Properties

Label 425.2.k.c.86.9
Level $425$
Weight $2$
Character 425.86
Analytic conductor $3.394$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 86.9
Character \(\chi\) \(=\) 425.86
Dual form 425.2.k.c.341.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.135768 + 0.0986414i) q^{2} +(-0.267848 + 0.824353i) q^{3} +(-0.609331 + 1.87533i) q^{4} +(1.96067 + 1.07508i) q^{5} +(-0.0449500 - 0.138342i) q^{6} +2.33732 q^{7} +(-0.205975 - 0.633926i) q^{8} +(1.81924 + 1.32175i) q^{9} +(-0.372243 + 0.0474416i) q^{10} +(0.599060 - 0.435242i) q^{11} +(-1.38272 - 1.00461i) q^{12} +(-1.35955 - 0.987768i) q^{13} +(-0.317333 + 0.230556i) q^{14} +(-1.41140 + 1.32832i) q^{15} +(-3.10000 - 2.25228i) q^{16} +(-0.309017 - 0.951057i) q^{17} -0.377374 q^{18} +(0.352165 + 1.08385i) q^{19} +(-3.21082 + 3.02182i) q^{20} +(-0.626046 + 1.92677i) q^{21} +(-0.0384004 + 0.118184i) q^{22} +(1.57595 - 1.14500i) q^{23} +0.577748 q^{24} +(2.68842 + 4.21573i) q^{25} +0.282018 q^{26} +(-3.68058 + 2.67410i) q^{27} +(-1.42420 + 4.38324i) q^{28} +(-2.55643 + 7.86787i) q^{29} +(0.0605961 - 0.319567i) q^{30} +(-1.61653 - 4.97516i) q^{31} +1.97615 q^{32} +(0.198336 + 0.610415i) q^{33} +(0.135768 + 0.0986414i) q^{34} +(4.58270 + 2.51279i) q^{35} +(-3.58724 + 2.60628i) q^{36} +(-4.68730 - 3.40552i) q^{37} +(-0.154726 - 0.112415i) q^{38} +(1.17842 - 0.856173i) q^{39} +(0.277670 - 1.46436i) q^{40} +(-3.40711 - 2.47541i) q^{41} +(-0.105062 - 0.323349i) q^{42} +7.20187 q^{43} +(0.451197 + 1.38864i) q^{44} +(2.14593 + 4.54733i) q^{45} +(-0.101020 + 0.310909i) q^{46} +(0.925941 - 2.84975i) q^{47} +(2.68701 - 1.95222i) q^{48} -1.53695 q^{49} +(-0.780848 - 0.307173i) q^{50} +0.866776 q^{51} +(2.68080 - 1.94772i) q^{52} +(0.912506 - 2.80840i) q^{53} +(0.235929 - 0.726115i) q^{54} +(1.64247 - 0.209330i) q^{55} +(-0.481429 - 1.48168i) q^{56} -0.987803 q^{57} +(-0.429016 - 1.32038i) q^{58} +(2.73261 + 1.98535i) q^{59} +(-1.63103 - 3.45623i) q^{60} +(-2.94584 + 2.14028i) q^{61} +(0.710230 + 0.516012i) q^{62} +(4.25213 + 3.08935i) q^{63} +(5.93171 - 4.30964i) q^{64} +(-1.60369 - 3.39830i) q^{65} +(-0.0871399 - 0.0633109i) q^{66} +(-2.03304 - 6.25706i) q^{67} +1.97184 q^{68} +(0.521765 + 1.60583i) q^{69} +(-0.870050 + 0.110886i) q^{70} +(0.479377 - 1.47537i) q^{71} +(0.463176 - 1.42551i) q^{72} +(10.2810 - 7.46961i) q^{73} +0.972312 q^{74} +(-4.19534 + 1.08703i) q^{75} -2.24716 q^{76} +(1.40019 - 1.01730i) q^{77} +(-0.0755380 + 0.232482i) q^{78} +(0.804955 - 2.47740i) q^{79} +(-3.65669 - 7.74872i) q^{80} +(0.866098 + 2.66558i) q^{81} +0.706755 q^{82} +(-0.855933 - 2.63429i) q^{83} +(-3.23186 - 2.34809i) q^{84} +(0.416579 - 2.19692i) q^{85} +(-0.977785 + 0.710402i) q^{86} +(-5.80117 - 4.21479i) q^{87} +(-0.399303 - 0.290110i) q^{88} +(-6.88427 + 5.00172i) q^{89} +(-0.739905 - 0.405706i) q^{90} +(-3.17769 - 2.30873i) q^{91} +(1.18697 + 3.65311i) q^{92} +4.53427 q^{93} +(0.155390 + 0.478242i) q^{94} +(-0.474746 + 2.50368i) q^{95} +(-0.529308 + 1.62904i) q^{96} +(3.90595 - 12.0213i) q^{97} +(0.208669 - 0.151607i) q^{98} +1.66511 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 2 q^{2} + 2 q^{3} - 20 q^{4} - 17 q^{6} - 44 q^{7} + 15 q^{8} - 22 q^{9} - 2 q^{10} + 4 q^{11} + 14 q^{12} + 6 q^{13} - 10 q^{14} + 14 q^{15} - 32 q^{16} + 20 q^{17} - 62 q^{18} - 3 q^{19} + 16 q^{21}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.135768 + 0.0986414i −0.0960027 + 0.0697500i −0.634751 0.772717i \(-0.718897\pi\)
0.538748 + 0.842467i \(0.318897\pi\)
\(3\) −0.267848 + 0.824353i −0.154642 + 0.475940i −0.998124 0.0612171i \(-0.980502\pi\)
0.843482 + 0.537157i \(0.180502\pi\)
\(4\) −0.609331 + 1.87533i −0.304666 + 0.937664i
\(5\) 1.96067 + 1.07508i 0.876836 + 0.480789i
\(6\) −0.0449500 0.138342i −0.0183508 0.0564778i
\(7\) 2.33732 0.883423 0.441711 0.897157i \(-0.354372\pi\)
0.441711 + 0.897157i \(0.354372\pi\)
\(8\) −0.205975 0.633926i −0.0728231 0.224127i
\(9\) 1.81924 + 1.32175i 0.606412 + 0.440584i
\(10\) −0.372243 + 0.0474416i −0.117714 + 0.0150024i
\(11\) 0.599060 0.435242i 0.180623 0.131230i −0.493800 0.869576i \(-0.664392\pi\)
0.674423 + 0.738345i \(0.264392\pi\)
\(12\) −1.38272 1.00461i −0.399158 0.290005i
\(13\) −1.35955 0.987768i −0.377070 0.273957i 0.383067 0.923721i \(-0.374868\pi\)
−0.760137 + 0.649763i \(0.774868\pi\)
\(14\) −0.317333 + 0.230556i −0.0848109 + 0.0616187i
\(15\) −1.41140 + 1.32832i −0.364423 + 0.342971i
\(16\) −3.10000 2.25228i −0.775001 0.563071i
\(17\) −0.309017 0.951057i −0.0749476 0.230665i
\(18\) −0.377374 −0.0889479
\(19\) 0.352165 + 1.08385i 0.0807922 + 0.248653i 0.983291 0.182039i \(-0.0582697\pi\)
−0.902499 + 0.430692i \(0.858270\pi\)
\(20\) −3.21082 + 3.02182i −0.717960 + 0.675698i
\(21\) −0.626046 + 1.92677i −0.136615 + 0.420456i
\(22\) −0.0384004 + 0.118184i −0.00818699 + 0.0251970i
\(23\) 1.57595 1.14500i 0.328609 0.238749i −0.411231 0.911531i \(-0.634901\pi\)
0.739840 + 0.672783i \(0.234901\pi\)
\(24\) 0.577748 0.117932
\(25\) 2.68842 + 4.21573i 0.537684 + 0.843146i
\(26\) 0.282018 0.0553083
\(27\) −3.68058 + 2.67410i −0.708328 + 0.514630i
\(28\) −1.42420 + 4.38324i −0.269148 + 0.828354i
\(29\) −2.55643 + 7.86787i −0.474717 + 1.46103i 0.371623 + 0.928384i \(0.378801\pi\)
−0.846340 + 0.532644i \(0.821199\pi\)
\(30\) 0.0605961 0.319567i 0.0110633 0.0583447i
\(31\) −1.61653 4.97516i −0.290337 0.893565i −0.984748 0.173987i \(-0.944335\pi\)
0.694411 0.719578i \(-0.255665\pi\)
\(32\) 1.97615 0.349337
\(33\) 0.198336 + 0.610415i 0.0345259 + 0.106260i
\(34\) 0.135768 + 0.0986414i 0.0232841 + 0.0169169i
\(35\) 4.58270 + 2.51279i 0.774617 + 0.424740i
\(36\) −3.58724 + 2.60628i −0.597873 + 0.434380i
\(37\) −4.68730 3.40552i −0.770587 0.559864i 0.131552 0.991309i \(-0.458004\pi\)
−0.902139 + 0.431445i \(0.858004\pi\)
\(38\) −0.154726 0.112415i −0.0250998 0.0182361i
\(39\) 1.17842 0.856173i 0.188698 0.137097i
\(40\) 0.277670 1.46436i 0.0439035 0.231535i
\(41\) −3.40711 2.47541i −0.532101 0.386594i 0.289042 0.957316i \(-0.406663\pi\)
−0.821143 + 0.570722i \(0.806663\pi\)
\(42\) −0.105062 0.323349i −0.0162115 0.0498938i
\(43\) 7.20187 1.09827 0.549137 0.835732i \(-0.314956\pi\)
0.549137 + 0.835732i \(0.314956\pi\)
\(44\) 0.451197 + 1.38864i 0.0680204 + 0.209345i
\(45\) 2.14593 + 4.54733i 0.319896 + 0.677877i
\(46\) −0.101020 + 0.310909i −0.0148946 + 0.0458410i
\(47\) 0.925941 2.84975i 0.135062 0.415679i −0.860537 0.509387i \(-0.829872\pi\)
0.995600 + 0.0937081i \(0.0298720\pi\)
\(48\) 2.68701 1.95222i 0.387836 0.281779i
\(49\) −1.53695 −0.219565
\(50\) −0.780848 0.307173i −0.110429 0.0434408i
\(51\) 0.866776 0.121373
\(52\) 2.68080 1.94772i 0.371760 0.270100i
\(53\) 0.912506 2.80840i 0.125342 0.385764i −0.868621 0.495477i \(-0.834993\pi\)
0.993963 + 0.109713i \(0.0349932\pi\)
\(54\) 0.235929 0.726115i 0.0321059 0.0988117i
\(55\) 1.64247 0.209330i 0.221471 0.0282261i
\(56\) −0.481429 1.48168i −0.0643336 0.197998i
\(57\) −0.987803 −0.130838
\(58\) −0.429016 1.32038i −0.0563326 0.173374i
\(59\) 2.73261 + 1.98535i 0.355755 + 0.258471i 0.751279 0.659984i \(-0.229437\pi\)
−0.395524 + 0.918455i \(0.629437\pi\)
\(60\) −1.63103 3.45623i −0.210565 0.446198i
\(61\) −2.94584 + 2.14028i −0.377176 + 0.274035i −0.760180 0.649712i \(-0.774890\pi\)
0.383004 + 0.923747i \(0.374890\pi\)
\(62\) 0.710230 + 0.516012i 0.0901993 + 0.0655336i
\(63\) 4.25213 + 3.08935i 0.535718 + 0.389222i
\(64\) 5.93171 4.30964i 0.741463 0.538705i
\(65\) −1.60369 3.39830i −0.198913 0.421507i
\(66\) −0.0871399 0.0633109i −0.0107262 0.00779303i
\(67\) −2.03304 6.25706i −0.248376 0.764422i −0.995063 0.0992466i \(-0.968357\pi\)
0.746687 0.665175i \(-0.231643\pi\)
\(68\) 1.97184 0.239120
\(69\) 0.521765 + 1.60583i 0.0628131 + 0.193319i
\(70\) −0.870050 + 0.110886i −0.103991 + 0.0132534i
\(71\) 0.479377 1.47537i 0.0568916 0.175094i −0.918573 0.395252i \(-0.870657\pi\)
0.975464 + 0.220158i \(0.0706572\pi\)
\(72\) 0.463176 1.42551i 0.0545858 0.167998i
\(73\) 10.2810 7.46961i 1.20330 0.874252i 0.208699 0.977980i \(-0.433077\pi\)
0.994606 + 0.103728i \(0.0330771\pi\)
\(74\) 0.972312 0.113029
\(75\) −4.19534 + 1.08703i −0.484436 + 0.125520i
\(76\) −2.24716 −0.257767
\(77\) 1.40019 1.01730i 0.159567 0.115932i
\(78\) −0.0755380 + 0.232482i −0.00855300 + 0.0263234i
\(79\) 0.804955 2.47740i 0.0905645 0.278729i −0.895508 0.445046i \(-0.853187\pi\)
0.986072 + 0.166317i \(0.0531874\pi\)
\(80\) −3.65669 7.74872i −0.408831 0.866333i
\(81\) 0.866098 + 2.66558i 0.0962332 + 0.296175i
\(82\) 0.706755 0.0780481
\(83\) −0.855933 2.63429i −0.0939508 0.289151i 0.893028 0.450001i \(-0.148576\pi\)
−0.986979 + 0.160850i \(0.948576\pi\)
\(84\) −3.23186 2.34809i −0.352625 0.256197i
\(85\) 0.416579 2.19692i 0.0451844 0.238290i
\(86\) −0.977785 + 0.710402i −0.105437 + 0.0766047i
\(87\) −5.80117 4.21479i −0.621950 0.451873i
\(88\) −0.399303 0.290110i −0.0425658 0.0309259i
\(89\) −6.88427 + 5.00172i −0.729731 + 0.530181i −0.889478 0.456977i \(-0.848932\pi\)
0.159747 + 0.987158i \(0.448932\pi\)
\(90\) −0.739905 0.405706i −0.0779928 0.0427652i
\(91\) −3.17769 2.30873i −0.333112 0.242020i
\(92\) 1.18697 + 3.65311i 0.123750 + 0.380863i
\(93\) 4.53427 0.470182
\(94\) 0.155390 + 0.478242i 0.0160273 + 0.0493269i
\(95\) −0.474746 + 2.50368i −0.0487079 + 0.256872i
\(96\) −0.529308 + 1.62904i −0.0540223 + 0.166263i
\(97\) 3.90595 12.0213i 0.396589 1.22058i −0.531128 0.847292i \(-0.678232\pi\)
0.927717 0.373284i \(-0.121768\pi\)
\(98\) 0.208669 0.151607i 0.0210788 0.0153146i
\(99\) 1.66511 0.167350
\(100\) −9.54402 + 2.47290i −0.954402 + 0.247290i
\(101\) −7.28612 −0.724996 −0.362498 0.931985i \(-0.618076\pi\)
−0.362498 + 0.931985i \(0.618076\pi\)
\(102\) −0.117681 + 0.0855000i −0.0116521 + 0.00846576i
\(103\) 1.53266 4.71706i 0.151018 0.464785i −0.846718 0.532042i \(-0.821425\pi\)
0.997736 + 0.0672570i \(0.0214247\pi\)
\(104\) −0.346139 + 1.06531i −0.0339417 + 0.104462i
\(105\) −3.29890 + 3.10471i −0.321939 + 0.302989i
\(106\) 0.153136 + 0.471303i 0.0148738 + 0.0457770i
\(107\) 11.2433 1.08694 0.543468 0.839430i \(-0.317111\pi\)
0.543468 + 0.839430i \(0.317111\pi\)
\(108\) −2.77212 8.53170i −0.266747 0.820963i
\(109\) 3.38845 + 2.46185i 0.324554 + 0.235803i 0.738116 0.674673i \(-0.235716\pi\)
−0.413562 + 0.910476i \(0.635716\pi\)
\(110\) −0.202347 + 0.190436i −0.0192931 + 0.0181574i
\(111\) 4.06284 2.95182i 0.385627 0.280175i
\(112\) −7.24569 5.26430i −0.684653 0.497430i
\(113\) 4.40482 + 3.20029i 0.414370 + 0.301058i 0.775369 0.631509i \(-0.217564\pi\)
−0.360998 + 0.932566i \(0.617564\pi\)
\(114\) 0.134112 0.0974383i 0.0125608 0.00912593i
\(115\) 4.32088 0.550687i 0.402924 0.0513519i
\(116\) −13.1971 9.58828i −1.22532 0.890249i
\(117\) −1.16775 3.59397i −0.107959 0.332262i
\(118\) −0.566839 −0.0521818
\(119\) −0.722271 2.22292i −0.0662104 0.203775i
\(120\) 1.13277 + 0.621123i 0.103407 + 0.0567006i
\(121\) −3.22975 + 9.94015i −0.293614 + 0.903650i
\(122\) 0.188832 0.581164i 0.0170960 0.0526161i
\(123\) 2.95320 2.14562i 0.266281 0.193464i
\(124\) 10.3151 0.926319
\(125\) 0.738866 + 11.1559i 0.0660862 + 0.997814i
\(126\) −0.882043 −0.0785786
\(127\) 5.07819 3.68952i 0.450617 0.327392i −0.339222 0.940706i \(-0.610164\pi\)
0.789839 + 0.613314i \(0.210164\pi\)
\(128\) −1.60156 + 4.92908i −0.141559 + 0.435673i
\(129\) −1.92901 + 5.93688i −0.169840 + 0.522713i
\(130\) 0.552943 + 0.303191i 0.0484963 + 0.0265916i
\(131\) 0.635371 + 1.95547i 0.0555126 + 0.170850i 0.974969 0.222343i \(-0.0713704\pi\)
−0.919456 + 0.393193i \(0.871370\pi\)
\(132\) −1.26558 −0.110155
\(133\) 0.823121 + 2.53331i 0.0713736 + 0.219665i
\(134\) 0.893229 + 0.648969i 0.0771632 + 0.0560623i
\(135\) −10.0912 + 1.28611i −0.868516 + 0.110691i
\(136\) −0.539249 + 0.391788i −0.0462403 + 0.0335955i
\(137\) −1.46629 1.06532i −0.125274 0.0910168i 0.523384 0.852097i \(-0.324669\pi\)
−0.648658 + 0.761080i \(0.724669\pi\)
\(138\) −0.229240 0.166553i −0.0195142 0.0141779i
\(139\) 13.6401 9.91012i 1.15694 0.840566i 0.167551 0.985863i \(-0.446414\pi\)
0.989388 + 0.145298i \(0.0464140\pi\)
\(140\) −7.50469 + 7.06294i −0.634262 + 0.596927i
\(141\) 2.10119 + 1.52660i 0.176952 + 0.128563i
\(142\) 0.0804485 + 0.247595i 0.00675109 + 0.0207777i
\(143\) −1.24437 −0.104059
\(144\) −2.66268 8.19488i −0.221890 0.682906i
\(145\) −13.4709 + 12.6779i −1.11869 + 1.05284i
\(146\) −0.659026 + 2.02827i −0.0545414 + 0.167861i
\(147\) 0.411670 1.26699i 0.0339540 0.104500i
\(148\) 9.24259 6.71513i 0.759736 0.551981i
\(149\) 5.74751 0.470855 0.235427 0.971892i \(-0.424351\pi\)
0.235427 + 0.971892i \(0.424351\pi\)
\(150\) 0.462367 0.561418i 0.0377521 0.0458396i
\(151\) 10.0338 0.816536 0.408268 0.912862i \(-0.366133\pi\)
0.408268 + 0.912862i \(0.366133\pi\)
\(152\) 0.614545 0.446493i 0.0498461 0.0362153i
\(153\) 0.694887 2.13864i 0.0561783 0.172899i
\(154\) −0.0897538 + 0.276234i −0.00723257 + 0.0222596i
\(155\) 2.17921 11.4925i 0.175038 0.923101i
\(156\) 0.887557 + 2.73162i 0.0710614 + 0.218705i
\(157\) 9.06169 0.723202 0.361601 0.932333i \(-0.382230\pi\)
0.361601 + 0.932333i \(0.382230\pi\)
\(158\) 0.135087 + 0.415754i 0.0107469 + 0.0330756i
\(159\) 2.07070 + 1.50445i 0.164217 + 0.119311i
\(160\) 3.87457 + 2.12451i 0.306311 + 0.167957i
\(161\) 3.68350 2.67622i 0.290301 0.210916i
\(162\) −0.380525 0.276468i −0.0298969 0.0217213i
\(163\) −3.20279 2.32697i −0.250862 0.182262i 0.455247 0.890365i \(-0.349551\pi\)
−0.706109 + 0.708103i \(0.749551\pi\)
\(164\) 6.71826 4.88110i 0.524608 0.381150i
\(165\) −0.267372 + 1.41005i −0.0208149 + 0.109772i
\(166\) 0.376059 + 0.273222i 0.0291878 + 0.0212062i
\(167\) 1.05556 + 3.24868i 0.0816816 + 0.251390i 0.983555 0.180611i \(-0.0578076\pi\)
−0.901873 + 0.432001i \(0.857808\pi\)
\(168\) 1.35038 0.104184
\(169\) −3.14454 9.67790i −0.241888 0.744454i
\(170\) 0.160149 + 0.339364i 0.0122829 + 0.0260280i
\(171\) −0.791913 + 2.43726i −0.0605591 + 0.186382i
\(172\) −4.38832 + 13.5059i −0.334606 + 1.02981i
\(173\) −9.97699 + 7.24871i −0.758537 + 0.551109i −0.898461 0.439053i \(-0.855314\pi\)
0.139925 + 0.990162i \(0.455314\pi\)
\(174\) 1.20337 0.0912271
\(175\) 6.28369 + 9.85350i 0.475003 + 0.744854i
\(176\) −2.83738 −0.213875
\(177\) −2.36856 + 1.72086i −0.178032 + 0.129347i
\(178\) 0.441289 1.35815i 0.0330760 0.101798i
\(179\) −5.44216 + 16.7492i −0.406766 + 1.25190i 0.512645 + 0.858601i \(0.328666\pi\)
−0.919411 + 0.393297i \(0.871334\pi\)
\(180\) −9.83533 + 1.25349i −0.733082 + 0.0934298i
\(181\) 2.88990 + 8.89421i 0.214805 + 0.661101i 0.999167 + 0.0407987i \(0.0129902\pi\)
−0.784363 + 0.620303i \(0.787010\pi\)
\(182\) 0.659165 0.0488606
\(183\) −0.975306 3.00168i −0.0720967 0.221891i
\(184\) −1.05045 0.763197i −0.0774402 0.0562636i
\(185\) −5.52903 11.7163i −0.406503 0.861399i
\(186\) −0.615610 + 0.447267i −0.0451387 + 0.0327952i
\(187\) −0.599060 0.435242i −0.0438076 0.0318281i
\(188\) 4.78002 + 3.47289i 0.348619 + 0.253286i
\(189\) −8.60268 + 6.25021i −0.625753 + 0.454636i
\(190\) −0.182511 0.386749i −0.0132407 0.0280577i
\(191\) −21.1484 15.3652i −1.53024 1.11179i −0.956104 0.293027i \(-0.905337\pi\)
−0.574138 0.818759i \(-0.694663\pi\)
\(192\) 1.96386 + 6.04415i 0.141730 + 0.436199i
\(193\) −17.6472 −1.27028 −0.635138 0.772399i \(-0.719057\pi\)
−0.635138 + 0.772399i \(0.719057\pi\)
\(194\) 0.655492 + 2.01740i 0.0470616 + 0.144841i
\(195\) 3.23094 0.411777i 0.231372 0.0294879i
\(196\) 0.936512 2.88229i 0.0668937 0.205878i
\(197\) 0.759863 2.33862i 0.0541380 0.166620i −0.920332 0.391139i \(-0.872081\pi\)
0.974470 + 0.224519i \(0.0720812\pi\)
\(198\) −0.226070 + 0.164249i −0.0160661 + 0.0116727i
\(199\) 17.5490 1.24402 0.622009 0.783010i \(-0.286317\pi\)
0.622009 + 0.783010i \(0.286317\pi\)
\(200\) 2.11871 2.57259i 0.149816 0.181910i
\(201\) 5.70257 0.402229
\(202\) 0.989224 0.718713i 0.0696015 0.0505685i
\(203\) −5.97518 + 18.3897i −0.419375 + 1.29070i
\(204\) −0.528153 + 1.62549i −0.0369781 + 0.113807i
\(205\) −4.01895 8.51635i −0.280696 0.594808i
\(206\) 0.257210 + 0.791611i 0.0179207 + 0.0551541i
\(207\) 4.38044 0.304461
\(208\) 1.98986 + 6.12416i 0.137972 + 0.424634i
\(209\) 0.682706 + 0.496015i 0.0472238 + 0.0343101i
\(210\) 0.141632 0.746929i 0.00977356 0.0515430i
\(211\) 14.9143 10.8359i 1.02675 0.745974i 0.0590904 0.998253i \(-0.481180\pi\)
0.967655 + 0.252279i \(0.0811800\pi\)
\(212\) 4.71066 + 3.42250i 0.323530 + 0.235058i
\(213\) 1.08783 + 0.790351i 0.0745365 + 0.0541540i
\(214\) −1.52649 + 1.10906i −0.104349 + 0.0758138i
\(215\) 14.1205 + 7.74256i 0.963007 + 0.528038i
\(216\) 2.45329 + 1.78242i 0.166925 + 0.121278i
\(217\) −3.77834 11.6285i −0.256490 0.789395i
\(218\) −0.702884 −0.0476053
\(219\) 3.40383 + 10.4759i 0.230010 + 0.707897i
\(220\) −0.608248 + 3.20773i −0.0410081 + 0.216265i
\(221\) −0.519300 + 1.59824i −0.0349319 + 0.107509i
\(222\) −0.260432 + 0.801528i −0.0174791 + 0.0537950i
\(223\) 10.0333 7.28964i 0.671881 0.488150i −0.198773 0.980046i \(-0.563696\pi\)
0.870654 + 0.491895i \(0.163696\pi\)
\(224\) 4.61888 0.308612
\(225\) −0.681278 + 11.2228i −0.0454185 + 0.748189i
\(226\) −0.913715 −0.0607794
\(227\) −19.2759 + 14.0048i −1.27939 + 0.929529i −0.999534 0.0305146i \(-0.990285\pi\)
−0.279852 + 0.960043i \(0.590285\pi\)
\(228\) 0.601899 1.85246i 0.0398617 0.122682i
\(229\) −2.20456 + 6.78494i −0.145681 + 0.448361i −0.997098 0.0761288i \(-0.975744\pi\)
0.851417 + 0.524490i \(0.175744\pi\)
\(230\) −0.532318 + 0.500984i −0.0351000 + 0.0330339i
\(231\) 0.463574 + 1.42673i 0.0305009 + 0.0938722i
\(232\) 5.51421 0.362025
\(233\) 7.39791 + 22.7684i 0.484653 + 1.49161i 0.832482 + 0.554052i \(0.186919\pi\)
−0.347829 + 0.937558i \(0.613081\pi\)
\(234\) 0.513057 + 0.372758i 0.0335396 + 0.0243680i
\(235\) 4.87916 4.59196i 0.318282 0.299546i
\(236\) −5.38825 + 3.91479i −0.350745 + 0.254831i
\(237\) 1.82664 + 1.32713i 0.118653 + 0.0862066i
\(238\) 0.317333 + 0.230556i 0.0205697 + 0.0149447i
\(239\) −23.4153 + 17.0122i −1.51461 + 1.10043i −0.550532 + 0.834814i \(0.685575\pi\)
−0.964079 + 0.265615i \(0.914425\pi\)
\(240\) 7.36711 0.938923i 0.475545 0.0606072i
\(241\) −14.5668 10.5834i −0.938331 0.681737i 0.00968721 0.999953i \(-0.496916\pi\)
−0.948018 + 0.318216i \(0.896916\pi\)
\(242\) −0.542013 1.66814i −0.0348419 0.107232i
\(243\) −16.0777 −1.03138
\(244\) −2.21873 6.82856i −0.142040 0.437154i
\(245\) −3.01345 1.65234i −0.192522 0.105564i
\(246\) −0.189303 + 0.582615i −0.0120695 + 0.0371462i
\(247\) 0.591810 1.82140i 0.0376560 0.115893i
\(248\) −2.82092 + 2.04952i −0.179128 + 0.130144i
\(249\) 2.40084 0.152147
\(250\) −1.20075 1.44173i −0.0759420 0.0911833i
\(251\) 29.8448 1.88378 0.941892 0.335916i \(-0.109046\pi\)
0.941892 + 0.335916i \(0.109046\pi\)
\(252\) −8.38451 + 6.09170i −0.528175 + 0.383741i
\(253\) 0.445739 1.37184i 0.0280234 0.0862471i
\(254\) −0.325518 + 1.00184i −0.0204248 + 0.0628610i
\(255\) 1.69946 + 0.931850i 0.106424 + 0.0583547i
\(256\) 4.26265 + 13.1191i 0.266416 + 0.819943i
\(257\) −22.0356 −1.37454 −0.687271 0.726401i \(-0.741191\pi\)
−0.687271 + 0.726401i \(0.741191\pi\)
\(258\) −0.323724 0.996320i −0.0201542 0.0620282i
\(259\) −10.9557 7.95978i −0.680754 0.494597i
\(260\) 7.35010 0.936755i 0.455834 0.0580951i
\(261\) −15.0501 + 10.9346i −0.931580 + 0.676832i
\(262\) −0.279154 0.202817i −0.0172462 0.0125301i
\(263\) 8.40098 + 6.10367i 0.518027 + 0.376369i 0.815860 0.578249i \(-0.196264\pi\)
−0.297833 + 0.954618i \(0.596264\pi\)
\(264\) 0.346106 0.251460i 0.0213013 0.0154763i
\(265\) 4.80837 4.52533i 0.295376 0.277989i
\(266\) −0.361643 0.262749i −0.0221737 0.0161102i
\(267\) −2.27924 7.01477i −0.139487 0.429297i
\(268\) 12.9728 0.792443
\(269\) 3.84101 + 11.8214i 0.234190 + 0.720764i 0.997228 + 0.0744096i \(0.0237072\pi\)
−0.763037 + 0.646354i \(0.776293\pi\)
\(270\) 1.24321 1.17003i 0.0756592 0.0712056i
\(271\) −6.86493 + 21.1281i −0.417015 + 1.28344i 0.493421 + 0.869791i \(0.335746\pi\)
−0.910436 + 0.413650i \(0.864254\pi\)
\(272\) −1.18410 + 3.64427i −0.0717963 + 0.220966i
\(273\) 2.75434 2.00115i 0.166700 0.121115i
\(274\) 0.304161 0.0183750
\(275\) 3.44539 + 1.35536i 0.207765 + 0.0817312i
\(276\) −3.32938 −0.200405
\(277\) 21.8908 15.9046i 1.31529 0.955613i 0.315310 0.948989i \(-0.397892\pi\)
0.999978 0.00662369i \(-0.00210840\pi\)
\(278\) −0.874346 + 2.69096i −0.0524398 + 0.161393i
\(279\) 3.63509 11.1876i 0.217627 0.669787i
\(280\) 0.649004 3.42266i 0.0387854 0.204543i
\(281\) −4.76212 14.6563i −0.284084 0.874321i −0.986672 0.162723i \(-0.947972\pi\)
0.702588 0.711597i \(-0.252028\pi\)
\(282\) −0.435861 −0.0259552
\(283\) −7.98424 24.5730i −0.474614 1.46071i −0.846478 0.532424i \(-0.821281\pi\)
0.371864 0.928287i \(-0.378719\pi\)
\(284\) 2.47470 + 1.79798i 0.146847 + 0.106690i
\(285\) −1.93675 1.06196i −0.114723 0.0629053i
\(286\) 0.168946 0.122746i 0.00998996 0.00725813i
\(287\) −7.96349 5.78582i −0.470070 0.341526i
\(288\) 3.59508 + 2.61198i 0.211842 + 0.153912i
\(289\) −0.809017 + 0.587785i −0.0475892 + 0.0345756i
\(290\) 0.578348 3.05004i 0.0339618 0.179105i
\(291\) 8.86357 + 6.43976i 0.519592 + 0.377505i
\(292\) 7.74342 + 23.8318i 0.453149 + 1.39465i
\(293\) −28.7553 −1.67990 −0.839950 0.542663i \(-0.817416\pi\)
−0.839950 + 0.542663i \(0.817416\pi\)
\(294\) 0.0690860 + 0.212625i 0.00402917 + 0.0124005i
\(295\) 3.22332 + 6.83037i 0.187669 + 0.397680i
\(296\) −1.19338 + 3.67285i −0.0693639 + 0.213480i
\(297\) −1.04101 + 3.20389i −0.0604053 + 0.185908i
\(298\) −0.780330 + 0.566943i −0.0452033 + 0.0328421i
\(299\) −3.27357 −0.189316
\(300\) 0.517810 8.53000i 0.0298958 0.492480i
\(301\) 16.8330 0.970240
\(302\) −1.36227 + 0.989745i −0.0783897 + 0.0569534i
\(303\) 1.95158 6.00633i 0.112115 0.345055i
\(304\) 1.34943 4.15312i 0.0773952 0.238198i
\(305\) −8.07678 + 1.02937i −0.462475 + 0.0589415i
\(306\) 0.116615 + 0.358904i 0.00666644 + 0.0205172i
\(307\) −16.8097 −0.959381 −0.479691 0.877438i \(-0.659251\pi\)
−0.479691 + 0.877438i \(0.659251\pi\)
\(308\) 1.05459 + 3.24569i 0.0600908 + 0.184940i
\(309\) 3.47799 + 2.52691i 0.197856 + 0.143751i
\(310\) 0.837771 + 1.77528i 0.0475822 + 0.100829i
\(311\) 20.2425 14.7071i 1.14785 0.833961i 0.159655 0.987173i \(-0.448962\pi\)
0.988193 + 0.153212i \(0.0489617\pi\)
\(312\) −0.785475 0.570681i −0.0444688 0.0323084i
\(313\) 8.66253 + 6.29370i 0.489635 + 0.355741i 0.805044 0.593215i \(-0.202142\pi\)
−0.315409 + 0.948956i \(0.602142\pi\)
\(314\) −1.23029 + 0.893858i −0.0694293 + 0.0504433i
\(315\) 5.01572 + 10.6286i 0.282604 + 0.598851i
\(316\) 4.15545 + 3.01911i 0.233762 + 0.169838i
\(317\) −6.93911 21.3564i −0.389739 1.19949i −0.932983 0.359920i \(-0.882804\pi\)
0.543244 0.839575i \(-0.317196\pi\)
\(318\) −0.429537 −0.0240872
\(319\) 1.89298 + 5.82599i 0.105986 + 0.326193i
\(320\) 16.2633 2.07272i 0.909145 0.115869i
\(321\) −3.01151 + 9.26848i −0.168086 + 0.517316i
\(322\) −0.236117 + 0.726692i −0.0131583 + 0.0404970i
\(323\) 0.921980 0.669858i 0.0513003 0.0372719i
\(324\) −5.52657 −0.307032
\(325\) 0.509130 8.38701i 0.0282415 0.465228i
\(326\) 0.664373 0.0367962
\(327\) −2.93702 + 2.13387i −0.162418 + 0.118003i
\(328\) −0.867447 + 2.66973i −0.0478967 + 0.147411i
\(329\) 2.16422 6.66078i 0.119317 0.367220i
\(330\) −0.102788 0.217814i −0.00565831 0.0119902i
\(331\) −8.25744 25.4138i −0.453870 1.39687i −0.872456 0.488692i \(-0.837474\pi\)
0.418586 0.908177i \(-0.362526\pi\)
\(332\) 5.46170 0.299750
\(333\) −4.02605 12.3909i −0.220626 0.679017i
\(334\) −0.463766 0.336945i −0.0253761 0.0184368i
\(335\) 2.74070 14.4537i 0.149741 0.789690i
\(336\) 6.28038 4.56297i 0.342623 0.248930i
\(337\) 19.6939 + 14.3085i 1.07280 + 0.779432i 0.976413 0.215912i \(-0.0692725\pi\)
0.0963836 + 0.995344i \(0.469272\pi\)
\(338\) 1.38157 + 1.00377i 0.0751476 + 0.0545979i
\(339\) −3.81799 + 2.77393i −0.207365 + 0.150659i
\(340\) 3.86611 + 2.11987i 0.209669 + 0.114966i
\(341\) −3.13380 2.27684i −0.169705 0.123298i
\(342\) −0.132898 0.409018i −0.00718630 0.0221172i
\(343\) −19.9536 −1.07739
\(344\) −1.48340 4.56545i −0.0799798 0.246152i
\(345\) −0.703380 + 3.70943i −0.0378687 + 0.199709i
\(346\) 0.639536 1.96829i 0.0343817 0.105816i
\(347\) −1.48215 + 4.56160i −0.0795661 + 0.244879i −0.982925 0.184006i \(-0.941093\pi\)
0.903359 + 0.428885i \(0.141093\pi\)
\(348\) 11.4390 8.31089i 0.613192 0.445510i
\(349\) −37.3215 −1.99777 −0.998887 0.0471628i \(-0.984982\pi\)
−0.998887 + 0.0471628i \(0.984982\pi\)
\(350\) −1.82509 0.717960i −0.0975551 0.0383766i
\(351\) 7.64530 0.408076
\(352\) 1.18383 0.860103i 0.0630984 0.0458437i
\(353\) 0.109721 0.337685i 0.00583984 0.0179732i −0.948094 0.317990i \(-0.896992\pi\)
0.953934 + 0.300017i \(0.0969922\pi\)
\(354\) 0.151827 0.467275i 0.00806951 0.0248354i
\(355\) 2.52603 2.37734i 0.134068 0.126176i
\(356\) −5.18506 15.9580i −0.274808 0.845771i
\(357\) 2.02593 0.107224
\(358\) −0.913297 2.81084i −0.0482692 0.148557i
\(359\) −10.2385 7.43868i −0.540365 0.392598i 0.283855 0.958867i \(-0.408386\pi\)
−0.824221 + 0.566269i \(0.808386\pi\)
\(360\) 2.44066 2.29700i 0.128634 0.121062i
\(361\) 14.3206 10.4045i 0.753716 0.547607i
\(362\) −1.26969 0.922487i −0.0667337 0.0484849i
\(363\) −7.32910 5.32491i −0.384678 0.279485i
\(364\) 6.26588 4.55243i 0.328421 0.238612i
\(365\) 28.1881 3.59251i 1.47543 0.188041i
\(366\) 0.428506 + 0.311328i 0.0223984 + 0.0162734i
\(367\) −4.55183 14.0091i −0.237603 0.731268i −0.996765 0.0803664i \(-0.974391\pi\)
0.759162 0.650902i \(-0.225609\pi\)
\(368\) −7.46432 −0.389105
\(369\) −2.92646 9.00671i −0.152345 0.468871i
\(370\) 1.90638 + 1.04531i 0.0991079 + 0.0543431i
\(371\) 2.13282 6.56413i 0.110730 0.340793i
\(372\) −2.76287 + 8.50324i −0.143248 + 0.440873i
\(373\) −24.7589 + 17.9884i −1.28197 + 0.931404i −0.999611 0.0279049i \(-0.991116\pi\)
−0.282358 + 0.959309i \(0.591116\pi\)
\(374\) 0.124266 0.00642565
\(375\) −9.39430 2.37900i −0.485119 0.122851i
\(376\) −1.99725 −0.103000
\(377\) 11.2472 8.17158i 0.579261 0.420858i
\(378\) 0.551441 1.69716i 0.0283631 0.0872925i
\(379\) 5.94586 18.2995i 0.305418 0.939981i −0.674102 0.738638i \(-0.735469\pi\)
0.979521 0.201343i \(-0.0645307\pi\)
\(380\) −4.40594 2.41587i −0.226020 0.123932i
\(381\) 1.68128 + 5.17445i 0.0861347 + 0.265095i
\(382\) 4.38692 0.224454
\(383\) −10.1347 31.1914i −0.517858 1.59380i −0.778020 0.628239i \(-0.783776\pi\)
0.260162 0.965565i \(-0.416224\pi\)
\(384\) −3.63433 2.64049i −0.185463 0.134747i
\(385\) 3.83898 0.489270i 0.195653 0.0249355i
\(386\) 2.39593 1.74075i 0.121950 0.0886018i
\(387\) 13.1019 + 9.51909i 0.666007 + 0.483882i
\(388\) 20.1638 + 14.6499i 1.02366 + 0.743735i
\(389\) −14.6677 + 10.6567i −0.743679 + 0.540315i −0.893861 0.448344i \(-0.852014\pi\)
0.150182 + 0.988658i \(0.452014\pi\)
\(390\) −0.398041 + 0.374611i −0.0201556 + 0.0189692i
\(391\) −1.57595 1.14500i −0.0796994 0.0579050i
\(392\) 0.316574 + 0.974313i 0.0159894 + 0.0492102i
\(393\) −1.78218 −0.0898991
\(394\) 0.127519 + 0.392464i 0.00642433 + 0.0197721i
\(395\) 4.24164 3.99196i 0.213420 0.200857i
\(396\) −1.01461 + 3.12264i −0.0509859 + 0.156918i
\(397\) −6.27251 + 19.3048i −0.314808 + 0.968880i 0.661025 + 0.750364i \(0.270122\pi\)
−0.975833 + 0.218516i \(0.929878\pi\)
\(398\) −2.38260 + 1.73106i −0.119429 + 0.0867702i
\(399\) −2.30881 −0.115585
\(400\) 1.16091 19.1239i 0.0580453 0.956193i
\(401\) 25.7985 1.28832 0.644159 0.764892i \(-0.277208\pi\)
0.644159 + 0.764892i \(0.277208\pi\)
\(402\) −0.774229 + 0.562510i −0.0386150 + 0.0280554i
\(403\) −2.71656 + 8.36071i −0.135321 + 0.416477i
\(404\) 4.43966 13.6639i 0.220881 0.679803i
\(405\) −1.16757 + 6.15743i −0.0580169 + 0.305965i
\(406\) −1.00275 3.08614i −0.0497655 0.153163i
\(407\) −4.29020 −0.212657
\(408\) −0.178534 0.549471i −0.00883875 0.0272029i
\(409\) −10.4536 7.59497i −0.516896 0.375547i 0.298537 0.954398i \(-0.403501\pi\)
−0.815433 + 0.578851i \(0.803501\pi\)
\(410\) 1.38571 + 0.759816i 0.0684354 + 0.0375246i
\(411\) 1.27095 0.923397i 0.0626912 0.0455478i
\(412\) 7.91213 + 5.74850i 0.389803 + 0.283208i
\(413\) 6.38696 + 4.64040i 0.314282 + 0.228339i
\(414\) −0.594724 + 0.432093i −0.0292291 + 0.0212362i
\(415\) 1.15386 6.08515i 0.0566410 0.298708i
\(416\) −2.68666 1.95198i −0.131725 0.0957035i
\(417\) 4.51595 + 13.8987i 0.221147 + 0.680621i
\(418\) −0.141617 −0.00692674
\(419\) −4.84966 14.9257i −0.236922 0.729170i −0.996861 0.0791753i \(-0.974771\pi\)
0.759939 0.649994i \(-0.225229\pi\)
\(420\) −3.81223 8.07831i −0.186018 0.394181i
\(421\) −9.36192 + 28.8130i −0.456272 + 1.40426i 0.413363 + 0.910566i \(0.364354\pi\)
−0.869635 + 0.493695i \(0.835646\pi\)
\(422\) −0.956025 + 2.94234i −0.0465386 + 0.143231i
\(423\) 5.45118 3.96051i 0.265045 0.192567i
\(424\) −1.96827 −0.0955878
\(425\) 3.17863 3.85957i 0.154186 0.187217i
\(426\) −0.225653 −0.0109329
\(427\) −6.88536 + 5.00251i −0.333206 + 0.242088i
\(428\) −6.85092 + 21.0850i −0.331152 + 1.01918i
\(429\) 0.333302 1.02580i 0.0160920 0.0495260i
\(430\) −2.68085 + 0.341668i −0.129282 + 0.0164767i
\(431\) 2.36645 + 7.28319i 0.113988 + 0.350819i 0.991735 0.128306i \(-0.0409540\pi\)
−0.877747 + 0.479125i \(0.840954\pi\)
\(432\) 17.4326 0.838728
\(433\) −5.76301 17.7367i −0.276952 0.852372i −0.988696 0.149933i \(-0.952094\pi\)
0.711744 0.702439i \(-0.247906\pi\)
\(434\) 1.66003 + 1.20608i 0.0796841 + 0.0578939i
\(435\) −6.84292 14.5005i −0.328093 0.695246i
\(436\) −6.68147 + 4.85437i −0.319984 + 0.232482i
\(437\) 1.79600 + 1.30487i 0.0859145 + 0.0624206i
\(438\) −1.49549 1.08654i −0.0714574 0.0519168i
\(439\) 10.1782 7.39491i 0.485780 0.352940i −0.317779 0.948165i \(-0.602937\pi\)
0.803559 + 0.595225i \(0.202937\pi\)
\(440\) −0.471008 0.998090i −0.0224544 0.0475821i
\(441\) −2.79608 2.03147i −0.133147 0.0967367i
\(442\) −0.0871483 0.268215i −0.00414522 0.0127577i
\(443\) −15.9434 −0.757495 −0.378747 0.925500i \(-0.623645\pi\)
−0.378747 + 0.925500i \(0.623645\pi\)
\(444\) 3.06003 + 9.41779i 0.145222 + 0.446949i
\(445\) −18.8750 + 2.40558i −0.894760 + 0.114035i
\(446\) −0.643147 + 1.97940i −0.0304539 + 0.0937275i
\(447\) −1.53946 + 4.73798i −0.0728141 + 0.224099i
\(448\) 13.8643 10.0730i 0.655026 0.475904i
\(449\) 7.07163 0.333731 0.166865 0.985980i \(-0.446635\pi\)
0.166865 + 0.985980i \(0.446635\pi\)
\(450\) −1.01454 1.59091i −0.0478259 0.0749961i
\(451\) −3.11846 −0.146843
\(452\) −8.68558 + 6.31045i −0.408535 + 0.296818i
\(453\) −2.68753 + 8.27136i −0.126271 + 0.388622i
\(454\) 1.23561 3.80280i 0.0579899 0.178474i
\(455\) −3.74833 7.94290i −0.175724 0.372369i
\(456\) 0.203463 + 0.626194i 0.00952801 + 0.0293242i
\(457\) −11.8771 −0.555587 −0.277794 0.960641i \(-0.589603\pi\)
−0.277794 + 0.960641i \(0.589603\pi\)
\(458\) −0.369966 1.13864i −0.0172874 0.0532051i
\(459\) 3.68058 + 2.67410i 0.171795 + 0.124816i
\(460\) −1.60013 + 8.43862i −0.0746063 + 0.393453i
\(461\) 8.99108 6.53240i 0.418756 0.304244i −0.358381 0.933575i \(-0.616671\pi\)
0.777137 + 0.629331i \(0.216671\pi\)
\(462\) −0.203674 0.147978i −0.00947576 0.00688454i
\(463\) −20.9179 15.1978i −0.972138 0.706300i −0.0162004 0.999869i \(-0.505157\pi\)
−0.955938 + 0.293569i \(0.905157\pi\)
\(464\) 25.6456 18.6326i 1.19057 0.864998i
\(465\) 8.89019 + 4.87468i 0.412273 + 0.226058i
\(466\) −3.25031 2.36149i −0.150568 0.109394i
\(467\) 12.6052 + 38.7947i 0.583297 + 1.79520i 0.606003 + 0.795462i \(0.292772\pi\)
−0.0227055 + 0.999742i \(0.507228\pi\)
\(468\) 7.45141 0.344442
\(469\) −4.75187 14.6247i −0.219421 0.675308i
\(470\) −0.209478 + 1.10473i −0.00966251 + 0.0509574i
\(471\) −2.42716 + 7.47003i −0.111838 + 0.344201i
\(472\) 0.695719 2.14120i 0.0320230 0.0985568i
\(473\) 4.31435 3.13456i 0.198374 0.144127i
\(474\) −0.378910 −0.0174039
\(475\) −3.62246 + 4.39849i −0.166210 + 0.201816i
\(476\) 4.60881 0.211244
\(477\) 5.37208 3.90305i 0.245971 0.178708i
\(478\) 1.50095 4.61944i 0.0686517 0.211288i
\(479\) 9.95256 30.6308i 0.454744 1.39956i −0.416692 0.909048i \(-0.636811\pi\)
0.871436 0.490510i \(-0.163189\pi\)
\(480\) −2.78914 + 2.62496i −0.127306 + 0.119813i
\(481\) 3.00873 + 9.25993i 0.137186 + 0.422216i
\(482\) 3.02167 0.137633
\(483\) 1.21953 + 3.75333i 0.0554905 + 0.170782i
\(484\) −16.6731 12.1137i −0.757866 0.550622i
\(485\) 20.5821 19.3705i 0.934583 0.879570i
\(486\) 2.18284 1.58593i 0.0990156 0.0719391i
\(487\) 17.4619 + 12.6868i 0.791276 + 0.574895i 0.908342 0.418229i \(-0.137349\pi\)
−0.117066 + 0.993124i \(0.537349\pi\)
\(488\) 1.96355 + 1.42660i 0.0888856 + 0.0645792i
\(489\) 2.77610 2.01696i 0.125540 0.0912099i
\(490\) 0.572120 0.0729155i 0.0258457 0.00329399i
\(491\) 3.81701 + 2.77322i 0.172259 + 0.125154i 0.670574 0.741842i \(-0.266048\pi\)
−0.498315 + 0.866996i \(0.666048\pi\)
\(492\) 2.22427 + 6.84561i 0.100278 + 0.308624i
\(493\) 8.27277 0.372587
\(494\) 0.0993168 + 0.305666i 0.00446848 + 0.0137526i
\(495\) 3.26473 + 1.79012i 0.146739 + 0.0804601i
\(496\) −6.19423 + 19.0639i −0.278129 + 0.855994i
\(497\) 1.12046 3.44841i 0.0502593 0.154682i
\(498\) −0.325958 + 0.236823i −0.0146065 + 0.0106123i
\(499\) −24.6490 −1.10344 −0.551721 0.834029i \(-0.686029\pi\)
−0.551721 + 0.834029i \(0.686029\pi\)
\(500\) −21.3712 5.41202i −0.955749 0.242033i
\(501\) −2.96079 −0.132278
\(502\) −4.05197 + 2.94393i −0.180848 + 0.131394i
\(503\) −4.05027 + 12.4654i −0.180592 + 0.555806i −0.999845 0.0176270i \(-0.994389\pi\)
0.819252 + 0.573433i \(0.194389\pi\)
\(504\) 1.08259 3.33187i 0.0482223 0.148413i
\(505\) −14.2856 7.83313i −0.635703 0.348570i
\(506\) 0.0748034 + 0.230221i 0.00332542 + 0.0102346i
\(507\) 8.82027 0.391722
\(508\) 3.82477 + 11.7714i 0.169697 + 0.522272i
\(509\) 25.3510 + 18.4186i 1.12366 + 0.816390i 0.984761 0.173915i \(-0.0556419\pi\)
0.138904 + 0.990306i \(0.455642\pi\)
\(510\) −0.322651 + 0.0411213i −0.0142872 + 0.00182088i
\(511\) 24.0300 17.4589i 1.06303 0.772334i
\(512\) −10.2587 7.45336i −0.453374 0.329395i
\(513\) −4.19450 3.04748i −0.185192 0.134550i
\(514\) 2.99173 2.17362i 0.131960 0.0958743i
\(515\) 8.07624 7.60084i 0.355881 0.334933i
\(516\) −9.95819 7.23505i −0.438385 0.318505i
\(517\) −0.685639 2.11018i −0.0301544 0.0928056i
\(518\) 2.27260 0.0998524
\(519\) −3.30317 10.1661i −0.144993 0.446243i
\(520\) −1.82395 + 1.71658i −0.0799854 + 0.0752772i
\(521\) 9.69500 29.8381i 0.424745 1.30723i −0.478492 0.878092i \(-0.658817\pi\)
0.903238 0.429140i \(-0.141183\pi\)
\(522\) 0.964729 2.96913i 0.0422251 0.129955i
\(523\) −19.0034 + 13.8068i −0.830961 + 0.603728i −0.919831 0.392315i \(-0.871674\pi\)
0.0888702 + 0.996043i \(0.471674\pi\)
\(524\) −4.05430 −0.177113
\(525\) −9.80583 + 2.54074i −0.427962 + 0.110887i
\(526\) −1.74266 −0.0759837
\(527\) −4.23212 + 3.07482i −0.184354 + 0.133941i
\(528\) 0.759986 2.33900i 0.0330742 0.101792i
\(529\) −5.93478 + 18.2654i −0.258034 + 0.794147i
\(530\) −0.206439 + 1.08870i −0.00896713 + 0.0472901i
\(531\) 2.34711 + 7.22366i 0.101856 + 0.313480i
\(532\) −5.25233 −0.227718
\(533\) 2.18699 + 6.73086i 0.0947291 + 0.291546i
\(534\) 1.00139 + 0.727556i 0.0433346 + 0.0314844i
\(535\) 22.0444 + 12.0875i 0.953065 + 0.522586i
\(536\) −3.54776 + 2.57760i −0.153240 + 0.111335i
\(537\) −12.3496 8.97252i −0.532925 0.387193i
\(538\) −1.68757 1.22609i −0.0727562 0.0528605i
\(539\) −0.920726 + 0.668946i −0.0396585 + 0.0288136i
\(540\) 3.73703 19.7081i 0.160816 0.848100i
\(541\) −20.8245 15.1299i −0.895314 0.650483i 0.0419443 0.999120i \(-0.486645\pi\)
−0.937258 + 0.348636i \(0.886645\pi\)
\(542\) −1.15206 3.54569i −0.0494854 0.152300i
\(543\) −8.10602 −0.347863
\(544\) −0.610663 1.87943i −0.0261820 0.0805798i
\(545\) 3.99694 + 8.46971i 0.171210 + 0.362802i
\(546\) −0.176556 + 0.543384i −0.00755591 + 0.0232547i
\(547\) −0.947753 + 2.91688i −0.0405230 + 0.124717i −0.969271 0.245994i \(-0.920886\pi\)
0.928748 + 0.370710i \(0.120886\pi\)
\(548\) 2.89129 2.10064i 0.123510 0.0897351i
\(549\) −8.18810 −0.349460
\(550\) −0.601469 + 0.155843i −0.0256467 + 0.00664518i
\(551\) −9.42790 −0.401642
\(552\) 0.910505 0.661520i 0.0387537 0.0281562i
\(553\) 1.88143 5.79046i 0.0800067 0.246235i
\(554\) −1.40322 + 4.31867i −0.0596171 + 0.183483i
\(555\) 11.1393 1.41968i 0.472837 0.0602621i
\(556\) 10.2734 + 31.6182i 0.435689 + 1.34091i
\(557\) 4.34924 0.184283 0.0921416 0.995746i \(-0.470629\pi\)
0.0921416 + 0.995746i \(0.470629\pi\)
\(558\) 0.610036 + 1.87750i 0.0258249 + 0.0794808i
\(559\) −9.79127 7.11377i −0.414126 0.300880i
\(560\) −8.54685 18.1112i −0.361170 0.765338i
\(561\) 0.519250 0.377257i 0.0219228 0.0159278i
\(562\) 2.09226 + 1.52012i 0.0882567 + 0.0641222i
\(563\) 17.9834 + 13.0657i 0.757911 + 0.550655i 0.898269 0.439446i \(-0.144825\pi\)
−0.140358 + 0.990101i \(0.544825\pi\)
\(564\) −4.14320 + 3.01021i −0.174460 + 0.126753i
\(565\) 5.19582 + 11.0102i 0.218590 + 0.463203i
\(566\) 3.50792 + 2.54865i 0.147449 + 0.107128i
\(567\) 2.02435 + 6.23030i 0.0850145 + 0.261648i
\(568\) −1.03401 −0.0433863
\(569\) 6.04237 + 18.5965i 0.253309 + 0.779605i 0.994158 + 0.107934i \(0.0344234\pi\)
−0.740849 + 0.671672i \(0.765577\pi\)
\(570\) 0.367703 0.0468630i 0.0154014 0.00196287i
\(571\) −14.0906 + 43.3663i −0.589672 + 1.81482i −0.0100338 + 0.999950i \(0.503194\pi\)
−0.579638 + 0.814874i \(0.696806\pi\)
\(572\) 0.758232 2.33360i 0.0317033 0.0975726i
\(573\) 18.3309 13.3182i 0.765784 0.556374i
\(574\) 1.65191 0.0689494
\(575\) 9.06383 + 3.56556i 0.377988 + 0.148694i
\(576\) 16.4875 0.686977
\(577\) −3.52730 + 2.56273i −0.146843 + 0.106688i −0.658781 0.752335i \(-0.728928\pi\)
0.511938 + 0.859022i \(0.328928\pi\)
\(578\) 0.0518589 0.159605i 0.00215704 0.00663870i
\(579\) 4.72678 14.5475i 0.196438 0.604575i
\(580\) −15.5670 32.9873i −0.646386 1.36972i
\(581\) −2.00059 6.15717i −0.0829983 0.255442i
\(582\) −1.83862 −0.0762132
\(583\) −0.675691 2.07956i −0.0279843 0.0861267i
\(584\) −6.85282 4.97886i −0.283572 0.206027i
\(585\) 1.57422 8.30199i 0.0650859 0.343245i
\(586\) 3.90405 2.83646i 0.161275 0.117173i
\(587\) 10.0346 + 7.29053i 0.414170 + 0.300912i 0.775288 0.631608i \(-0.217605\pi\)
−0.361118 + 0.932520i \(0.617605\pi\)
\(588\) 2.12518 + 1.54403i 0.0876409 + 0.0636748i
\(589\) 4.82305 3.50415i 0.198730 0.144386i
\(590\) −1.11138 0.609395i −0.0457549 0.0250884i
\(591\) 1.72432 + 1.25279i 0.0709290 + 0.0515329i
\(592\) 6.86044 + 21.1143i 0.281962 + 0.867791i
\(593\) −15.3195 −0.629094 −0.314547 0.949242i \(-0.601853\pi\)
−0.314547 + 0.949242i \(0.601853\pi\)
\(594\) −0.174700 0.537672i −0.00716804 0.0220610i
\(595\) 0.973677 5.13490i 0.0399169 0.210510i
\(596\) −3.50214 + 10.7785i −0.143453 + 0.441504i
\(597\) −4.70048 + 14.4666i −0.192378 + 0.592078i
\(598\) 0.444447 0.322910i 0.0181748 0.0132048i
\(599\) −33.1389 −1.35402 −0.677009 0.735975i \(-0.736724\pi\)
−0.677009 + 0.735975i \(0.736724\pi\)
\(600\) 1.55323 + 2.43563i 0.0634104 + 0.0994342i
\(601\) 3.08632 0.125894 0.0629468 0.998017i \(-0.479950\pi\)
0.0629468 + 0.998017i \(0.479950\pi\)
\(602\) −2.28539 + 1.66044i −0.0931457 + 0.0676743i
\(603\) 4.57171 14.0703i 0.186174 0.572985i
\(604\) −6.11389 + 18.8166i −0.248771 + 0.765637i
\(605\) −17.0189 + 16.0171i −0.691916 + 0.651187i
\(606\) 0.327511 + 1.00798i 0.0133042 + 0.0409462i
\(607\) −36.2260 −1.47037 −0.735184 0.677868i \(-0.762904\pi\)
−0.735184 + 0.677868i \(0.762904\pi\)
\(608\) 0.695930 + 2.14185i 0.0282237 + 0.0868636i
\(609\) −13.5592 9.85131i −0.549445 0.399195i
\(610\) 0.995031 0.936460i 0.0402876 0.0379162i
\(611\) −4.07375 + 2.95975i −0.164806 + 0.119739i
\(612\) 3.58724 + 2.60628i 0.145005 + 0.105353i
\(613\) 12.3522 + 8.97443i 0.498902 + 0.362474i 0.808598 0.588362i \(-0.200227\pi\)
−0.309695 + 0.950836i \(0.600227\pi\)
\(614\) 2.28223 1.65813i 0.0921032 0.0669169i
\(615\) 8.09695 1.03194i 0.326500 0.0416118i
\(616\) −0.933296 0.678080i −0.0376036 0.0273206i
\(617\) −5.70189 17.5486i −0.229550 0.706481i −0.997798 0.0663288i \(-0.978871\pi\)
0.768248 0.640152i \(-0.221129\pi\)
\(618\) −0.721459 −0.0290214
\(619\) 1.51124 + 4.65111i 0.0607417 + 0.186944i 0.976823 0.214049i \(-0.0686652\pi\)
−0.916081 + 0.400993i \(0.868665\pi\)
\(620\) 20.2244 + 11.0895i 0.812231 + 0.445364i
\(621\) −2.73859 + 8.42851i −0.109896 + 0.338224i
\(622\) −1.29757 + 3.99350i −0.0520277 + 0.160125i
\(623\) −16.0907 + 11.6906i −0.644661 + 0.468374i
\(624\) −5.58145 −0.223437
\(625\) −10.5448 + 22.6673i −0.421791 + 0.906693i
\(626\) −1.79692 −0.0718192
\(627\) −0.591753 + 0.429934i −0.0236323 + 0.0171699i
\(628\) −5.52157 + 16.9936i −0.220335 + 0.678120i
\(629\) −1.79039 + 5.51025i −0.0713875 + 0.219708i
\(630\) −1.72939 0.948263i −0.0689006 0.0377797i
\(631\) 5.35214 + 16.4722i 0.213065 + 0.655747i 0.999285 + 0.0378007i \(0.0120352\pi\)
−0.786220 + 0.617947i \(0.787965\pi\)
\(632\) −1.73629 −0.0690657
\(633\) 4.93782 + 15.1970i 0.196261 + 0.604028i
\(634\) 3.04874 + 2.21504i 0.121081 + 0.0879703i
\(635\) 13.9232 1.77448i 0.552524 0.0704180i
\(636\) −4.08309 + 2.96654i −0.161905 + 0.117631i
\(637\) 2.08956 + 1.51815i 0.0827912 + 0.0601513i
\(638\) −0.831690 0.604258i −0.0329269 0.0239228i
\(639\) 2.82218 2.05043i 0.111644 0.0811138i
\(640\) −8.43925 + 7.94249i −0.333591 + 0.313954i
\(641\) 32.0610 + 23.2936i 1.26633 + 0.920044i 0.999050 0.0435748i \(-0.0138747\pi\)
0.267281 + 0.963619i \(0.413875\pi\)
\(642\) −0.505388 1.55543i −0.0199461 0.0613877i
\(643\) 22.7771 0.898241 0.449120 0.893471i \(-0.351737\pi\)
0.449120 + 0.893471i \(0.351737\pi\)
\(644\) 2.77432 + 8.53848i 0.109324 + 0.336463i
\(645\) −10.1647 + 9.56640i −0.400236 + 0.376677i
\(646\) −0.0590999 + 0.181891i −0.00232525 + 0.00715640i
\(647\) 2.99706 9.22400i 0.117827 0.362633i −0.874700 0.484666i \(-0.838941\pi\)
0.992526 + 0.122033i \(0.0389413\pi\)
\(648\) 1.51138 1.09808i 0.0593727 0.0431368i
\(649\) 2.50110 0.0981769
\(650\) 0.758183 + 1.18891i 0.0297384 + 0.0466329i
\(651\) 10.5980 0.415369
\(652\) 6.31539 4.58840i 0.247330 0.179695i
\(653\) −15.0652 + 46.3660i −0.589548 + 1.81444i −0.00936280 + 0.999956i \(0.502980\pi\)
−0.580185 + 0.814485i \(0.697020\pi\)
\(654\) 0.188266 0.579424i 0.00736180 0.0226573i
\(655\) −0.856530 + 4.51710i −0.0334674 + 0.176498i
\(656\) 4.98672 + 15.3476i 0.194699 + 0.599221i
\(657\) 28.5766 1.11488
\(658\) 0.363196 + 1.11780i 0.0141589 + 0.0435765i
\(659\) 15.3229 + 11.1328i 0.596897 + 0.433671i 0.844776 0.535120i \(-0.179734\pi\)
−0.247879 + 0.968791i \(0.579734\pi\)
\(660\) −2.48138 1.36060i −0.0965877 0.0529611i
\(661\) 2.52711 1.83606i 0.0982933 0.0714143i −0.537553 0.843230i \(-0.680651\pi\)
0.635846 + 0.771816i \(0.280651\pi\)
\(662\) 3.62795 + 2.63586i 0.141004 + 0.102446i
\(663\) −1.17842 0.856173i −0.0457661 0.0332510i
\(664\) −1.49364 + 1.08520i −0.0579646 + 0.0421137i
\(665\) −1.10963 + 5.85188i −0.0430297 + 0.226926i
\(666\) 1.76887 + 1.28516i 0.0685422 + 0.0497988i
\(667\) 4.97989 + 15.3265i 0.192822 + 0.593445i
\(668\) −6.73552 −0.260605
\(669\) 3.32182 + 10.2235i 0.128429 + 0.395264i
\(670\) 1.05363 + 2.23270i 0.0407054 + 0.0862567i
\(671\) −0.833195 + 2.56431i −0.0321651 + 0.0989941i
\(672\) −1.23716 + 3.80759i −0.0477245 + 0.146881i
\(673\) −19.3245 + 14.0401i −0.744905 + 0.541205i −0.894244 0.447581i \(-0.852286\pi\)
0.149338 + 0.988786i \(0.452286\pi\)
\(674\) −4.08522 −0.157357
\(675\) −21.1682 8.32723i −0.814765 0.320515i
\(676\) 20.0653 0.771743
\(677\) −7.59341 + 5.51694i −0.291839 + 0.212033i −0.724065 0.689732i \(-0.757728\pi\)
0.432226 + 0.901765i \(0.357728\pi\)
\(678\) 0.244737 0.753224i 0.00939908 0.0289274i
\(679\) 9.12944 28.0975i 0.350356 1.07828i
\(680\) −1.47849 + 0.188430i −0.0566975 + 0.00722598i
\(681\) −6.38184 19.6413i −0.244553 0.752656i
\(682\) 0.650060 0.0248921
\(683\) 9.03681 + 27.8125i 0.345784 + 1.06421i 0.961163 + 0.275982i \(0.0890031\pi\)
−0.615379 + 0.788232i \(0.710997\pi\)
\(684\) −4.08812 2.97020i −0.156313 0.113568i
\(685\) −1.72961 3.66512i −0.0660848 0.140037i
\(686\) 2.70906 1.96825i 0.103432 0.0751480i
\(687\) −5.00269 3.63467i −0.190865 0.138671i
\(688\) −22.3258 16.2206i −0.851164 0.618406i
\(689\) −4.01464 + 2.91681i −0.152946 + 0.111122i
\(690\) −0.270407 0.573005i −0.0102942 0.0218139i
\(691\) −1.77659 1.29077i −0.0675848 0.0491032i 0.553480 0.832863i \(-0.313300\pi\)
−0.621065 + 0.783759i \(0.713300\pi\)
\(692\) −7.51442 23.1270i −0.285655 0.879157i
\(693\) 3.89190 0.147841
\(694\) −0.248733 0.765522i −0.00944178 0.0290588i
\(695\) 37.3978 4.76628i 1.41858 0.180795i
\(696\) −1.47697 + 4.54565i −0.0559844 + 0.172302i
\(697\) −1.30140 + 4.00530i −0.0492940 + 0.151711i
\(698\) 5.06708 3.68145i 0.191792 0.139345i
\(699\) −20.7507 −0.784865
\(700\) −22.3074 + 5.77995i −0.843140 + 0.218461i
\(701\) 24.5922 0.928834 0.464417 0.885617i \(-0.346264\pi\)
0.464417 + 0.885617i \(0.346264\pi\)
\(702\) −1.03799 + 0.754143i −0.0391764 + 0.0284633i
\(703\) 2.04038 6.27965i 0.0769544 0.236841i
\(704\) 1.67771 5.16346i 0.0632311 0.194605i
\(705\) 2.47852 + 5.25210i 0.0933463 + 0.197805i
\(706\) 0.0184132 + 0.0566699i 0.000692989 + 0.00213280i
\(707\) −17.0300 −0.640478
\(708\) −1.78394 5.49039i −0.0670444 0.206341i
\(709\) 21.6541 + 15.7326i 0.813235 + 0.590850i 0.914767 0.403982i \(-0.132374\pi\)
−0.101532 + 0.994832i \(0.532374\pi\)
\(710\) −0.108451 + 0.571939i −0.00407009 + 0.0214645i
\(711\) 4.73891 3.44302i 0.177723 0.129123i
\(712\) 4.58870 + 3.33389i 0.171969 + 0.124943i
\(713\) −8.24412 5.98970i −0.308745 0.224316i
\(714\) −0.275057 + 0.199840i −0.0102937 + 0.00747884i
\(715\) −2.43979 1.33779i −0.0912429 0.0500305i
\(716\) −28.0943 20.4117i −1.04993 0.762820i
\(717\) −7.75232 23.8592i −0.289516 0.891037i
\(718\) 2.12382 0.0792603
\(719\) 1.27676 + 3.92945i 0.0476150 + 0.146544i 0.972037 0.234827i \(-0.0754522\pi\)
−0.924422 + 0.381370i \(0.875452\pi\)
\(720\) 3.58950 18.9300i 0.133773 0.705479i
\(721\) 3.58232 11.0253i 0.133413 0.410602i
\(722\) −0.917966 + 2.82521i −0.0341632 + 0.105143i
\(723\) 12.6262 9.17344i 0.469572 0.341164i
\(724\) −18.4405 −0.685335
\(725\) −40.0416 + 10.3750i −1.48711 + 0.385316i
\(726\) 1.52032 0.0564242
\(727\) 39.7186 28.8573i 1.47308 1.07026i 0.493376 0.869816i \(-0.335763\pi\)
0.979706 0.200440i \(-0.0642372\pi\)
\(728\) −0.809036 + 2.48996i −0.0299849 + 0.0922840i
\(729\) 1.70809 5.25696i 0.0632625 0.194702i
\(730\) −3.47268 + 3.26826i −0.128530 + 0.120964i
\(731\) −2.22550 6.84938i −0.0823131 0.253334i
\(732\) 6.22342 0.230024
\(733\) −7.51224 23.1203i −0.277471 0.853968i −0.988555 0.150861i \(-0.951796\pi\)
0.711084 0.703107i \(-0.248204\pi\)
\(734\) 1.99987 + 1.45299i 0.0738165 + 0.0536308i
\(735\) 2.16926 2.04157i 0.0800143 0.0753043i
\(736\) 3.11432 2.26269i 0.114795 0.0834037i
\(737\) −3.94125 2.86349i −0.145178 0.105478i
\(738\) 1.28576 + 0.934156i 0.0473293 + 0.0343867i
\(739\) −29.7998 + 21.6508i −1.09620 + 0.796438i −0.980436 0.196838i \(-0.936933\pi\)
−0.115767 + 0.993276i \(0.536933\pi\)
\(740\) 25.3409 3.22965i 0.931550 0.118724i
\(741\) 1.34296 + 0.975720i 0.0493350 + 0.0358440i
\(742\) 0.357926 + 1.10158i 0.0131399 + 0.0404404i
\(743\) −46.8116 −1.71735 −0.858676 0.512519i \(-0.828712\pi\)
−0.858676 + 0.512519i \(0.828712\pi\)
\(744\) −0.933946 2.87439i −0.0342401 0.105380i
\(745\) 11.2690 + 6.17902i 0.412863 + 0.226382i
\(746\) 1.58707 4.88451i 0.0581069 0.178835i
\(747\) 1.92474 5.92373i 0.0704224 0.216738i
\(748\) 1.18125 0.858227i 0.0431907 0.0313799i
\(749\) 26.2793 0.960223
\(750\) 1.51012 0.603674i 0.0551416 0.0220430i
\(751\) 3.06377 0.111798 0.0558992 0.998436i \(-0.482197\pi\)
0.0558992 + 0.998436i \(0.482197\pi\)
\(752\) −9.28887 + 6.74876i −0.338730 + 0.246102i
\(753\) −7.99387 + 24.6026i −0.291313 + 0.896568i
\(754\) −0.720958 + 2.21888i −0.0262557 + 0.0808069i
\(755\) 19.6729 + 10.7871i 0.715969 + 0.392582i
\(756\) −6.47932 19.9413i −0.235651 0.725258i
\(757\) −37.5712 −1.36555 −0.682775 0.730629i \(-0.739227\pi\)
−0.682775 + 0.730629i \(0.739227\pi\)
\(758\) 0.997827 + 3.07100i 0.0362427 + 0.111544i
\(759\) 1.01149 + 0.734892i 0.0367148 + 0.0266749i
\(760\) 1.68493 0.214741i 0.0611189 0.00778947i
\(761\) −5.41803 + 3.93643i −0.196404 + 0.142695i −0.681641 0.731687i \(-0.738733\pi\)
0.485237 + 0.874383i \(0.338733\pi\)
\(762\) −0.738680 0.536683i −0.0267596 0.0194420i
\(763\) 7.91987 + 5.75413i 0.286719 + 0.208313i
\(764\) 41.7011 30.2976i 1.50869 1.09613i
\(765\) 3.66164 3.44610i 0.132387 0.124594i
\(766\) 4.45273 + 3.23510i 0.160884 + 0.116889i
\(767\) −1.75403 5.39836i −0.0633345 0.194923i
\(768\) −11.9565 −0.431443
\(769\) 7.54562 + 23.2230i 0.272102 + 0.837444i 0.989972 + 0.141266i \(0.0451174\pi\)
−0.717870 + 0.696178i \(0.754883\pi\)
\(770\) −0.472950 + 0.445110i −0.0170439 + 0.0160407i
\(771\) 5.90219 18.1651i 0.212562 0.654200i