Properties

Label 425.2.m.a.151.1
Level $425$
Weight $2$
Character 425.151
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(26,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.26"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,4,0,0,4,4,-4,8,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 151.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 425.151
Dual form 425.2.m.a.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70711 + 1.70711i) q^{2} +(-0.414214 - 1.00000i) q^{3} +3.82843i q^{4} +(1.00000 - 2.41421i) q^{6} +(2.41421 + 1.00000i) q^{7} +(-3.12132 + 3.12132i) q^{8} +(1.29289 - 1.29289i) q^{9} +(-1.00000 + 2.41421i) q^{11} +(3.82843 - 1.58579i) q^{12} +1.41421i q^{13} +(2.41421 + 5.82843i) q^{14} -3.00000 q^{16} +(-2.82843 + 3.00000i) q^{17} +4.41421 q^{18} +(0.585786 + 0.585786i) q^{19} -2.82843i q^{21} +(-5.82843 + 2.41421i) q^{22} +(1.82843 - 4.41421i) q^{23} +(4.41421 + 1.82843i) q^{24} +(-2.41421 + 2.41421i) q^{26} +(-4.82843 - 2.00000i) q^{27} +(-3.82843 + 9.24264i) q^{28} +(-0.292893 + 0.121320i) q^{29} +(-3.00000 - 7.24264i) q^{31} +(1.12132 + 1.12132i) q^{32} +2.82843 q^{33} +(-9.94975 + 0.292893i) q^{34} +(4.94975 + 4.94975i) q^{36} +(-3.53553 - 8.53553i) q^{37} +2.00000i q^{38} +(1.41421 - 0.585786i) q^{39} +(1.12132 + 0.464466i) q^{41} +(4.82843 - 4.82843i) q^{42} +(0.585786 - 0.585786i) q^{43} +(-9.24264 - 3.82843i) q^{44} +(10.6569 - 4.41421i) q^{46} +5.17157i q^{47} +(1.24264 + 3.00000i) q^{48} +(-0.121320 - 0.121320i) q^{49} +(4.17157 + 1.58579i) q^{51} -5.41421 q^{52} +(1.00000 + 1.00000i) q^{53} +(-4.82843 - 11.6569i) q^{54} +(-10.6569 + 4.41421i) q^{56} +(0.343146 - 0.828427i) q^{57} +(-0.707107 - 0.292893i) q^{58} +(4.24264 - 4.24264i) q^{59} +(-3.53553 - 1.46447i) q^{61} +(7.24264 - 17.4853i) q^{62} +(4.41421 - 1.82843i) q^{63} +9.82843i q^{64} +(4.82843 + 4.82843i) q^{66} -1.17157 q^{67} +(-11.4853 - 10.8284i) q^{68} -5.17157 q^{69} +(-2.07107 - 5.00000i) q^{71} +8.07107i q^{72} +(11.9497 - 4.94975i) q^{73} +(8.53553 - 20.6066i) q^{74} +(-2.24264 + 2.24264i) q^{76} +(-4.82843 + 4.82843i) q^{77} +(3.41421 + 1.41421i) q^{78} +(1.82843 - 4.41421i) q^{79} +0.171573i q^{81} +(1.12132 + 2.70711i) q^{82} +(-8.24264 - 8.24264i) q^{83} +10.8284 q^{84} +2.00000 q^{86} +(0.242641 + 0.242641i) q^{87} +(-4.41421 - 10.6569i) q^{88} +6.58579i q^{89} +(-1.41421 + 3.41421i) q^{91} +(16.8995 + 7.00000i) q^{92} +(-6.00000 + 6.00000i) q^{93} +(-8.82843 + 8.82843i) q^{94} +(0.656854 - 1.58579i) q^{96} +(-9.53553 + 3.94975i) q^{97} -0.414214i q^{98} +(1.82843 + 4.41421i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{6} + 4 q^{7} - 4 q^{8} + 8 q^{9} - 4 q^{11} + 4 q^{12} + 4 q^{14} - 12 q^{16} + 12 q^{18} + 8 q^{19} - 12 q^{22} - 4 q^{23} + 12 q^{24} - 4 q^{26} - 8 q^{27} - 4 q^{28} - 4 q^{29}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.70711 + 1.70711i 1.20711 + 1.20711i 0.971960 + 0.235147i \(0.0755571\pi\)
0.235147 + 0.971960i \(0.424443\pi\)
\(3\) −0.414214 1.00000i −0.239146 0.577350i 0.758049 0.652198i \(-0.226153\pi\)
−0.997195 + 0.0748477i \(0.976153\pi\)
\(4\) 3.82843i 1.91421i
\(5\) 0 0
\(6\) 1.00000 2.41421i 0.408248 0.985599i
\(7\) 2.41421 + 1.00000i 0.912487 + 0.377964i 0.789008 0.614383i \(-0.210595\pi\)
0.123479 + 0.992347i \(0.460595\pi\)
\(8\) −3.12132 + 3.12132i −1.10355 + 1.10355i
\(9\) 1.29289 1.29289i 0.430964 0.430964i
\(10\) 0 0
\(11\) −1.00000 + 2.41421i −0.301511 + 0.727913i 0.698414 + 0.715694i \(0.253889\pi\)
−0.999925 + 0.0122188i \(0.996111\pi\)
\(12\) 3.82843 1.58579i 1.10517 0.457777i
\(13\) 1.41421i 0.392232i 0.980581 + 0.196116i \(0.0628330\pi\)
−0.980581 + 0.196116i \(0.937167\pi\)
\(14\) 2.41421 + 5.82843i 0.645226 + 1.55771i
\(15\) 0 0
\(16\) −3.00000 −0.750000
\(17\) −2.82843 + 3.00000i −0.685994 + 0.727607i
\(18\) 4.41421 1.04044
\(19\) 0.585786 + 0.585786i 0.134389 + 0.134389i 0.771101 0.636713i \(-0.219706\pi\)
−0.636713 + 0.771101i \(0.719706\pi\)
\(20\) 0 0
\(21\) 2.82843i 0.617213i
\(22\) −5.82843 + 2.41421i −1.24262 + 0.514712i
\(23\) 1.82843 4.41421i 0.381253 0.920427i −0.610471 0.792039i \(-0.709020\pi\)
0.991724 0.128388i \(-0.0409804\pi\)
\(24\) 4.41421 + 1.82843i 0.901048 + 0.373226i
\(25\) 0 0
\(26\) −2.41421 + 2.41421i −0.473466 + 0.473466i
\(27\) −4.82843 2.00000i −0.929231 0.384900i
\(28\) −3.82843 + 9.24264i −0.723505 + 1.74669i
\(29\) −0.292893 + 0.121320i −0.0543889 + 0.0225286i −0.409712 0.912215i \(-0.634371\pi\)
0.355323 + 0.934744i \(0.384371\pi\)
\(30\) 0 0
\(31\) −3.00000 7.24264i −0.538816 1.30082i −0.925550 0.378625i \(-0.876397\pi\)
0.386734 0.922191i \(-0.373603\pi\)
\(32\) 1.12132 + 1.12132i 0.198223 + 0.198223i
\(33\) 2.82843 0.492366
\(34\) −9.94975 + 0.292893i −1.70637 + 0.0502308i
\(35\) 0 0
\(36\) 4.94975 + 4.94975i 0.824958 + 0.824958i
\(37\) −3.53553 8.53553i −0.581238 1.40323i −0.891691 0.452644i \(-0.850481\pi\)
0.310453 0.950589i \(-0.399519\pi\)
\(38\) 2.00000i 0.324443i
\(39\) 1.41421 0.585786i 0.226455 0.0938009i
\(40\) 0 0
\(41\) 1.12132 + 0.464466i 0.175121 + 0.0725374i 0.468521 0.883452i \(-0.344787\pi\)
−0.293400 + 0.955990i \(0.594787\pi\)
\(42\) 4.82843 4.82843i 0.745042 0.745042i
\(43\) 0.585786 0.585786i 0.0893316 0.0893316i −0.661029 0.750360i \(-0.729880\pi\)
0.750360 + 0.661029i \(0.229880\pi\)
\(44\) −9.24264 3.82843i −1.39338 0.577157i
\(45\) 0 0
\(46\) 10.6569 4.41421i 1.57127 0.650840i
\(47\) 5.17157i 0.754351i 0.926142 + 0.377176i \(0.123105\pi\)
−0.926142 + 0.377176i \(0.876895\pi\)
\(48\) 1.24264 + 3.00000i 0.179360 + 0.433013i
\(49\) −0.121320 0.121320i −0.0173315 0.0173315i
\(50\) 0 0
\(51\) 4.17157 + 1.58579i 0.584137 + 0.222055i
\(52\) −5.41421 −0.750816
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) −4.82843 11.6569i −0.657066 1.58630i
\(55\) 0 0
\(56\) −10.6569 + 4.41421i −1.42408 + 0.589874i
\(57\) 0.343146 0.828427i 0.0454508 0.109728i
\(58\) −0.707107 0.292893i −0.0928477 0.0384588i
\(59\) 4.24264 4.24264i 0.552345 0.552345i −0.374772 0.927117i \(-0.622279\pi\)
0.927117 + 0.374772i \(0.122279\pi\)
\(60\) 0 0
\(61\) −3.53553 1.46447i −0.452679 0.187506i 0.144682 0.989478i \(-0.453784\pi\)
−0.597361 + 0.801973i \(0.703784\pi\)
\(62\) 7.24264 17.4853i 0.919816 2.22063i
\(63\) 4.41421 1.82843i 0.556139 0.230360i
\(64\) 9.82843i 1.22855i
\(65\) 0 0
\(66\) 4.82843 + 4.82843i 0.594338 + 0.594338i
\(67\) −1.17157 −0.143130 −0.0715652 0.997436i \(-0.522799\pi\)
−0.0715652 + 0.997436i \(0.522799\pi\)
\(68\) −11.4853 10.8284i −1.39279 1.31314i
\(69\) −5.17157 −0.622584
\(70\) 0 0
\(71\) −2.07107 5.00000i −0.245791 0.593391i 0.752048 0.659109i \(-0.229066\pi\)
−0.997838 + 0.0657178i \(0.979066\pi\)
\(72\) 8.07107i 0.951184i
\(73\) 11.9497 4.94975i 1.39861 0.579324i 0.449221 0.893421i \(-0.351702\pi\)
0.949391 + 0.314097i \(0.101702\pi\)
\(74\) 8.53553 20.6066i 0.992236 2.39547i
\(75\) 0 0
\(76\) −2.24264 + 2.24264i −0.257249 + 0.257249i
\(77\) −4.82843 + 4.82843i −0.550250 + 0.550250i
\(78\) 3.41421 + 1.41421i 0.386584 + 0.160128i
\(79\) 1.82843 4.41421i 0.205714 0.496638i −0.787026 0.616920i \(-0.788380\pi\)
0.992740 + 0.120283i \(0.0383801\pi\)
\(80\) 0 0
\(81\) 0.171573i 0.0190637i
\(82\) 1.12132 + 2.70711i 0.123829 + 0.298950i
\(83\) −8.24264 8.24264i −0.904747 0.904747i 0.0910949 0.995842i \(-0.470963\pi\)
−0.995842 + 0.0910949i \(0.970963\pi\)
\(84\) 10.8284 1.18148
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 0.242641 + 0.242641i 0.0260138 + 0.0260138i
\(88\) −4.41421 10.6569i −0.470557 1.13602i
\(89\) 6.58579i 0.698092i 0.937106 + 0.349046i \(0.113494\pi\)
−0.937106 + 0.349046i \(0.886506\pi\)
\(90\) 0 0
\(91\) −1.41421 + 3.41421i −0.148250 + 0.357907i
\(92\) 16.8995 + 7.00000i 1.76189 + 0.729800i
\(93\) −6.00000 + 6.00000i −0.622171 + 0.622171i
\(94\) −8.82843 + 8.82843i −0.910583 + 0.910583i
\(95\) 0 0
\(96\) 0.656854 1.58579i 0.0670399 0.161849i
\(97\) −9.53553 + 3.94975i −0.968187 + 0.401036i −0.810037 0.586379i \(-0.800553\pi\)
−0.158150 + 0.987415i \(0.550553\pi\)
\(98\) 0.414214i 0.0418419i
\(99\) 1.82843 + 4.41421i 0.183764 + 0.443645i
\(100\) 0 0
\(101\) −10.5858 −1.05333 −0.526663 0.850074i \(-0.676557\pi\)
−0.526663 + 0.850074i \(0.676557\pi\)
\(102\) 4.41421 + 9.82843i 0.437072 + 0.973159i
\(103\) −12.4853 −1.23021 −0.615106 0.788445i \(-0.710887\pi\)
−0.615106 + 0.788445i \(0.710887\pi\)
\(104\) −4.41421 4.41421i −0.432849 0.432849i
\(105\) 0 0
\(106\) 3.41421i 0.331618i
\(107\) −0.414214 + 0.171573i −0.0400435 + 0.0165866i −0.402615 0.915369i \(-0.631899\pi\)
0.362572 + 0.931956i \(0.381899\pi\)
\(108\) 7.65685 18.4853i 0.736781 1.77875i
\(109\) 14.3640 + 5.94975i 1.37582 + 0.569882i 0.943360 0.331772i \(-0.107646\pi\)
0.432458 + 0.901654i \(0.357646\pi\)
\(110\) 0 0
\(111\) −7.07107 + 7.07107i −0.671156 + 0.671156i
\(112\) −7.24264 3.00000i −0.684365 0.283473i
\(113\) −5.05025 + 12.1924i −0.475088 + 1.14696i 0.486799 + 0.873514i \(0.338165\pi\)
−0.961886 + 0.273449i \(0.911835\pi\)
\(114\) 2.00000 0.828427i 0.187317 0.0775893i
\(115\) 0 0
\(116\) −0.464466 1.12132i −0.0431246 0.104112i
\(117\) 1.82843 + 1.82843i 0.169038 + 0.169038i
\(118\) 14.4853 1.33348
\(119\) −9.82843 + 4.41421i −0.900970 + 0.404650i
\(120\) 0 0
\(121\) 2.94975 + 2.94975i 0.268159 + 0.268159i
\(122\) −3.53553 8.53553i −0.320092 0.772771i
\(123\) 1.31371i 0.118453i
\(124\) 27.7279 11.4853i 2.49004 1.03141i
\(125\) 0 0
\(126\) 10.6569 + 4.41421i 0.949388 + 0.393249i
\(127\) 3.75736 3.75736i 0.333412 0.333412i −0.520469 0.853881i \(-0.674243\pi\)
0.853881 + 0.520469i \(0.174243\pi\)
\(128\) −14.5355 + 14.5355i −1.28477 + 1.28477i
\(129\) −0.828427 0.343146i −0.0729389 0.0302123i
\(130\) 0 0
\(131\) −14.0711 + 5.82843i −1.22939 + 0.509232i −0.900385 0.435094i \(-0.856715\pi\)
−0.329010 + 0.944326i \(0.606715\pi\)
\(132\) 10.8284i 0.942494i
\(133\) 0.828427 + 2.00000i 0.0718337 + 0.173422i
\(134\) −2.00000 2.00000i −0.172774 0.172774i
\(135\) 0 0
\(136\) −0.535534 18.1924i −0.0459217 1.55998i
\(137\) 16.7279 1.42916 0.714581 0.699552i \(-0.246617\pi\)
0.714581 + 0.699552i \(0.246617\pi\)
\(138\) −8.82843 8.82843i −0.751526 0.751526i
\(139\) −8.17157 19.7279i −0.693104 1.67330i −0.738432 0.674328i \(-0.764433\pi\)
0.0453279 0.998972i \(-0.485567\pi\)
\(140\) 0 0
\(141\) 5.17157 2.14214i 0.435525 0.180400i
\(142\) 5.00000 12.0711i 0.419591 1.01298i
\(143\) −3.41421 1.41421i −0.285511 0.118262i
\(144\) −3.87868 + 3.87868i −0.323223 + 0.323223i
\(145\) 0 0
\(146\) 28.8492 + 11.9497i 2.38758 + 0.988968i
\(147\) −0.0710678 + 0.171573i −0.00586157 + 0.0141511i
\(148\) 32.6777 13.5355i 2.68609 1.11261i
\(149\) 16.9706i 1.39028i 0.718873 + 0.695141i \(0.244658\pi\)
−0.718873 + 0.695141i \(0.755342\pi\)
\(150\) 0 0
\(151\) 5.07107 + 5.07107i 0.412678 + 0.412678i 0.882670 0.469993i \(-0.155743\pi\)
−0.469993 + 0.882670i \(0.655743\pi\)
\(152\) −3.65685 −0.296610
\(153\) 0.221825 + 7.53553i 0.0179335 + 0.609212i
\(154\) −16.4853 −1.32842
\(155\) 0 0
\(156\) 2.24264 + 5.41421i 0.179555 + 0.433484i
\(157\) 9.65685i 0.770701i 0.922770 + 0.385350i \(0.125919\pi\)
−0.922770 + 0.385350i \(0.874081\pi\)
\(158\) 10.6569 4.41421i 0.847814 0.351176i
\(159\) 0.585786 1.41421i 0.0464559 0.112154i
\(160\) 0 0
\(161\) 8.82843 8.82843i 0.695778 0.695778i
\(162\) −0.292893 + 0.292893i −0.0230119 + 0.0230119i
\(163\) 7.82843 + 3.24264i 0.613170 + 0.253983i 0.667583 0.744535i \(-0.267329\pi\)
−0.0544134 + 0.998518i \(0.517329\pi\)
\(164\) −1.77817 + 4.29289i −0.138852 + 0.335219i
\(165\) 0 0
\(166\) 28.1421i 2.18425i
\(167\) −0.757359 1.82843i −0.0586062 0.141488i 0.891864 0.452304i \(-0.149398\pi\)
−0.950470 + 0.310816i \(0.899398\pi\)
\(168\) 8.82843 + 8.82843i 0.681128 + 0.681128i
\(169\) 11.0000 0.846154
\(170\) 0 0
\(171\) 1.51472 0.115833
\(172\) 2.24264 + 2.24264i 0.171000 + 0.171000i
\(173\) −1.12132 2.70711i −0.0852524 0.205818i 0.875504 0.483211i \(-0.160530\pi\)
−0.960756 + 0.277393i \(0.910530\pi\)
\(174\) 0.828427i 0.0628029i
\(175\) 0 0
\(176\) 3.00000 7.24264i 0.226134 0.545935i
\(177\) −6.00000 2.48528i −0.450988 0.186805i
\(178\) −11.2426 + 11.2426i −0.842672 + 0.842672i
\(179\) −4.24264 + 4.24264i −0.317110 + 0.317110i −0.847656 0.530546i \(-0.821987\pi\)
0.530546 + 0.847656i \(0.321987\pi\)
\(180\) 0 0
\(181\) −4.46447 + 10.7782i −0.331841 + 0.801135i 0.666605 + 0.745411i \(0.267747\pi\)
−0.998446 + 0.0557243i \(0.982253\pi\)
\(182\) −8.24264 + 3.41421i −0.610985 + 0.253078i
\(183\) 4.14214i 0.306195i
\(184\) 8.07107 + 19.4853i 0.595007 + 1.43647i
\(185\) 0 0
\(186\) −20.4853 −1.50205
\(187\) −4.41421 9.82843i −0.322799 0.718726i
\(188\) −19.7990 −1.44399
\(189\) −9.65685 9.65685i −0.702433 0.702433i
\(190\) 0 0
\(191\) 20.0000i 1.44715i 0.690246 + 0.723575i \(0.257502\pi\)
−0.690246 + 0.723575i \(0.742498\pi\)
\(192\) 9.82843 4.07107i 0.709306 0.293804i
\(193\) −0.878680 + 2.12132i −0.0632487 + 0.152696i −0.952344 0.305027i \(-0.901335\pi\)
0.889095 + 0.457722i \(0.151335\pi\)
\(194\) −23.0208 9.53553i −1.65280 0.684611i
\(195\) 0 0
\(196\) 0.464466 0.464466i 0.0331761 0.0331761i
\(197\) 4.29289 + 1.77817i 0.305856 + 0.126690i 0.530332 0.847790i \(-0.322067\pi\)
−0.224476 + 0.974480i \(0.572067\pi\)
\(198\) −4.41421 + 10.6569i −0.313704 + 0.757350i
\(199\) 10.6569 4.41421i 0.755444 0.312915i 0.0284836 0.999594i \(-0.490932\pi\)
0.726961 + 0.686679i \(0.240932\pi\)
\(200\) 0 0
\(201\) 0.485281 + 1.17157i 0.0342291 + 0.0826364i
\(202\) −18.0711 18.0711i −1.27148 1.27148i
\(203\) −0.828427 −0.0581442
\(204\) −6.07107 + 15.9706i −0.425060 + 1.11816i
\(205\) 0 0
\(206\) −21.3137 21.3137i −1.48500 1.48500i
\(207\) −3.34315 8.07107i −0.232365 0.560978i
\(208\) 4.24264i 0.294174i
\(209\) −2.00000 + 0.828427i −0.138343 + 0.0573035i
\(210\) 0 0
\(211\) −19.7279 8.17157i −1.35813 0.562554i −0.419583 0.907717i \(-0.637824\pi\)
−0.938543 + 0.345163i \(0.887824\pi\)
\(212\) −3.82843 + 3.82843i −0.262937 + 0.262937i
\(213\) −4.14214 + 4.14214i −0.283814 + 0.283814i
\(214\) −1.00000 0.414214i −0.0683586 0.0283151i
\(215\) 0 0
\(216\) 21.3137 8.82843i 1.45021 0.600698i
\(217\) 20.4853i 1.39063i
\(218\) 14.3640 + 34.6777i 0.972850 + 2.34867i
\(219\) −9.89949 9.89949i −0.668946 0.668946i
\(220\) 0 0
\(221\) −4.24264 4.00000i −0.285391 0.269069i
\(222\) −24.1421 −1.62031
\(223\) −3.41421 3.41421i −0.228633 0.228633i 0.583489 0.812121i \(-0.301687\pi\)
−0.812121 + 0.583489i \(0.801687\pi\)
\(224\) 1.58579 + 3.82843i 0.105955 + 0.255798i
\(225\) 0 0
\(226\) −29.4350 + 12.1924i −1.95799 + 0.811026i
\(227\) −6.65685 + 16.0711i −0.441831 + 1.06667i 0.533475 + 0.845816i \(0.320886\pi\)
−0.975306 + 0.220858i \(0.929114\pi\)
\(228\) 3.17157 + 1.31371i 0.210043 + 0.0870025i
\(229\) −12.1421 + 12.1421i −0.802375 + 0.802375i −0.983466 0.181091i \(-0.942037\pi\)
0.181091 + 0.983466i \(0.442037\pi\)
\(230\) 0 0
\(231\) 6.82843 + 2.82843i 0.449278 + 0.186097i
\(232\) 0.535534 1.29289i 0.0351595 0.0848826i
\(233\) −8.12132 + 3.36396i −0.532045 + 0.220380i −0.632499 0.774561i \(-0.717971\pi\)
0.100453 + 0.994942i \(0.467971\pi\)
\(234\) 6.24264i 0.408094i
\(235\) 0 0
\(236\) 16.2426 + 16.2426i 1.05731 + 1.05731i
\(237\) −5.17157 −0.335930
\(238\) −24.3137 9.24264i −1.57602 0.599111i
\(239\) 14.8284 0.959171 0.479586 0.877495i \(-0.340787\pi\)
0.479586 + 0.877495i \(0.340787\pi\)
\(240\) 0 0
\(241\) −1.36396 3.29289i −0.0878605 0.212114i 0.873842 0.486211i \(-0.161621\pi\)
−0.961702 + 0.274097i \(0.911621\pi\)
\(242\) 10.0711i 0.647393i
\(243\) −14.3137 + 5.92893i −0.918225 + 0.380341i
\(244\) 5.60660 13.5355i 0.358926 0.866524i
\(245\) 0 0
\(246\) 2.24264 2.24264i 0.142986 0.142986i
\(247\) −0.828427 + 0.828427i −0.0527116 + 0.0527116i
\(248\) 31.9706 + 13.2426i 2.03013 + 0.840909i
\(249\) −4.82843 + 11.6569i −0.305989 + 0.738723i
\(250\) 0 0
\(251\) 20.4853i 1.29302i −0.762906 0.646510i \(-0.776228\pi\)
0.762906 0.646510i \(-0.223772\pi\)
\(252\) 7.00000 + 16.8995i 0.440959 + 1.06457i
\(253\) 8.82843 + 8.82843i 0.555038 + 0.555038i
\(254\) 12.8284 0.804927
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 4.34315 + 4.34315i 0.270918 + 0.270918i 0.829470 0.558552i \(-0.188643\pi\)
−0.558552 + 0.829470i \(0.688643\pi\)
\(258\) −0.828427 2.00000i −0.0515756 0.124515i
\(259\) 24.1421i 1.50012i
\(260\) 0 0
\(261\) −0.221825 + 0.535534i −0.0137306 + 0.0331487i
\(262\) −33.9706 14.0711i −2.09871 0.869313i
\(263\) 7.41421 7.41421i 0.457180 0.457180i −0.440549 0.897729i \(-0.645216\pi\)
0.897729 + 0.440549i \(0.145216\pi\)
\(264\) −8.82843 + 8.82843i −0.543352 + 0.543352i
\(265\) 0 0
\(266\) −2.00000 + 4.82843i −0.122628 + 0.296050i
\(267\) 6.58579 2.72792i 0.403044 0.166946i
\(268\) 4.48528i 0.273982i
\(269\) 10.1213 + 24.4350i 0.617108 + 1.48983i 0.855047 + 0.518550i \(0.173528\pi\)
−0.237939 + 0.971280i \(0.576472\pi\)
\(270\) 0 0
\(271\) 22.1421 1.34504 0.672519 0.740079i \(-0.265212\pi\)
0.672519 + 0.740079i \(0.265212\pi\)
\(272\) 8.48528 9.00000i 0.514496 0.545705i
\(273\) 4.00000 0.242091
\(274\) 28.5563 + 28.5563i 1.72515 + 1.72515i
\(275\) 0 0
\(276\) 19.7990i 1.19176i
\(277\) 18.4350 7.63604i 1.10765 0.458805i 0.247525 0.968882i \(-0.420383\pi\)
0.860129 + 0.510077i \(0.170383\pi\)
\(278\) 19.7279 47.6274i 1.18320 2.85650i
\(279\) −13.2426 5.48528i −0.792816 0.328395i
\(280\) 0 0
\(281\) −1.34315 + 1.34315i −0.0801254 + 0.0801254i −0.746034 0.665908i \(-0.768044\pi\)
0.665908 + 0.746034i \(0.268044\pi\)
\(282\) 12.4853 + 5.17157i 0.743488 + 0.307963i
\(283\) 7.14214 17.2426i 0.424556 1.02497i −0.556431 0.830894i \(-0.687830\pi\)
0.980987 0.194075i \(-0.0621704\pi\)
\(284\) 19.1421 7.92893i 1.13588 0.470496i
\(285\) 0 0
\(286\) −3.41421 8.24264i −0.201887 0.487398i
\(287\) 2.24264 + 2.24264i 0.132379 + 0.132379i
\(288\) 2.89949 0.170854
\(289\) −1.00000 16.9706i −0.0588235 0.998268i
\(290\) 0 0
\(291\) 7.89949 + 7.89949i 0.463077 + 0.463077i
\(292\) 18.9497 + 45.7487i 1.10895 + 2.67724i
\(293\) 12.3431i 0.721094i 0.932741 + 0.360547i \(0.117410\pi\)
−0.932741 + 0.360547i \(0.882590\pi\)
\(294\) −0.414214 + 0.171573i −0.0241574 + 0.0100063i
\(295\) 0 0
\(296\) 37.6777 + 15.6066i 2.18997 + 0.907115i
\(297\) 9.65685 9.65685i 0.560348 0.560348i
\(298\) −28.9706 + 28.9706i −1.67822 + 1.67822i
\(299\) 6.24264 + 2.58579i 0.361021 + 0.149540i
\(300\) 0 0
\(301\) 2.00000 0.828427i 0.115278 0.0477497i
\(302\) 17.3137i 0.996292i
\(303\) 4.38478 + 10.5858i 0.251899 + 0.608138i
\(304\) −1.75736 1.75736i −0.100791 0.100791i
\(305\) 0 0
\(306\) −12.4853 + 13.2426i −0.713736 + 0.757031i
\(307\) 26.1421 1.49201 0.746005 0.665940i \(-0.231969\pi\)
0.746005 + 0.665940i \(0.231969\pi\)
\(308\) −18.4853 18.4853i −1.05330 1.05330i
\(309\) 5.17157 + 12.4853i 0.294201 + 0.710263i
\(310\) 0 0
\(311\) 23.7279 9.82843i 1.34549 0.557319i 0.410455 0.911881i \(-0.365370\pi\)
0.935032 + 0.354562i \(0.115370\pi\)
\(312\) −2.58579 + 6.24264i −0.146391 + 0.353420i
\(313\) 9.12132 + 3.77817i 0.515568 + 0.213555i 0.625269 0.780410i \(-0.284989\pi\)
−0.109701 + 0.993965i \(0.534989\pi\)
\(314\) −16.4853 + 16.4853i −0.930318 + 0.930318i
\(315\) 0 0
\(316\) 16.8995 + 7.00000i 0.950671 + 0.393781i
\(317\) −7.36396 + 17.7782i −0.413601 + 0.998522i 0.570562 + 0.821255i \(0.306726\pi\)
−0.984163 + 0.177267i \(0.943274\pi\)
\(318\) 3.41421 1.41421i 0.191460 0.0793052i
\(319\) 0.828427i 0.0463830i
\(320\) 0 0
\(321\) 0.343146 + 0.343146i 0.0191525 + 0.0191525i
\(322\) 30.1421 1.67976
\(323\) −3.41421 + 0.100505i −0.189972 + 0.00559225i
\(324\) −0.656854 −0.0364919
\(325\) 0 0
\(326\) 7.82843 + 18.8995i 0.433576 + 1.04675i
\(327\) 16.8284i 0.930614i
\(328\) −4.94975 + 2.05025i −0.273304 + 0.113206i
\(329\) −5.17157 + 12.4853i −0.285118 + 0.688336i
\(330\) 0 0
\(331\) −15.4142 + 15.4142i −0.847242 + 0.847242i −0.989788 0.142546i \(-0.954471\pi\)
0.142546 + 0.989788i \(0.454471\pi\)
\(332\) 31.5563 31.5563i 1.73188 1.73188i
\(333\) −15.6066 6.46447i −0.855237 0.354251i
\(334\) 1.82843 4.41421i 0.100047 0.241535i
\(335\) 0 0
\(336\) 8.48528i 0.462910i
\(337\) 2.15076 + 5.19239i 0.117159 + 0.282847i 0.971571 0.236750i \(-0.0760821\pi\)
−0.854411 + 0.519597i \(0.826082\pi\)
\(338\) 18.7782 + 18.7782i 1.02140 + 1.02140i
\(339\) 14.2843 0.775815
\(340\) 0 0
\(341\) 20.4853 1.10934
\(342\) 2.58579 + 2.58579i 0.139823 + 0.139823i
\(343\) −7.17157 17.3137i −0.387229 0.934852i
\(344\) 3.65685i 0.197164i
\(345\) 0 0
\(346\) 2.70711 6.53553i 0.145535 0.351352i
\(347\) −15.4853 6.41421i −0.831293 0.344333i −0.0738788 0.997267i \(-0.523538\pi\)
−0.757415 + 0.652934i \(0.773538\pi\)
\(348\) −0.928932 + 0.928932i −0.0497960 + 0.0497960i
\(349\) 3.00000 3.00000i 0.160586 0.160586i −0.622240 0.782826i \(-0.713777\pi\)
0.782826 + 0.622240i \(0.213777\pi\)
\(350\) 0 0
\(351\) 2.82843 6.82843i 0.150970 0.364474i
\(352\) −3.82843 + 1.58579i −0.204056 + 0.0845227i
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) −6.00000 14.4853i −0.318896 0.769884i
\(355\) 0 0
\(356\) −25.2132 −1.33630
\(357\) 8.48528 + 8.00000i 0.449089 + 0.423405i
\(358\) −14.4853 −0.765571
\(359\) −20.3848 20.3848i −1.07587 1.07587i −0.996875 0.0789921i \(-0.974830\pi\)
−0.0789921 0.996875i \(-0.525170\pi\)
\(360\) 0 0
\(361\) 18.3137i 0.963879i
\(362\) −26.0208 + 10.7782i −1.36762 + 0.566488i
\(363\) 1.72792 4.17157i 0.0906924 0.218951i
\(364\) −13.0711 5.41421i −0.685110 0.283782i
\(365\) 0 0
\(366\) −7.07107 + 7.07107i −0.369611 + 0.369611i
\(367\) 4.07107 + 1.68629i 0.212508 + 0.0880237i 0.486398 0.873737i \(-0.338310\pi\)
−0.273890 + 0.961761i \(0.588310\pi\)
\(368\) −5.48528 + 13.2426i −0.285940 + 0.690320i
\(369\) 2.05025 0.849242i 0.106732 0.0442098i
\(370\) 0 0
\(371\) 1.41421 + 3.41421i 0.0734223 + 0.177257i
\(372\) −22.9706 22.9706i −1.19097 1.19097i
\(373\) −11.5563 −0.598365 −0.299183 0.954196i \(-0.596714\pi\)
−0.299183 + 0.954196i \(0.596714\pi\)
\(374\) 9.24264 24.3137i 0.477926 1.25723i
\(375\) 0 0
\(376\) −16.1421 16.1421i −0.832467 0.832467i
\(377\) −0.171573 0.414214i −0.00883645 0.0213331i
\(378\) 32.9706i 1.69582i
\(379\) −2.41421 + 1.00000i −0.124010 + 0.0513665i −0.443826 0.896113i \(-0.646379\pi\)
0.319816 + 0.947480i \(0.396379\pi\)
\(380\) 0 0
\(381\) −5.31371 2.20101i −0.272230 0.112761i
\(382\) −34.1421 + 34.1421i −1.74686 + 1.74686i
\(383\) 15.8995 15.8995i 0.812426 0.812426i −0.172571 0.984997i \(-0.555207\pi\)
0.984997 + 0.172571i \(0.0552074\pi\)
\(384\) 20.5563 + 8.51472i 1.04901 + 0.434515i
\(385\) 0 0
\(386\) −5.12132 + 2.12132i −0.260668 + 0.107972i
\(387\) 1.51472i 0.0769975i
\(388\) −15.1213 36.5061i −0.767669 1.85332i
\(389\) −8.58579 8.58579i −0.435317 0.435317i 0.455116 0.890432i \(-0.349598\pi\)
−0.890432 + 0.455116i \(0.849598\pi\)
\(390\) 0 0
\(391\) 8.07107 + 17.9706i 0.408171 + 0.908810i
\(392\) 0.757359 0.0382524
\(393\) 11.6569 + 11.6569i 0.588011 + 0.588011i
\(394\) 4.29289 + 10.3640i 0.216273 + 0.522129i
\(395\) 0 0
\(396\) −16.8995 + 7.00000i −0.849232 + 0.351763i
\(397\) −6.80761 + 16.4350i −0.341664 + 0.824850i 0.655884 + 0.754862i \(0.272296\pi\)
−0.997548 + 0.0699884i \(0.977704\pi\)
\(398\) 25.7279 + 10.6569i 1.28962 + 0.534180i
\(399\) 1.65685 1.65685i 0.0829465 0.0829465i
\(400\) 0 0
\(401\) −0.535534 0.221825i −0.0267433 0.0110774i 0.369272 0.929321i \(-0.379607\pi\)
−0.396015 + 0.918244i \(0.629607\pi\)
\(402\) −1.17157 + 2.82843i −0.0584327 + 0.141069i
\(403\) 10.2426 4.24264i 0.510222 0.211341i
\(404\) 40.5269i 2.01629i
\(405\) 0 0
\(406\) −1.41421 1.41421i −0.0701862 0.0701862i
\(407\) 24.1421 1.19668
\(408\) −17.9706 + 8.07107i −0.889675 + 0.399577i
\(409\) −3.31371 −0.163852 −0.0819262 0.996638i \(-0.526107\pi\)
−0.0819262 + 0.996638i \(0.526107\pi\)
\(410\) 0 0
\(411\) −6.92893 16.7279i −0.341779 0.825128i
\(412\) 47.7990i 2.35489i
\(413\) 14.4853 6.00000i 0.712774 0.295241i
\(414\) 8.07107 19.4853i 0.396671 0.957649i
\(415\) 0 0
\(416\) −1.58579 + 1.58579i −0.0777496 + 0.0777496i
\(417\) −16.3431 + 16.3431i −0.800327 + 0.800327i
\(418\) −4.82843 2.00000i −0.236166 0.0978232i
\(419\) −5.10051 + 12.3137i −0.249176 + 0.601564i −0.998135 0.0610528i \(-0.980554\pi\)
0.748959 + 0.662617i \(0.230554\pi\)
\(420\) 0 0
\(421\) 14.5858i 0.710868i −0.934701 0.355434i \(-0.884333\pi\)
0.934701 0.355434i \(-0.115667\pi\)
\(422\) −19.7279 47.6274i −0.960340 2.31847i
\(423\) 6.68629 + 6.68629i 0.325099 + 0.325099i
\(424\) −6.24264 −0.303169
\(425\) 0 0
\(426\) −14.1421 −0.685189
\(427\) −7.07107 7.07107i −0.342193 0.342193i
\(428\) −0.656854 1.58579i −0.0317502 0.0766519i
\(429\) 4.00000i 0.193122i
\(430\) 0 0
\(431\) 2.79899 6.75736i 0.134823 0.325491i −0.842021 0.539445i \(-0.818634\pi\)
0.976844 + 0.213954i \(0.0686343\pi\)
\(432\) 14.4853 + 6.00000i 0.696923 + 0.288675i
\(433\) −14.7279 + 14.7279i −0.707779 + 0.707779i −0.966068 0.258289i \(-0.916841\pi\)
0.258289 + 0.966068i \(0.416841\pi\)
\(434\) 34.9706 34.9706i 1.67864 1.67864i
\(435\) 0 0
\(436\) −22.7782 + 54.9914i −1.09088 + 2.63361i
\(437\) 3.65685 1.51472i 0.174931 0.0724588i
\(438\) 33.7990i 1.61498i
\(439\) −4.07107 9.82843i −0.194301 0.469085i 0.796462 0.604689i \(-0.206703\pi\)
−0.990763 + 0.135604i \(0.956703\pi\)
\(440\) 0 0
\(441\) −0.313708 −0.0149385
\(442\) −0.414214 14.0711i −0.0197021 0.669292i
\(443\) 23.7990 1.13072 0.565362 0.824843i \(-0.308736\pi\)
0.565362 + 0.824843i \(0.308736\pi\)
\(444\) −27.0711 27.0711i −1.28474 1.28474i
\(445\) 0 0
\(446\) 11.6569i 0.551968i
\(447\) 16.9706 7.02944i 0.802680 0.332481i
\(448\) −9.82843 + 23.7279i −0.464350 + 1.12104i
\(449\) 11.1924 + 4.63604i 0.528201 + 0.218788i 0.630815 0.775933i \(-0.282721\pi\)
−0.102614 + 0.994721i \(0.532721\pi\)
\(450\) 0 0
\(451\) −2.24264 + 2.24264i −0.105602 + 0.105602i
\(452\) −46.6777 19.3345i −2.19553 0.909419i
\(453\) 2.97056 7.17157i 0.139569 0.336950i
\(454\) −38.7990 + 16.0711i −1.82093 + 0.754253i
\(455\) 0 0
\(456\) 1.51472 + 3.65685i 0.0709332 + 0.171248i
\(457\) −9.31371 9.31371i −0.435677 0.435677i 0.454877 0.890554i \(-0.349683\pi\)
−0.890554 + 0.454877i \(0.849683\pi\)
\(458\) −41.4558 −1.93710
\(459\) 19.6569 8.82843i 0.917503 0.412076i
\(460\) 0 0
\(461\) 17.0000 + 17.0000i 0.791769 + 0.791769i 0.981782 0.190013i \(-0.0608529\pi\)
−0.190013 + 0.981782i \(0.560853\pi\)
\(462\) 6.82843 + 16.4853i 0.317687 + 0.766965i
\(463\) 14.6274i 0.679794i −0.940463 0.339897i \(-0.889608\pi\)
0.940463 0.339897i \(-0.110392\pi\)
\(464\) 0.878680 0.363961i 0.0407917 0.0168965i
\(465\) 0 0
\(466\) −19.6066 8.12132i −0.908258 0.376213i
\(467\) −23.0711 + 23.0711i −1.06760 + 1.06760i −0.0700588 + 0.997543i \(0.522319\pi\)
−0.997543 + 0.0700588i \(0.977681\pi\)
\(468\) −7.00000 + 7.00000i −0.323575 + 0.323575i
\(469\) −2.82843 1.17157i −0.130605 0.0540982i
\(470\) 0 0
\(471\) 9.65685 4.00000i 0.444964 0.184310i
\(472\) 26.4853i 1.21908i
\(473\) 0.828427 + 2.00000i 0.0380911 + 0.0919601i
\(474\) −8.82843 8.82843i −0.405503 0.405503i
\(475\) 0 0
\(476\) −16.8995 37.6274i −0.774587 1.72465i
\(477\) 2.58579 0.118395
\(478\) 25.3137 + 25.3137i 1.15782 + 1.15782i
\(479\) 1.97056 + 4.75736i 0.0900373 + 0.217369i 0.962483 0.271342i \(-0.0874673\pi\)
−0.872446 + 0.488711i \(0.837467\pi\)
\(480\) 0 0
\(481\) 12.0711 5.00000i 0.550393 0.227980i
\(482\) 3.29289 7.94975i 0.149987 0.362101i
\(483\) −12.4853 5.17157i −0.568100 0.235315i
\(484\) −11.2929 + 11.2929i −0.513313 + 0.513313i
\(485\) 0 0
\(486\) −34.5563 14.3137i −1.56751 0.649283i
\(487\) −10.0711 + 24.3137i −0.456364 + 1.10176i 0.513495 + 0.858092i \(0.328350\pi\)
−0.969859 + 0.243667i \(0.921650\pi\)
\(488\) 15.6066 6.46447i 0.706478 0.292633i
\(489\) 9.17157i 0.414753i
\(490\) 0 0
\(491\) 26.2426 + 26.2426i 1.18431 + 1.18431i 0.978615 + 0.205698i \(0.0659466\pi\)
0.205698 + 0.978615i \(0.434053\pi\)
\(492\) 5.02944 0.226745
\(493\) 0.464466 1.22183i 0.0209185 0.0550282i
\(494\) −2.82843 −0.127257
\(495\) 0 0
\(496\) 9.00000 + 21.7279i 0.404112 + 0.975613i
\(497\) 14.1421i 0.634361i
\(498\) −28.1421 + 11.6569i −1.26108 + 0.522356i
\(499\) −8.21320 + 19.8284i −0.367673 + 0.887642i 0.626457 + 0.779456i \(0.284504\pi\)
−0.994131 + 0.108186i \(0.965496\pi\)
\(500\) 0 0
\(501\) −1.51472 + 1.51472i −0.0676726 + 0.0676726i
\(502\) 34.9706 34.9706i 1.56081 1.56081i
\(503\) 19.7279 + 8.17157i 0.879625 + 0.364352i 0.776351 0.630301i \(-0.217068\pi\)
0.103273 + 0.994653i \(0.467068\pi\)
\(504\) −8.07107 + 19.4853i −0.359514 + 0.867943i
\(505\) 0 0
\(506\) 30.1421i 1.33998i
\(507\) −4.55635 11.0000i −0.202355 0.488527i
\(508\) 14.3848 + 14.3848i 0.638221 + 0.638221i
\(509\) −36.9706 −1.63869 −0.819346 0.573300i \(-0.805663\pi\)
−0.819346 + 0.573300i \(0.805663\pi\)
\(510\) 0 0
\(511\) 33.7990 1.49518
\(512\) −22.0919 22.0919i −0.976333 0.976333i
\(513\) −1.65685 4.00000i −0.0731519 0.176604i
\(514\) 14.8284i 0.654054i
\(515\) 0 0
\(516\) 1.31371 3.17157i 0.0578328 0.139621i
\(517\) −12.4853 5.17157i −0.549102 0.227446i
\(518\) 41.2132 41.2132i 1.81080 1.81080i
\(519\) −2.24264 + 2.24264i −0.0984410 + 0.0984410i
\(520\) 0 0
\(521\) 7.12132 17.1924i 0.311991 0.753212i −0.687640 0.726051i \(-0.741353\pi\)
0.999631 0.0271607i \(-0.00864660\pi\)
\(522\) −1.29289 + 0.535534i −0.0565884 + 0.0234397i
\(523\) 1.17157i 0.0512293i 0.999672 + 0.0256147i \(0.00815429\pi\)
−0.999672 + 0.0256147i \(0.991846\pi\)
\(524\) −22.3137 53.8701i −0.974779 2.35332i
\(525\) 0 0
\(526\) 25.3137 1.10373
\(527\) 30.2132 + 11.4853i 1.31611 + 0.500307i
\(528\) −8.48528 −0.369274
\(529\) 0.121320 + 0.121320i 0.00527480 + 0.00527480i
\(530\) 0 0
\(531\) 10.9706i 0.476082i
\(532\) −7.65685 + 3.17157i −0.331967 + 0.137505i
\(533\) −0.656854 + 1.58579i −0.0284515 + 0.0686880i
\(534\) 15.8995 + 6.58579i 0.688038 + 0.284995i
\(535\) 0 0
\(536\) 3.65685 3.65685i 0.157952 0.157952i
\(537\) 6.00000 + 2.48528i 0.258919 + 0.107248i
\(538\) −24.4350 + 58.9914i −1.05347 + 2.54330i
\(539\) 0.414214 0.171573i 0.0178414 0.00739017i
\(540\) 0 0
\(541\) −7.05025 17.0208i −0.303114 0.731782i −0.999895 0.0144979i \(-0.995385\pi\)
0.696781 0.717284i \(-0.254615\pi\)
\(542\) 37.7990 + 37.7990i 1.62361 + 1.62361i
\(543\) 12.6274 0.541894
\(544\) −6.53553 + 0.192388i −0.280209 + 0.00824857i
\(545\) 0 0
\(546\) 6.82843 + 6.82843i 0.292230 + 0.292230i
\(547\) −3.10051 7.48528i −0.132568 0.320048i 0.843631 0.536923i \(-0.180413\pi\)
−0.976199 + 0.216875i \(0.930413\pi\)
\(548\) 64.0416i 2.73572i
\(549\) −6.46447 + 2.67767i −0.275897 + 0.114280i
\(550\) 0 0
\(551\) −0.242641 0.100505i −0.0103368 0.00428166i
\(552\) 16.1421 16.1421i 0.687055 0.687055i
\(553\) 8.82843 8.82843i 0.375423 0.375423i
\(554\) 44.5061 + 18.4350i 1.89088 + 0.783229i
\(555\) 0 0
\(556\) 75.5269 31.2843i 3.20305 1.32675i
\(557\) 19.7574i 0.837146i −0.908183 0.418573i \(-0.862530\pi\)
0.908183 0.418573i \(-0.137470\pi\)
\(558\) −13.2426 31.9706i −0.560606 1.35342i
\(559\) 0.828427 + 0.828427i 0.0350387 + 0.0350387i
\(560\) 0 0
\(561\) −8.00000 + 8.48528i −0.337760 + 0.358249i
\(562\) −4.58579 −0.193440
\(563\) −24.5858 24.5858i −1.03617 1.03617i −0.999321 0.0368464i \(-0.988269\pi\)
−0.0368464 0.999321i \(-0.511731\pi\)
\(564\) 8.20101 + 19.7990i 0.345325 + 0.833688i
\(565\) 0 0
\(566\) 41.6274 17.2426i 1.74973 0.724762i
\(567\) −0.171573 + 0.414214i −0.00720538 + 0.0173953i
\(568\) 22.0711 + 9.14214i 0.926081 + 0.383595i
\(569\) 8.51472 8.51472i 0.356956 0.356956i −0.505734 0.862690i \(-0.668778\pi\)
0.862690 + 0.505734i \(0.168778\pi\)
\(570\) 0 0
\(571\) −3.92893 1.62742i −0.164421 0.0681053i 0.298955 0.954267i \(-0.403362\pi\)
−0.463376 + 0.886162i \(0.653362\pi\)
\(572\) 5.41421 13.0711i 0.226380 0.546529i
\(573\) 20.0000 8.28427i 0.835512 0.346080i
\(574\) 7.65685i 0.319591i
\(575\) 0 0
\(576\) 12.7071 + 12.7071i 0.529463 + 0.529463i
\(577\) 27.0711 1.12698 0.563492 0.826122i \(-0.309458\pi\)
0.563492 + 0.826122i \(0.309458\pi\)
\(578\) 27.2635 30.6777i 1.13401 1.27602i
\(579\) 2.48528 0.103285
\(580\) 0 0
\(581\) −11.6569 28.1421i −0.483608 1.16753i
\(582\) 26.9706i 1.11797i
\(583\) −3.41421 + 1.41421i −0.141402 + 0.0585707i
\(584\) −21.8492 + 52.7487i −0.904128 + 2.18276i
\(585\) 0 0
\(586\) −21.0711 + 21.0711i −0.870438 + 0.870438i
\(587\) −32.0416 + 32.0416i −1.32250 + 1.32250i −0.410753 + 0.911747i \(0.634734\pi\)
−0.911747 + 0.410753i \(0.865266\pi\)
\(588\) −0.656854 0.272078i −0.0270882 0.0112203i
\(589\) 2.48528 6.00000i 0.102404 0.247226i
\(590\) 0 0
\(591\) 5.02944i 0.206883i
\(592\) 10.6066 + 25.6066i 0.435929 + 1.05242i
\(593\) −9.14214 9.14214i −0.375423 0.375423i 0.494025 0.869448i \(-0.335525\pi\)
−0.869448 + 0.494025i \(0.835525\pi\)
\(594\) 32.9706 1.35280
\(595\) 0 0
\(596\) −64.9706 −2.66130
\(597\) −8.82843 8.82843i −0.361323 0.361323i
\(598\) 6.24264 + 15.0711i 0.255281 + 0.616302i
\(599\) 10.6274i 0.434224i −0.976147 0.217112i \(-0.930336\pi\)
0.976147 0.217112i \(-0.0696638\pi\)
\(600\) 0 0
\(601\) −3.22183 + 7.77817i −0.131421 + 0.317278i −0.975868 0.218360i \(-0.929929\pi\)
0.844447 + 0.535639i \(0.179929\pi\)
\(602\) 4.82843 + 2.00000i 0.196792 + 0.0815139i
\(603\) −1.51472 + 1.51472i −0.0616841 + 0.0616841i
\(604\) −19.4142 + 19.4142i −0.789953 + 0.789953i
\(605\) 0 0
\(606\) −10.5858 + 25.5563i −0.430018 + 1.03816i
\(607\) −15.1421 + 6.27208i −0.614600 + 0.254576i −0.668194 0.743987i \(-0.732932\pi\)
0.0535937 + 0.998563i \(0.482932\pi\)
\(608\) 1.31371i 0.0532779i
\(609\) 0.343146 + 0.828427i 0.0139050 + 0.0335696i
\(610\) 0 0
\(611\) −7.31371 −0.295881
\(612\) −28.8492 + 0.849242i −1.16616 + 0.0343286i
\(613\) −5.31371 −0.214619 −0.107309 0.994226i \(-0.534224\pi\)
−0.107309 + 0.994226i \(0.534224\pi\)
\(614\) 44.6274 + 44.6274i 1.80102 + 1.80102i
\(615\) 0 0
\(616\) 30.1421i 1.21446i
\(617\) 2.70711 1.12132i 0.108984 0.0451427i −0.327525 0.944842i \(-0.606215\pi\)
0.436509 + 0.899700i \(0.356215\pi\)
\(618\) −12.4853 + 30.1421i −0.502232 + 1.21249i
\(619\) 26.3137 + 10.8995i 1.05764 + 0.438088i 0.842612 0.538521i \(-0.181017\pi\)
0.215025 + 0.976609i \(0.431017\pi\)
\(620\) 0 0
\(621\) −17.6569 + 17.6569i −0.708545 + 0.708545i
\(622\) 57.2843 + 23.7279i 2.29689 + 0.951403i
\(623\) −6.58579 + 15.8995i −0.263854 + 0.637000i
\(624\) −4.24264 + 1.75736i −0.169842 + 0.0703507i
\(625\) 0 0
\(626\) 9.12132 + 22.0208i 0.364561 + 0.880129i
\(627\) 1.65685 + 1.65685i 0.0661684 + 0.0661684i
\(628\) −36.9706 −1.47529
\(629\) 35.6066 + 13.5355i 1.41973 + 0.539697i
\(630\) 0 0
\(631\) −20.7279 20.7279i −0.825166 0.825166i 0.161678 0.986844i \(-0.448309\pi\)
−0.986844 + 0.161678i \(0.948309\pi\)
\(632\) 8.07107 + 19.4853i 0.321050 + 0.775083i
\(633\) 23.1127i 0.918647i
\(634\) −42.9203 + 17.7782i −1.70458 + 0.706062i
\(635\) 0 0
\(636\) 5.41421 + 2.24264i 0.214688 + 0.0889265i
\(637\) 0.171573 0.171573i 0.00679796 0.00679796i
\(638\) 1.41421 1.41421i 0.0559893 0.0559893i
\(639\) −9.14214 3.78680i −0.361657 0.149803i
\(640\) 0 0
\(641\) −38.2635 + 15.8492i −1.51132 + 0.626007i −0.975829 0.218536i \(-0.929872\pi\)
−0.535487 + 0.844544i \(0.679872\pi\)
\(642\) 1.17157i 0.0462383i
\(643\) −11.0416 26.6569i −0.435439 1.05124i −0.977506 0.210908i \(-0.932358\pi\)
0.542066 0.840336i \(-0.317642\pi\)
\(644\) 33.7990 + 33.7990i 1.33187 + 1.33187i
\(645\) 0 0
\(646\) −6.00000 5.65685i −0.236067 0.222566i
\(647\) 2.82843 0.111197 0.0555985 0.998453i \(-0.482293\pi\)
0.0555985 + 0.998453i \(0.482293\pi\)
\(648\) −0.535534 0.535534i −0.0210378 0.0210378i
\(649\) 6.00000 + 14.4853i 0.235521 + 0.568597i
\(650\) 0 0
\(651\) −20.4853 + 8.48528i −0.802881 + 0.332564i
\(652\) −12.4142 + 29.9706i −0.486178 + 1.17374i
\(653\) −8.77817 3.63604i −0.343517 0.142289i 0.204254 0.978918i \(-0.434523\pi\)
−0.547770 + 0.836629i \(0.684523\pi\)
\(654\) 28.7279 28.7279i 1.12335 1.12335i
\(655\) 0 0
\(656\) −3.36396 1.39340i −0.131341 0.0544031i
\(657\) 9.05025 21.8492i 0.353084 0.852420i
\(658\) −30.1421 + 12.4853i −1.17506 + 0.486727i
\(659\) 8.48528i 0.330540i 0.986248 + 0.165270i \(0.0528495\pi\)
−0.986248 + 0.165270i \(0.947151\pi\)
\(660\) 0 0
\(661\) 0.857864 + 0.857864i 0.0333671 + 0.0333671i 0.723593 0.690226i \(-0.242489\pi\)
−0.690226 + 0.723593i \(0.742489\pi\)
\(662\) −52.6274 −2.04542
\(663\) −2.24264 + 5.89949i −0.0870969 + 0.229117i
\(664\) 51.4558 1.99687
\(665\) 0 0
\(666\) −15.6066 37.6777i −0.604744 1.45998i
\(667\) 1.51472i 0.0586501i
\(668\) 7.00000 2.89949i 0.270838 0.112185i
\(669\) −2.00000 + 4.82843i −0.0773245 + 0.186678i
\(670\) 0 0
\(671\) 7.07107 7.07107i 0.272976 0.272976i
\(672\) 3.17157 3.17157i 0.122346 0.122346i
\(673\) −4.12132 1.70711i −0.158865 0.0658041i 0.301834 0.953361i \(-0.402401\pi\)
−0.460699 + 0.887556i \(0.652401\pi\)
\(674\) −5.19239 + 12.5355i −0.200003 + 0.482851i
\(675\) 0 0
\(676\) 42.1127i 1.61972i
\(677\) 14.5772 + 35.1924i 0.560246 + 1.35255i 0.909570 + 0.415551i \(0.136411\pi\)
−0.349324 + 0.937002i \(0.613589\pi\)
\(678\) 24.3848 + 24.3848i 0.936492 + 0.936492i
\(679\) −26.9706 −1.03504
\(680\) 0 0
\(681\) 18.8284 0.721507
\(682\) 34.9706 + 34.9706i 1.33909 + 1.33909i
\(683\) 9.10051 + 21.9706i 0.348221 + 0.840680i 0.996830 + 0.0795585i \(0.0253510\pi\)
−0.648609 + 0.761122i \(0.724649\pi\)
\(684\) 5.79899i 0.221730i
\(685\) 0 0
\(686\) 17.3137 41.7990i 0.661040 1.59589i
\(687\) 17.1716 + 7.11270i 0.655136 + 0.271366i
\(688\) −1.75736 + 1.75736i −0.0669987 + 0.0669987i
\(689\) −1.41421 + 1.41421i −0.0538772 + 0.0538772i
\(690\) 0 0
\(691\) −7.62742 + 18.4142i −0.290161 + 0.700510i −0.999993 0.00386139i \(-0.998771\pi\)
0.709832 + 0.704371i \(0.248771\pi\)
\(692\) 10.3640 4.29289i 0.393979 0.163191i
\(693\) 12.4853i 0.474277i
\(694\) −15.4853 37.3848i −0.587813 1.41911i
\(695\) 0 0
\(696\) −1.51472 −0.0574153
\(697\) −4.56497 + 2.05025i −0.172911 + 0.0776589i
\(698\) 10.2426 0.387690
\(699\) 6.72792 + 6.72792i 0.254473 + 0.254473i
\(700\) 0 0
\(701\) 37.6985i 1.42385i 0.702254 + 0.711926i \(0.252177\pi\)
−0.702254 + 0.711926i \(0.747823\pi\)
\(702\) 16.4853 6.82843i 0.622197 0.257722i
\(703\) 2.92893 7.07107i 0.110467 0.266690i
\(704\) −23.7279 9.82843i −0.894280 0.370423i
\(705\) 0 0
\(706\) 23.8995 23.8995i 0.899469 0.899469i
\(707\) −25.5563 10.5858i −0.961145 0.398119i
\(708\) 9.51472 22.9706i 0.357585 0.863287i
\(709\) 22.4350 9.29289i 0.842565 0.349002i 0.0807007 0.996738i \(-0.474284\pi\)
0.761864 + 0.647736i \(0.224284\pi\)
\(710\) 0 0
\(711\) −3.34315 8.07107i −0.125378 0.302689i
\(712\) −20.5563 20.5563i −0.770382 0.770382i
\(713\) −37.4558 −1.40273
\(714\) 0.828427 + 28.1421i 0.0310031 + 1.05319i
\(715\) 0 0
\(716\) −16.2426 16.2426i −0.607016 0.607016i
\(717\) −6.14214 14.8284i −0.229382 0.553778i
\(718\) 69.5980i 2.59737i
\(719\) −31.3848 + 13.0000i −1.17045 + 0.484818i −0.881343 0.472477i \(-0.843360\pi\)
−0.289112 + 0.957295i \(0.593360\pi\)
\(720\) 0 0
\(721\) −30.1421 12.4853i −1.12255 0.464976i
\(722\) 31.2635 31.2635i 1.16351 1.16351i
\(723\) −2.72792 + 2.72792i −0.101453 + 0.101453i
\(724\) −41.2635 17.0919i −1.53354 0.635215i
\(725\) 0 0
\(726\) 10.0711 4.17157i 0.373772 0.154822i
\(727\) 43.1127i 1.59896i −0.600692 0.799481i \(-0.705108\pi\)
0.600692 0.799481i \(-0.294892\pi\)
\(728\) −6.24264 15.0711i −0.231368 0.558571i
\(729\) 12.2218 + 12.2218i 0.452660 + 0.452660i
\(730\) 0 0
\(731\) 0.100505 + 3.41421i 0.00371731 + 0.126279i
\(732\) −15.8579 −0.586124
\(733\) 25.4853 + 25.4853i 0.941320 + 0.941320i 0.998371 0.0570509i \(-0.0181697\pi\)
−0.0570509 + 0.998371i \(0.518170\pi\)
\(734\) 4.07107 + 9.82843i 0.150266 + 0.362774i
\(735\) 0 0
\(736\) 7.00000 2.89949i 0.258023 0.106877i
\(737\) 1.17157 2.82843i 0.0431554 0.104186i
\(738\) 4.94975 + 2.05025i 0.182203 + 0.0754708i
\(739\) 15.7574 15.7574i 0.579644 0.579644i −0.355161 0.934805i \(-0.615574\pi\)
0.934805 + 0.355161i \(0.115574\pi\)
\(740\) 0 0
\(741\) 1.17157 + 0.485281i 0.0430388 + 0.0178273i
\(742\) −3.41421 + 8.24264i −0.125340 + 0.302597i
\(743\) −47.1421 + 19.5269i −1.72948 + 0.716373i −0.730020 + 0.683426i \(0.760489\pi\)
−0.999457 + 0.0329473i \(0.989511\pi\)
\(744\) 37.4558i 1.37320i
\(745\) 0 0
\(746\) −19.7279 19.7279i −0.722291 0.722291i
\(747\) −21.3137 −0.779828
\(748\) 37.6274 16.8995i 1.37579 0.617907i
\(749\) −1.17157 −0.0428083
\(750\) 0 0
\(751\) 18.2132 + 43.9706i 0.664609 + 1.60451i 0.790498 + 0.612464i \(0.209822\pi\)
−0.125889 + 0.992044i \(0.540178\pi\)
\(752\) 15.5147i 0.565764i
\(753\) −20.4853 + 8.48528i −0.746525 + 0.309221i
\(754\) 0.414214 1.00000i 0.0150848 0.0364179i
\(755\) 0 0
\(756\) 36.9706 36.9706i 1.34461 1.34461i
\(757\) 1.79899 1.79899i 0.0653854 0.0653854i −0.673658 0.739043i \(-0.735278\pi\)
0.739043 + 0.673658i \(0.235278\pi\)
\(758\) −5.82843 2.41421i −0.211698 0.0876882i
\(759\) 5.17157 12.4853i 0.187716 0.453187i
\(760\) 0 0
\(761\) 37.6985i 1.36657i −0.730152 0.683285i \(-0.760551\pi\)
0.730152 0.683285i \(-0.239449\pi\)
\(762\) −5.31371 12.8284i −0.192495 0.464725i
\(763\) 28.7279 + 28.7279i 1.04002 + 1.04002i
\(764\) −76.5685 −2.77015
\(765\) 0 0
\(766\) 54.2843 1.96137
\(767\) 6.00000 + 6.00000i 0.216647 + 0.216647i
\(768\) 12.4142 + 29.9706i 0.447959 + 1.08147i
\(769\) 12.7279i 0.458981i 0.973311 + 0.229490i \(0.0737059\pi\)
−0.973311 + 0.229490i \(0.926294\pi\)
\(770\) 0 0
\(771\) 2.54416 6.14214i 0.0916255 0.221204i
\(772\) −8.12132 3.36396i −0.292293 0.121072i
\(773\) 0.585786 0.585786i 0.0210693 0.0210693i −0.696494 0.717563i \(-0.745258\pi\)
0.717563 + 0.696494i \(0.245258\pi\)
\(774\) 2.58579 2.58579i 0.0929442 0.0929442i
\(775\) 0 0
\(776\) 17.4350 42.0919i 0.625881 1.51101i
\(777\) −24.1421 + 10.0000i −0.866094 + 0.358748i
\(778\) 29.3137i 1.05095i
\(779\) 0.384776 + 0.928932i 0.0137860 + 0.0332824i
\(780\) 0 0
\(781\) 14.1421 0.506045
\(782\) −16.8995 + 44.4558i −0.604325 + 1.58974i
\(783\) 1.65685 0.0592111
\(784\) 0.363961 + 0.363961i 0.0129986 + 0.0129986i
\(785\) 0 0
\(786\) 39.7990i 1.41958i
\(787\) 19.0000 7.87006i 0.677277 0.280537i −0.0174112 0.999848i \(-0.505542\pi\)
0.694688 + 0.719311i \(0.255542\pi\)
\(788\) −6.80761 + 16.4350i −0.242511 + 0.585474i
\(789\) −10.4853 4.34315i −0.373286 0.154620i
\(790\) 0 0
\(791\) −24.3848 + 24.3848i −0.867023 + 0.867023i
\(792\) −19.4853 8.07107i −0.692379 0.286793i
\(793\) 2.07107 5.00000i 0.0735458 0.177555i
\(794\) −39.6777 + 16.4350i −1.40811 + 0.583257i
\(795\) 0 0
\(796\) 16.8995 + 40.7990i 0.598987 + 1.44608i
\(797\) 17.8284 + 17.8284i 0.631515 + 0.631515i 0.948448 0.316933i \(-0.102653\pi\)
−0.316933 + 0.948448i \(0.602653\pi\)
\(798\) 5.65685 0.200250
\(799\) −15.5147 14.6274i −0.548871 0.517481i
\(800\) 0 0
\(801\) 8.51472 + 8.51472i 0.300853 + 0.300853i
\(802\) −0.535534 1.29289i −0.0189104 0.0456536i
\(803\) 33.7990i 1.19274i
\(804\) −4.48528 + 1.85786i −0.158184 + 0.0655218i
\(805\) 0 0
\(806\) 24.7279 + 10.2426i 0.871004 + 0.360782i
\(807\) 20.2426 20.2426i 0.712575 0.712575i
\(808\) 33.0416 33.0416i 1.16240 1.16240i
\(809\) −32.6066 13.5061i −1.14639 0.474849i −0.273067 0.961995i \(-0.588038\pi\)
−0.873321 + 0.487146i \(0.838038\pi\)
\(810\) 0 0
\(811\) −50.9411 + 21.1005i −1.78878 + 0.740939i −0.798481 + 0.602020i \(0.794363\pi\)
−0.990304 + 0.138919i \(0.955637\pi\)
\(812\) 3.17157i 0.111300i
\(813\) −9.17157 22.1421i −0.321661 0.776559i
\(814\) 41.2132 + 41.2132i 1.44452 + 1.44452i
\(815\) 0 0
\(816\) −12.5147 4.75736i −0.438103 0.166541i
\(817\) 0.686292 0.0240103
\(818\) −5.65685 5.65685i −0.197787 0.197787i
\(819\) 2.58579 + 6.24264i 0.0903547 + 0.218136i
\(820\) 0 0
\(821\) 35.5061 14.7071i 1.23917 0.513282i 0.335716 0.941963i \(-0.391022\pi\)
0.903456 + 0.428682i \(0.141022\pi\)
\(822\) 16.7279 40.3848i 0.583453 1.40858i
\(823\) −9.00000 3.72792i −0.313720 0.129947i 0.220267 0.975440i \(-0.429307\pi\)
−0.533987 + 0.845492i \(0.679307\pi\)
\(824\) 38.9706 38.9706i 1.35760 1.35760i
\(825\) 0 0
\(826\) 34.9706 + 14.4853i 1.21678 + 0.504007i
\(827\) 17.9289 43.2843i 0.623450 1.50514i −0.224177 0.974549i \(-0.571969\pi\)
0.847627 0.530593i \(-0.178031\pi\)
\(828\) 30.8995 12.7990i 1.07383 0.444796i
\(829\) 53.9411i 1.87345i −0.350062 0.936726i \(-0.613840\pi\)
0.350062 0.936726i \(-0.386160\pi\)
\(830\) 0 0
\(831\) −15.2721 15.2721i −0.529783 0.529783i
\(832\) −13.8995 −0.481878
\(833\) 0.707107 0.0208153i 0.0244998 0.000721207i
\(834\) −55.7990 −1.93216
\(835\) 0 0
\(836\) −3.17157 7.65685i −0.109691 0.264818i
\(837\) 40.9706i 1.41615i
\(838\) −29.7279 + 12.3137i −1.02693 + 0.425370i
\(839\) −6.41421 + 15.4853i −0.221443 + 0.534611i −0.995086 0.0990102i \(-0.968432\pi\)
0.773643 + 0.633622i \(0.218432\pi\)
\(840\) 0 0
\(841\) −20.4350 + 20.4350i −0.704656 + 0.704656i
\(842\) 24.8995 24.8995i 0.858093 0.858093i
\(843\) 1.89949 + 0.786797i 0.0654221 + 0.0270987i
\(844\) 31.2843 75.5269i 1.07685 2.59974i
\(845\) 0 0
\(846\) 22.8284i 0.784857i
\(847\) 4.17157 + 10.0711i 0.143337 + 0.346046i
\(848\) −3.00000 3.00000i −0.103020 0.103020i
\(849\) −20.2010 −0.693297
\(850\) 0 0
\(851\) −44.1421 −1.51317
\(852\) −15.8579 15.8579i −0.543281 0.543281i
\(853\) 7.33452 + 17.7071i 0.251129 + 0.606280i 0.998296 0.0583572i \(-0.0185862\pi\)
−0.747166 + 0.664637i \(0.768586\pi\)
\(854\) 24.1421i 0.826127i
\(855\) 0 0
\(856\) 0.757359 1.82843i 0.0258860 0.0624944i
\(857\) 8.53553 + 3.53553i 0.291568 + 0.120772i 0.523673 0.851919i \(-0.324561\pi\)
−0.232105 + 0.972691i \(0.574561\pi\)
\(858\) −6.82843 + 6.82843i −0.233119 + 0.233119i
\(859\) 24.7279 24.7279i 0.843706 0.843706i −0.145633 0.989339i \(-0.546522\pi\)
0.989339 + 0.145633i \(0.0465218\pi\)
\(860\) 0 0
\(861\) 1.31371 3.17157i 0.0447711 0.108087i
\(862\) 16.3137 6.75736i 0.555647 0.230157i
\(863\) 10.6274i 0.361761i −0.983505 0.180881i \(-0.942105\pi\)
0.983505 0.180881i \(-0.0578948\pi\)
\(864\) −3.17157 7.65685i −0.107899 0.260491i
\(865\) 0 0
\(866\) −50.2843 −1.70873
\(867\) −16.5563 + 8.02944i −0.562283 + 0.272694i
\(868\) 78.4264 2.66197
\(869\) 8.82843 + 8.82843i 0.299484 + 0.299484i
\(870\) 0 0
\(871\) 1.65685i 0.0561404i
\(872\) −63.4056 + 26.2635i −2.14718 + 0.889393i
\(873\) −7.22183 + 17.4350i −0.244422 + 0.590086i
\(874\) 8.82843 + 3.65685i 0.298626 + 0.123695i
\(875\) 0 0
\(876\) 37.8995 37.8995i 1.28051 1.28051i
\(877\) −46.4056 19.2218i −1.56701 0.649075i −0.580717 0.814105i \(-0.697228\pi\)
−0.986288 + 0.165031i \(0.947228\pi\)
\(878\) 9.82843 23.7279i 0.331693 0.800779i
\(879\) 12.3431 5.11270i 0.416324 0.172447i
\(880\) 0 0
\(881\) 12.8787 + 31.0919i 0.433894 + 1.04751i 0.978020 + 0.208509i \(0.0668611\pi\)
−0.544127 + 0.839003i \(0.683139\pi\)
\(882\) −0.535534 0.535534i −0.0180324 0.0180324i
\(883\) −8.00000 −0.269221 −0.134611 0.990899i \(-0.542978\pi\)
−0.134611 + 0.990899i \(0.542978\pi\)
\(884\) 15.3137 16.2426i 0.515056 0.546299i
\(885\) 0 0
\(886\) 40.6274 + 40.6274i 1.36490 + 1.36490i
\(887\) −16.8579 40.6985i −0.566032 1.36652i −0.904875 0.425678i \(-0.860035\pi\)
0.338843 0.940843i \(-0.389965\pi\)
\(888\) 44.1421i 1.48131i
\(889\) 12.8284 5.31371i 0.430252 0.178216i
\(890\) 0 0
\(891\) −0.414214 0.171573i −0.0138767 0.00574791i
\(892\) 13.0711 13.0711i 0.437652 0.437652i
\(893\) −3.02944 + 3.02944i −0.101376 + 0.101376i
\(894\) 40.9706 + 16.9706i 1.37026 + 0.567581i
\(895\) 0 0
\(896\) −49.6274 + 20.5563i −1.65794 + 0.686739i
\(897\) 7.31371i 0.244198i
\(898\) 11.1924 + 27.0208i 0.373495 + 0.901696i
\(899\) 1.75736 + 1.75736i 0.0586112 + 0.0586112i
\(900\) 0 0
\(901\) −5.82843 + 0.171573i −0.194173 + 0.00571592i
\(902\) −7.65685 −0.254945
\(903\) −1.65685 1.65685i −0.0551367 0.0551367i
\(904\) −22.2929 53.8198i −0.741451 1.79002i
\(905\) 0 0
\(906\) 17.3137 7.17157i 0.575209 0.238260i
\(907\) −5.14214 + 12.4142i −0.170742 + 0.412207i −0.985968 0.166936i \(-0.946613\pi\)
0.815226 + 0.579143i \(0.196613\pi\)
\(908\) −61.5269 25.4853i −2.04184 0.845759i
\(909\) −13.6863 + 13.6863i −0.453946 + 0.453946i
\(910\) 0 0
\(911\) 5.24264 + 2.17157i 0.173696 + 0.0719474i 0.467837 0.883815i \(-0.345033\pi\)
−0.294141 + 0.955762i \(0.595033\pi\)
\(912\) −1.02944 + 2.48528i −0.0340881 + 0.0822959i
\(913\) 28.1421 11.6569i 0.931369 0.385786i
\(914\) 31.7990i 1.05182i
\(915\) 0 0
\(916\) −46.4853 46.4853i −1.53592 1.53592i
\(917\) −39.7990 −1.31428
\(918\) 48.6274 + 18.4853i 1.60494 + 0.610105i
\(919\) 19.3137 0.637100 0.318550 0.947906i \(-0.396804\pi\)
0.318550 + 0.947906i \(0.396804\pi\)
\(920\) 0 0
\(921\) −10.8284 26.1421i −0.356809 0.861413i
\(922\) 58.0416i 1.91150i
\(923\) 7.07107 2.92893i 0.232747 0.0964070i
\(924\) −10.8284 + 26.1421i −0.356229 + 0.860013i
\(925\) 0 0
\(926\) 24.9706 24.9706i 0.820584 0.820584i
\(927\) −16.1421 + 16.1421i −0.530177 + 0.530177i
\(928\) −0.464466 0.192388i −0.0152468 0.00631545i
\(929\) 6.63604 16.0208i 0.217721 0.525626i −0.776850 0.629686i \(-0.783183\pi\)
0.994571 + 0.104060i \(0.0331835\pi\)
\(930\) 0 0
\(931\) 0.142136i 0.00465831i
\(932\) −12.8787 31.0919i −0.421855 1.01845i
\(933\) −19.6569 19.6569i −0.643537 0.643537i
\(934\) −78.7696 −2.57742
\(935\) 0 0
\(936\) −11.4142 −0.373085
\(937\) −19.4853 19.4853i −0.636556 0.636556i 0.313148 0.949704i \(-0.398616\pi\)
−0.949704 + 0.313148i \(0.898616\pi\)
\(938\) −2.82843 6.82843i −0.0923514 0.222956i
\(939\) 10.6863i 0.348734i
\(940\) 0 0
\(941\) −15.2635 + 36.8492i −0.497574 + 1.20125i 0.453212 + 0.891403i \(0.350278\pi\)
−0.950786 + 0.309848i \(0.899722\pi\)
\(942\) 23.3137 + 9.65685i 0.759602 + 0.314637i
\(943\) 4.10051 4.10051i 0.133531 0.133531i
\(944\) −12.7279 + 12.7279i −0.414259 + 0.414259i
\(945\) 0 0
\(946\) −2.00000 + 4.82843i −0.0650256 + 0.156986i
\(947\) −28.3137 + 11.7279i −0.920072 + 0.381106i −0.791904 0.610646i \(-0.790910\pi\)
−0.128168 + 0.991752i \(0.540910\pi\)
\(948\) 19.7990i 0.643041i
\(949\) 7.00000 + 16.8995i 0.227230 + 0.548581i
\(950\) 0 0
\(951\) 20.8284 0.675408
\(952\) 16.8995 44.4558i 0.547716 1.44082i
\(953\) −49.6985 −1.60989 −0.804946 0.593348i \(-0.797806\pi\)
−0.804946 + 0.593348i \(0.797806\pi\)
\(954\) 4.41421 + 4.41421i 0.142915 + 0.142915i
\(955\) 0 0
\(956\) 56.7696i 1.83606i
\(957\) −0.828427 + 0.343146i −0.0267792 + 0.0110923i
\(958\) −4.75736 + 11.4853i −0.153703 + 0.371073i
\(959\) 40.3848 + 16.7279i 1.30409 + 0.540173i
\(960\) 0 0
\(961\) −21.5355 + 21.5355i −0.694695 + 0.694695i
\(962\) 29.1421 + 12.0711i 0.939580 + 0.389187i
\(963\) −0.313708 + 0.757359i −0.0101091 + 0.0244056i
\(964\) 12.6066 5.22183i 0.406031 0.168184i
\(965\) 0 0
\(966\) −12.4853 30.1421i −0.401707 0.969807i
\(967\) 30.8701 + 30.8701i 0.992714 + 0.992714i 0.999974 0.00725952i \(-0.00231080\pi\)
−0.00725952 + 0.999974i \(0.502311\pi\)
\(968\) −18.4142 −0.591855
\(969\) 1.51472 + 3.37258i 0.0486598 + 0.108343i
\(970\) 0 0
\(971\) −36.5858 36.5858i −1.17409 1.17409i −0.981224 0.192869i \(-0.938221\pi\)
−0.192869 0.981224i \(-0.561779\pi\)
\(972\) −22.6985 54.7990i −0.728054 1.75768i
\(973\) 55.7990i 1.78883i
\(974\) −58.6985 + 24.3137i −1.88082 + 0.779061i
\(975\) 0 0
\(976\) 10.6066 + 4.39340i 0.339509 + 0.140629i
\(977\) 27.1421 27.1421i 0.868354 0.868354i −0.123936 0.992290i \(-0.539552\pi\)
0.992290 + 0.123936i \(0.0395519\pi\)
\(978\) 15.6569 15.6569i 0.500651 0.500651i
\(979\) −15.8995 6.58579i −0.508150 0.210483i
\(980\) 0 0
\(981\) 26.2635 10.8787i 0.838528 0.347330i
\(982\) 89.5980i 2.85919i
\(983\) −3.72792 9.00000i −0.118902 0.287055i 0.853212 0.521565i \(-0.174652\pi\)
−0.972114 + 0.234510i \(0.924652\pi\)
\(984\) 4.10051 + 4.10051i 0.130719 + 0.130719i
\(985\) 0 0
\(986\) 2.87868 1.29289i 0.0916758 0.0411741i
\(987\) 14.6274 0.465596
\(988\) −3.17157 3.17157i −0.100901 0.100901i
\(989\) −1.51472 3.65685i −0.0481653 0.116281i
\(990\) 0 0
\(991\) 37.7279 15.6274i 1.19847 0.496421i 0.307964 0.951398i \(-0.400352\pi\)
0.890503 + 0.454977i \(0.150352\pi\)
\(992\) 4.75736 11.4853i 0.151046 0.364658i
\(993\) 21.7990 + 9.02944i 0.691770 + 0.286541i
\(994\) 24.1421 24.1421i 0.765742 0.765742i
\(995\) 0 0
\(996\) −44.6274 18.4853i −1.41407 0.585729i
\(997\) 2.87868 6.94975i 0.0911687 0.220101i −0.871717 0.490009i \(-0.836993\pi\)
0.962886 + 0.269908i \(0.0869934\pi\)
\(998\) −47.8701 + 19.8284i −1.51530 + 0.627658i
\(999\) 48.2843i 1.52765i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.a.151.1 4
5.2 odd 4 425.2.n.a.49.1 4
5.3 odd 4 425.2.n.b.49.1 4
5.4 even 2 17.2.d.a.15.1 yes 4
15.14 odd 2 153.2.l.c.100.1 4
17.5 odd 16 7225.2.a.u.1.2 4
17.8 even 8 inner 425.2.m.a.76.1 4
17.12 odd 16 7225.2.a.u.1.1 4
20.19 odd 2 272.2.v.d.49.1 4
35.4 even 6 833.2.v.b.814.1 8
35.9 even 6 833.2.v.b.508.1 8
35.19 odd 6 833.2.v.a.508.1 8
35.24 odd 6 833.2.v.a.814.1 8
35.34 odd 2 833.2.l.a.491.1 4
85.4 even 4 289.2.d.c.155.1 4
85.8 odd 8 425.2.n.a.399.1 4
85.9 even 8 289.2.d.a.110.1 4
85.14 odd 16 289.2.b.b.288.1 4
85.19 even 8 289.2.d.c.179.1 4
85.24 odd 16 289.2.c.c.38.4 8
85.29 odd 16 289.2.a.f.1.4 4
85.39 odd 16 289.2.a.f.1.3 4
85.42 odd 8 425.2.n.b.399.1 4
85.44 odd 16 289.2.c.c.38.3 8
85.49 even 8 289.2.d.b.179.1 4
85.54 odd 16 289.2.b.b.288.2 4
85.59 even 8 17.2.d.a.8.1 4
85.64 even 4 289.2.d.b.155.1 4
85.74 odd 16 289.2.c.c.251.2 8
85.79 odd 16 289.2.c.c.251.1 8
85.84 even 2 289.2.d.a.134.1 4
255.29 even 16 2601.2.a.bb.1.2 4
255.59 odd 8 153.2.l.c.127.1 4
255.209 even 16 2601.2.a.bb.1.1 4
340.39 even 16 4624.2.a.bp.1.3 4
340.59 odd 8 272.2.v.d.161.1 4
340.199 even 16 4624.2.a.bp.1.2 4
595.59 odd 24 833.2.v.a.569.1 8
595.144 even 24 833.2.v.b.569.1 8
595.229 odd 24 833.2.v.a.263.1 8
595.314 odd 8 833.2.l.a.246.1 4
595.569 even 24 833.2.v.b.263.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.8.1 4 85.59 even 8
17.2.d.a.15.1 yes 4 5.4 even 2
153.2.l.c.100.1 4 15.14 odd 2
153.2.l.c.127.1 4 255.59 odd 8
272.2.v.d.49.1 4 20.19 odd 2
272.2.v.d.161.1 4 340.59 odd 8
289.2.a.f.1.3 4 85.39 odd 16
289.2.a.f.1.4 4 85.29 odd 16
289.2.b.b.288.1 4 85.14 odd 16
289.2.b.b.288.2 4 85.54 odd 16
289.2.c.c.38.3 8 85.44 odd 16
289.2.c.c.38.4 8 85.24 odd 16
289.2.c.c.251.1 8 85.79 odd 16
289.2.c.c.251.2 8 85.74 odd 16
289.2.d.a.110.1 4 85.9 even 8
289.2.d.a.134.1 4 85.84 even 2
289.2.d.b.155.1 4 85.64 even 4
289.2.d.b.179.1 4 85.49 even 8
289.2.d.c.155.1 4 85.4 even 4
289.2.d.c.179.1 4 85.19 even 8
425.2.m.a.76.1 4 17.8 even 8 inner
425.2.m.a.151.1 4 1.1 even 1 trivial
425.2.n.a.49.1 4 5.2 odd 4
425.2.n.a.399.1 4 85.8 odd 8
425.2.n.b.49.1 4 5.3 odd 4
425.2.n.b.399.1 4 85.42 odd 8
833.2.l.a.246.1 4 595.314 odd 8
833.2.l.a.491.1 4 35.34 odd 2
833.2.v.a.263.1 8 595.229 odd 24
833.2.v.a.508.1 8 35.19 odd 6
833.2.v.a.569.1 8 595.59 odd 24
833.2.v.a.814.1 8 35.24 odd 6
833.2.v.b.263.1 8 595.569 even 24
833.2.v.b.508.1 8 35.9 even 6
833.2.v.b.569.1 8 595.144 even 24
833.2.v.b.814.1 8 35.4 even 6
2601.2.a.bb.1.1 4 255.209 even 16
2601.2.a.bb.1.2 4 255.29 even 16
4624.2.a.bp.1.2 4 340.199 even 16
4624.2.a.bp.1.3 4 340.39 even 16
7225.2.a.u.1.1 4 17.12 odd 16
7225.2.a.u.1.2 4 17.5 odd 16