Properties

Label 425.2.m
Level $425$
Weight $2$
Character orbit 425.m
Rep. character $\chi_{425}(26,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $100$
Newform subspaces $5$
Sturm bound $90$
Trace bound $12$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(\zeta_{8})\)
Newform subspaces: \( 5 \)
Sturm bound: \(90\)
Trace bound: \(12\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).

Total New Old
Modular forms 208 124 84
Cusp forms 160 100 60
Eisenstein series 48 24 24

Trace form

\( 100 q + 4 q^{2} + 4 q^{3} - 20 q^{6} + 4 q^{7} - 4 q^{8} + 16 q^{9} - 4 q^{11} - 20 q^{12} - 20 q^{14} - 76 q^{16} + 8 q^{17} + 4 q^{18} - 16 q^{19} + 20 q^{22} + 12 q^{23} + 4 q^{24} + 28 q^{26} - 32 q^{27}+ \cdots - 92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
425.2.m.a 425.m 17.d $4$ $3.394$ \(\Q(\zeta_{8})\) None 17.2.d.a \(4\) \(4\) \(0\) \(4\) $\mathrm{SU}(2)[C_{8}]$ \(q+(1-\zeta_{8}^{2}+\zeta_{8}^{3})q^{2}+(1+\zeta_{8}+\zeta_{8}^{2}+\cdots)q^{3}+\cdots\)
425.2.m.b 425.m 17.d $24$ $3.394$ None 85.2.l.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
425.2.m.c 425.m 17.d $24$ $3.394$ None 425.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
425.2.m.d 425.m 17.d $24$ $3.394$ None 425.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$
425.2.m.e 425.m 17.d $24$ $3.394$ None 85.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{8}]$

Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(17, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)