.0575224 0.998344i \(-0.481680\pi\)
−0.665262 + 0.746610i \(0.731680\pi\)
\(678\) 2.64692 2.64692i 0.101654 0.101654i
\(679\) −83.4684 −3.20322
\(680\) 0 0
\(681\) −7.71229 −0.295536
\(682\) −0.0928009 + 0.0928009i −0.00355353 + 0.00355353i
\(683\) −8.17654 3.38683i −0.312866 0.129594i 0.220725 0.975336i \(-0.429158\pi\)
−0.533591 + 0.845743i \(0.679158\pi\)
\(684\) 24.9183i 0.952776i
\(685\) 0 0
\(686\) 35.1501 14.5596i 1.34204 0.555890i
\(687\) 5.43580 + 13.1232i 0.207389 + 0.500680i
\(688\) 34.8550 + 34.8550i 1.32883 + 1.32883i
\(689\) −25.8031 25.8031i −0.983021 0.983021i
\(690\) 0 0
\(691\) 1.29190 0.535121i 0.0491461 0.0203570i −0.357975 0.933731i \(-0.616533\pi\)
0.407121 + 0.913374i \(0.366533\pi\)
\(692\) −5.88570 + 14.2093i −0.223741 + 0.540158i
\(693\) 0.575985i 0.0218799i
\(694\) 24.9993 + 10.3551i 0.948962 + 0.393073i
\(695\) 0 0
\(696\) 0.386254 0.0146409
\(697\) −24.2801 12.2212i −0.919673 0.462910i
\(698\) −8.19245 −0.310089
\(699\) −1.48775 + 1.48775i −0.0562720 + 0.0562720i
\(700\) 0 0
\(701\) 2.36331i 0.0892608i −0.999004 0.0446304i \(-0.985789\pi\)
0.999004 0.0446304i \(-0.0142110\pi\)
\(702\) 7.94805 19.1883i 0.299980 0.724215i
\(703\) −2.43451 + 1.00841i −0.0918191 + 0.0380327i
\(704\) −0.0281182 0.0678834i −0.00105975 0.00255845i
\(705\) 0 0
\(706\) 9.85100 + 9.85100i 0.370747 + 0.370747i
\(707\) 22.0867 + 53.3221i 0.830657 + 2.00538i
\(708\) −4.08560 + 1.69231i −0.153546 + 0.0636009i
\(709\) 12.4474 30.0507i 0.467472 1.12858i −0.497791 0.867297i \(-0.665855\pi\)
0.965263 0.261280i \(-0.0841447\pi\)
\(710\) 0 0
\(711\) −23.3045 9.65306i −0.873988 0.362018i
\(712\) 9.63987 9.63987i 0.361270 0.361270i
\(713\) 1.44239 0.0540179
\(714\) −22.1790 1.63573i −0.830028 0.0612158i
\(715\) 0 0
\(716\) 12.3594 12.3594i 0.461891 0.461891i
\(717\) −3.14009 1.30067i −0.117269 0.0485743i
\(718\) 19.9154i 0.743237i
\(719\) −6.28758 + 15.1796i −0.234487 + 0.566102i −0.996695 0.0812299i \(-0.974115\pi\)
0.762208 + 0.647332i \(0.224115\pi\)
\(720\) 0 0
\(721\) −11.4865 27.7309i −0.427780 1.03275i
\(722\) −53.8336 53.8336i −2.00348 2.00348i
\(723\) −0.808332 0.808332i −0.0300622 0.0300622i
\(724\) −0.986493 2.38160i −0.0366627 0.0885116i
\(725\) 0 0
\(726\) 5.22801 12.6215i 0.194030 0.468429i
\(727\) 32.4709i 1.20428i 0.798391 + 0.602139i \(0.205685\pi\)
−0.798391 + 0.602139i \(0.794315\pi\)
\(728\) −16.1936 6.70761i −0.600175 0.248600i
\(729\) 3.32256 3.32256i 0.123058 0.123058i
\(730\) 0 0
\(731\) −41.0974 3.03099i −1.52004 0.112105i
\(732\) 5.17939 0.191436
\(733\) 6.10533 6.10533i 0.225506 0.225506i −0.585307 0.810812i \(-0.699026\pi\)
0.810812 + 0.585307i \(0.199026\pi\)
\(734\) 26.7415 + 11.0767i 0.987048 + 0.408849i
\(735\) 0 0
\(736\) −2.48704 + 6.00424i −0.0916734 + 0.221319i
\(737\) −0.0444317 + 0.0184042i −0.00163666 + 0.000677928i
\(738\) −11.5118 27.7920i −0.423756 1.02304i
\(739\) −7.49715 7.49715i −0.275787 0.275787i 0.555637 0.831425i \(-0.312474\pi\)
−0.831425 + 0.555637i \(0.812474\pi\)
\(740\) 0 0
\(741\) 6.22792 + 15.0355i 0.228788 + 0.552344i
\(742\) −87.3827 + 36.1951i −3.20792 + 1.32876i
\(743\) 8.55008 20.6417i 0.313672 0.757272i −0.685891 0.727705i \(-0.740587\pi\)
0.999563 0.0295670i \(-0.00941283\pi\)
\(744\) 1.27079i 0.0465893i
\(745\) 0 0
\(746\) 13.0886 13.0886i 0.479206 0.479206i
\(747\) −16.5000 −0.603704
\(748\) 0.243822 + 0.122726i 0.00891502 + 0.00448730i
\(749\) 64.0032 2.33863
\(750\) 0 0
\(751\) 6.59640 + 2.73232i 0.240706 + 0.0997037i 0.499775 0.866155i \(-0.333416\pi\)
−0.259069 + 0.965859i \(0.583416\pi\)
\(752\) 30.2406i 1.10276i
\(753\) 2.40678 5.81047i 0.0877078 0.211745i
\(754\) 2.12353 0.879593i 0.0773342 0.0320329i
\(755\) 0 0
\(756\) −14.7197 14.7197i −0.535349 0.535349i
\(757\) −12.7467 12.7467i −0.463287 0.463287i 0.436444 0.899731i \(-0.356238\pi\)
−0.899731 + 0.436444i \(0.856238\pi\)
\(758\) 9.64166 + 23.2770i 0.350201 + 0.845460i
\(759\) 0.0347671 0.0144010i 0.00126197 0.000522724i
\(760\) 0 0
\(761\) 49.9437i 1.81046i −0.424923 0.905230i \(-0.639699\pi\)
0.424923 0.905230i \(-0.360301\pi\)
\(762\) 0.00951106 + 0.00393961i 0.000344549 + 0.000142717i
\(763\) −14.5782 + 14.5782i −0.527767 + 0.527767i
\(764\) 3.88466 0.140542
\(765\) 0 0
\(766\) 10.1521 0.366811
\(767\) 10.9044 10.9044i 0.393737 0.393737i
\(768\) −13.1952 5.46561i −0.476139 0.197223i
\(769\) 43.9115i 1.58349i 0.610852 + 0.791745i \(0.290827\pi\)
−0.610852 + 0.791745i \(0.709173\pi\)
\(770\) 0 0
\(771\) −10.5834 + 4.38377i −0.381151 + 0.157878i
\(772\) 9.96120 + 24.0485i 0.358511 + 0.865523i
\(773\) −6.84309 6.84309i −0.246129 0.246129i 0.573251 0.819380i \(-0.305682\pi\)
−0.819380 + 0.573251i \(0.805682\pi\)
\(774\) −32.2475 32.2475i −1.15911 1.15911i
\(775\) 0 0
\(776\) 23.7008 9.81720i 0.850810 0.352417i
\(777\) 0.385144 0.929820i 0.0138170 0.0333571i
\(778\) 64.6771i 2.31879i
\(779\) 47.6330 + 19.7302i 1.70663 + 0.706909i
\(780\) 0 0
\(781\) 0.219445 0.00785234
\(782\) −2.43367 7.36651i −0.0870280 0.263426i
\(783\) −1.59969 −0.0571683
\(784\) −41.3334 + 41.3334i −1.47619 + 1.47619i
\(785\) 0 0
\(786\) 10.1674i 0.362659i
\(787\) −7.59181 + 18.3283i −0.270619 + 0.653332i −0.999510 0.0312976i \(-0.990036\pi\)
0.728891 + 0.684630i \(0.240036\pi\)
\(788\) 21.2461 8.80043i 0.756861 0.313502i
\(789\) 5.72000 + 13.8093i 0.203637 + 0.491624i
\(790\) 0 0
\(791\) 9.25147 + 9.25147i 0.328944 + 0.328944i
\(792\) −0.0677450 0.163551i −0.00240721 0.00581152i
\(793\) −16.6868 + 6.91188i −0.592564 + 0.245448i
\(794\) −2.68835 + 6.49024i −0.0954059 + 0.230330i
\(795\) 0 0
\(796\) 31.0687 + 12.8691i 1.10120 + 0.456132i
\(797\) 3.93230 3.93230i 0.139289 0.139289i −0.634024 0.773313i \(-0.718598\pi\)
0.773313 + 0.634024i \(0.218598\pi\)
\(798\) 42.1819 1.49322
\(799\) −16.5135 19.1432i −0.584205 0.677238i
\(800\) 0 0
\(801\) −18.2528 + 18.2528i −0.644929 + 0.644929i
\(802\) 61.2935 + 25.3886i 2.16435 + 0.896502i
\(803\) 0.283008i 0.00998714i
\(804\) 0.304097 0.734156i 0.0107247 0.0258917i
\(805\) 0 0
\(806\) 2.89388 + 6.98644i 0.101933 + 0.246087i
\(807\) 11.2716 + 11.2716i 0.396780 + 0.396780i
\(808\) −12.5430 12.5430i −0.441263 0.441263i
\(809\) 11.8801 + 28.6811i 0.417683 + 1.00838i 0.983017 + 0.183513i \(0.0587471\pi\)
−0.565335 + 0.824862i \(0.691253\pi\)
\(810\) 0 0
\(811\) −17.9749 + 43.3953i −0.631185 + 1.52382i 0.206949 + 0.978352i \(0.433647\pi\)
−0.838134 + 0.545464i \(0.816353\pi\)
\(812\) 2.30374i 0.0808455i
\(813\) 2.51421 + 1.04142i 0.0881773 + 0.0365242i
\(814\) −0.0225886 + 0.0225886i −0.000791730 + 0.000791730i
\(815\) 0 0
\(816\) 13.2824 4.38812i 0.464979 0.153615i
\(817\) 78.1626 2.73456
\(818\) −28.5428 + 28.5428i −0.997976 + 0.997976i
\(819\) 30.6620 + 12.7006i 1.07142 + 0.443795i
\(820\) 0 0
\(821\) 6.40739 15.4688i 0.223619 0.539865i −0.771757 0.635918i \(-0.780622\pi\)
0.995376 + 0.0960527i \(0.0306217\pi\)
\(822\) −2.56381 + 1.06196i −0.0894231 + 0.0370402i
\(823\) 10.1792 + 24.5749i 0.354826 + 0.856626i 0.996010 + 0.0892387i \(0.0284434\pi\)
−0.641184 + 0.767387i \(0.721557\pi\)
\(824\) 6.52318 + 6.52318i 0.227246 + 0.227246i
\(825\) 0 0
\(826\) −15.2961 36.9281i −0.532220 1.28489i
\(827\) −31.8605 + 13.1970i −1.10790 + 0.458906i −0.860213 0.509934i \(-0.829670\pi\)
−0.247684 + 0.968841i \(0.579670\pi\)
\(828\) 1.27052 3.06731i 0.0441537 0.106597i
\(829\) 7.29346i 0.253312i −0.991947 0.126656i \(-0.959576\pi\)
0.991947 0.126656i \(-0.0404245\pi\)
\(830\) 0 0
\(831\) −8.22551 + 8.22551i −0.285340 + 0.285340i
\(832\) −4.23372 −0.146778
\(833\) 3.59436 48.7361i 0.124537 1.68861i
\(834\) 24.5170 0.848956
\(835\) 0 0
\(836\) −0.478334 0.198133i −0.0165435 0.00685256i
\(837\) 5.26302i 0.181917i
\(838\) 15.1106 36.4802i 0.521987 1.26019i
\(839\) −32.8053 + 13.5884i −1.13257 + 0.469124i −0.868652 0.495422i \(-0.835013\pi\)
−0.263913 + 0.964546i \(0.585013\pi\)
\(840\) 0 0
\(841\) 20.3809 + 20.3809i 0.702790 + 0.702790i
\(842\) 26.3187 + 26.3187i 0.907001 + 0.907001i
\(843\) −1.22936 2.96795i −0.0423415 0.102222i
\(844\) 9.09385 3.76680i 0.313023 0.129658i
\(845\) 0 0
\(846\) 27.9784i 0.961916i
\(847\) 44.1146 + 18.2728i 1.51579 + 0.627862i
\(848\) 42.0676 42.0676i 1.44461 1.44461i
\(849\) −5.98513 −0.205409
\(850\) 0 0
\(851\) 0.351091 0.0120352
\(852\) −2.56393 + 2.56393i −0.0878386 + 0.0878386i
\(853\) −0.220643 0.0913933i −0.00755467 0.00312925i 0.378903 0.925436i \(-0.376301\pi\)
−0.386458 + 0.922307i \(0.626301\pi\)
\(854\) 46.8144i 1.60196i
\(855\) 0 0
\(856\) −18.1737 + 7.52779i −0.621164 + 0.257295i
\(857\) 6.96291 + 16.8099i 0.237848 + 0.574217i 0.997060 0.0766273i \(-0.0244152\pi\)
−0.759211 + 0.650844i \(0.774415\pi\)
\(858\) 0.139507 + 0.139507i 0.00476271 + 0.00476271i
\(859\) −14.2525 14.2525i −0.486288 0.486288i 0.420845 0.907133i \(-0.361734\pi\)
−0.907133 + 0.420845i \(0.861734\pi\)
\(860\) 0 0
\(861\) −18.1927 + 7.53565i −0.620004 + 0.256814i
\(862\) 15.4143 37.2134i 0.525013 1.26749i
\(863\) 14.7597i 0.502424i −0.967932 0.251212i \(-0.919171\pi\)
0.967932 0.251212i \(-0.0808292\pi\)
\(864\) 21.9084 + 9.07476i 0.745339 + 0.308730i
\(865\) 0 0
\(866\) 16.1284 0.548064
\(867\) −6.01196 + 10.0309i −0.204177 + 0.340669i
\(868\) 7.57936 0.257260
\(869\) 0.370602 0.370602i 0.0125718 0.0125718i
\(870\) 0 0
\(871\) 2.77109i 0.0938949i
\(872\) 2.42485 5.85411i 0.0821158 0.198245i
\(873\) −44.8766 + 18.5885i −1.51884 + 0.629126i
\(874\) 5.63121 + 13.5950i 0.190479 + 0.459856i
\(875\) 0 0
\(876\) −3.30658 3.30658i −0.111719 0.111719i
\(877\) −16.3627 39.5030i −0.552528 1.33392i −0.915574 0.402149i \(-0.868263\pi\)
0.363046 0.931771i \(-0.381737\pi\)
\(878\) 37.1450 15.3860i 1.25358 0.519251i
\(879\) 0.194571 0.469737i 0.00656273 0.0158438i
\(880\) 0 0
\(881\) −40.3580 16.7168i −1.35970 0.563205i −0.420721 0.907190i \(-0.638223\pi\)
−0.938975 + 0.343985i \(0.888223\pi\)
\(882\) 38.2412 38.2412i 1.28765 1.28765i
\(883\) −41.4824 −1.39599 −0.697997 0.716101i \(-0.745925\pi\)
−0.697997 + 0.716101i \(0.745925\pi\)
\(884\) 11.9095 10.2735i 0.400561 0.345535i
\(885\) 0 0
\(886\) 7.88394 7.88394i 0.264866 0.264866i
\(887\) −30.3770 12.5826i −1.01996 0.422481i −0.190881 0.981613i \(-0.561134\pi\)
−0.829078 + 0.559132i \(0.811134\pi\)
\(888\) 0.309321i 0.0103801i
\(889\) −0.0137697 + 0.0332429i −0.000461819 + 0.00111493i
\(890\) 0 0
\(891\) 0.0997496 + 0.240817i 0.00334174 + 0.00806767i
\(892\) 4.25233 + 4.25233i 0.142378 + 0.142378i
\(893\) 33.9075 + 33.9075i 1.13467 + 1.13467i
\(894\) −4.84115 11.6876i −0.161912 0.390891i
\(895\) 0 0
\(896\) 16.5278 39.9017i 0.552155 1.33302i
\(897\) 2.16834i 0.0723988i
\(898\) 50.5491 + 20.9381i 1.68685 + 0.698714i
\(899\) 0.411852 0.411852i 0.0137360 0.0137360i
\(900\) 0 0
\(901\) −3.65820 + 49.6018i −0.121872 + 1.65248i
\(902\) 0.625031 0.0208113
\(903\) −21.1092 + 21.1092i −0.702470 + 0.702470i
\(904\) −3.71507 1.53883i −0.123561 0.0511808i
\(905\) 0 0
\(906\) −7.29650 + 17.6153i −0.242410 + 0.585230i
\(907\) −33.6731 + 13.9479i −1.11810 + 0.463131i −0.863719 0.503973i \(-0.831871\pi\)
−0.254379 + 0.967105i \(0.581871\pi\)
\(908\) −5.41015 13.0613i −0.179542 0.433453i
\(909\) 23.7498 + 23.7498i 0.787731 + 0.787731i
\(910\) 0 0
\(911\) −11.4322 27.5999i −0.378767 0.914425i −0.992197 0.124676i \(-0.960211\pi\)
0.613430 0.789749i \(-0.289789\pi\)
\(912\) −24.5128 + 10.1535i −0.811701 + 0.336218i
\(913\) 0.131196 0.316736i 0.00434196 0.0104824i
\(914\) 46.1852i 1.52767i
\(915\) 0 0
\(916\) −18.4117 + 18.4117i −0.608341 + 0.608341i
\(917\) −35.5369 −1.17353
\(918\) −26.8791 + 8.88004i −0.887143 + 0.293085i
\(919\) 11.6218 0.383368 0.191684 0.981457i \(-0.438605\pi\)
0.191684 + 0.981457i \(0.438605\pi\)
\(920\) 0 0
\(921\) −1.81836 0.753191i −0.0599171 0.0248185i
\(922\) 25.3837i 0.835966i
\(923\) 4.83880 11.6819i 0.159271 0.384515i
\(924\) 0.182692 0.0756735i 0.00601012 0.00248947i
\(925\) 0 0
\(926\) −32.0803 32.0803i −1.05422 1.05422i
\(927\) −12.3514 12.3514i −0.405674 0.405674i
\(928\) 1.00428 + 2.42455i 0.0329672 + 0.0795899i
\(929\) −4.65849 + 1.92961i −0.152840 + 0.0633085i −0.457792 0.889059i \(-0.651360\pi\)
0.304952 + 0.952368i \(0.401360\pi\)
\(930\) 0 0
\(931\) 92.6904i 3.03781i
\(932\) −3.56326 1.47595i −0.116718 0.0483464i
\(933\) −9.97085 + 9.97085i −0.326431 + 0.326431i
\(934\) 40.2520 1.31709
\(935\) 0 0
\(936\) −10.2003 −0.333406
\(937\) −24.6863 + 24.6863i −0.806465 + 0.806465i −0.984097 0.177632i \(-0.943156\pi\)
0.177632 + 0.984097i \(0.443156\pi\)
\(938\) 6.63574 + 2.74861i 0.216665 + 0.0897454i
\(939\) 5.82351i 0.190043i
\(940\) 0 0
\(941\) 10.2169 4.23196i 0.333060 0.137958i −0.209885 0.977726i \(-0.567309\pi\)
0.542945 + 0.839768i \(0.317309\pi\)
\(942\) −4.47450 10.8024i −0.145787 0.351961i
\(943\) −4.85738 4.85738i −0.158178 0.158178i
\(944\) 17.7778 + 17.7778i 0.578619 + 0.578619i
\(945\) 0 0
\(946\) 0.875434 0.362616i 0.0284628 0.0117897i
\(947\) −4.39774 + 10.6171i −0.142907 + 0.345008i −0.979086 0.203449i \(-0.934785\pi\)
0.836178 + 0.548458i \(0.184785\pi\)
\(948\) 8.66000i 0.281264i
\(949\) 15.0657 + 6.24040i 0.489052 + 0.202572i
\(950\) 0 0
\(951\) −14.5094 −0.470500
\(952\) 7.49414 + 22.6841i 0.242887 + 0.735196i
\(953\) 0.704896 0.0228338 0.0114169 0.999935i \(-0.496366\pi\)
0.0114169 + 0.999935i \(0.496366\pi\)
\(954\) −38.9205 + 38.9205i −1.26010 + 1.26010i
\(955\) 0 0
\(956\) 6.23035i 0.201504i
\(957\) 0.00581524 0.0140392i 0.000187980 0.000453824i
\(958\) 44.6282 18.4856i 1.44187 0.597243i
\(959\) −3.71176 8.96097i −0.119859 0.289365i
\(960\) 0 0
\(961\) −20.5653 20.5653i −0.663397 0.663397i
\(962\) 0.704397 + 1.70057i 0.0227107 + 0.0548284i
\(963\) 34.4112 14.2536i 1.10889 0.459316i
\(964\) 0.801919 1.93600i 0.0258281 0.0623545i
\(965\) 0 0
\(966\) −5.19237 2.15075i −0.167062 0.0691993i
\(967\) −28.2521 + 28.2521i −0.908527 + 0.908527i −0.996153 0.0876267i \(-0.972072\pi\)
0.0876267 + 0.996153i \(0.472072\pi\)
\(968\) −14.6755 −0.471688
\(969\) 9.97281 19.8132i 0.320373 0.636492i
\(970\) 0 0
\(971\) 30.5851 30.5851i 0.981521 0.981521i −0.0183111 0.999832i \(-0.505829\pi\)
0.999832 + 0.0183111i \(0.00582892\pi\)
\(972\) −17.2673 7.15235i −0.553849 0.229412i
\(973\) 85.6915i 2.74714i
\(974\) 15.9953 38.6161i 0.512523 1.23734i
\(975\) 0 0
\(976\) −11.2686 27.2049i −0.360700 0.870807i
\(977\) 34.5543 + 34.5543i 1.10549 + 1.10549i 0.993736 + 0.111753i \(0.0356467\pi\)
0.111753 + 0.993736i \(0.464353\pi\)
\(978\) −10.9321 10.9321i −0.349571 0.349571i
\(979\) −0.205249 0.495514i −0.00655977 0.0158367i
\(980\) 0 0
\(981\) −4.59137 + 11.0845i −0.146591 + 0.353902i
\(982\) 14.0671i 0.448898i
\(983\) 45.1621 + 18.7068i 1.44045 + 0.596653i 0.959907 0.280318i \(-0.0904401\pi\)
0.480542 + 0.876972i \(0.340440\pi\)
\(984\) 4.27949 4.27949i 0.136425 0.136425i
\(985\) 0 0
\(986\) −2.79829 1.40850i −0.0891158 0.0448557i
\(987\) −18.3146 −0.582961
\(988\) −21.0948 + 21.0948i −0.671114 + 0.671114i
\(989\) −9.62140 3.98531i −0.305943 0.126726i
\(990\) 0 0
\(991\) 5.56191 13.4276i 0.176680 0.426543i −0.810586 0.585619i \(-0.800851\pi\)
0.987266 + 0.159076i \(0.0508515\pi\)
\(992\) −7.97684 + 3.30411i −0.253265 + 0.104906i
\(993\) −4.00834 9.67699i −0.127201 0.307090i
\(994\) −23.1743 23.1743i −0.735044 0.735044i
\(995\) 0 0
\(996\) 2.16779 + 5.23350i 0.0686890 + 0.165830i
\(997\) 40.8392 16.9161i 1.29339 0.535740i 0.373396 0.927672i \(-0.378193\pi\)
0.919994 + 0.391933i \(0.128193\pi\)
\(998\) −6.07971 + 14.6777i −0.192450 + 0.464615i
\(999\) 1.28107i 0.0405312i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.b.26.5 24
5.2 odd 4 425.2.n.c.349.5 24
5.3 odd 4 425.2.n.f.349.2 24
5.4 even 2 85.2.l.a.26.2 24
15.14 odd 2 765.2.be.b.451.5 24
17.2 even 8 inner 425.2.m.b.376.5 24
17.6 odd 16 7225.2.a.bs.1.10 12
17.11 odd 16 7225.2.a.bq.1.10 12
85.2 odd 8 425.2.n.f.274.2 24
85.19 even 8 85.2.l.a.36.2 yes 24
85.24 odd 16 1445.2.d.j.866.20 24
85.44 odd 16 1445.2.d.j.866.19 24
85.53 odd 8 425.2.n.c.274.5 24
85.74 odd 16 1445.2.a.p.1.3 12
85.79 odd 16 1445.2.a.q.1.3 12
255.104 odd 8 765.2.be.b.631.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.26.2 24 5.4 even 2
85.2.l.a.36.2 yes 24 85.19 even 8
425.2.m.b.26.5 24 1.1 even 1 trivial
425.2.m.b.376.5 24 17.2 even 8 inner
425.2.n.c.274.5 24 85.53 odd 8
425.2.n.c.349.5 24 5.2 odd 4
425.2.n.f.274.2 24 85.2 odd 8
425.2.n.f.349.2 24 5.3 odd 4
765.2.be.b.451.5 24 15.14 odd 2
765.2.be.b.631.5 24 255.104 odd 8
1445.2.a.p.1.3 12 85.74 odd 16
1445.2.a.q.1.3 12 85.79 odd 16
1445.2.d.j.866.19 24 85.44 odd 16
1445.2.d.j.866.20 24 85.24 odd 16
7225.2.a.bq.1.10 12 17.11 odd 16
7225.2.a.bs.1.10 12 17.6 odd 16