Properties

Label 425.2.k.c.86.7
Level $425$
Weight $2$
Character 425.86
Analytic conductor $3.394$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 86.7
Character \(\chi\) \(=\) 425.86
Dual form 425.2.k.c.341.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.762747 + 0.554168i) q^{2} +(-0.324602 + 0.999022i) q^{3} +(-0.343353 + 1.05673i) q^{4} +(-1.44286 + 1.70826i) q^{5} +(-0.306037 - 0.941886i) q^{6} -2.98759 q^{7} +(-0.906403 - 2.78962i) q^{8} +(1.53437 + 1.11479i) q^{9} +(0.153870 - 2.10256i) q^{10} +(-0.890676 + 0.647114i) q^{11} +(-0.944246 - 0.686035i) q^{12} +(-0.236263 - 0.171655i) q^{13} +(2.27877 - 1.65563i) q^{14} +(-1.23824 - 1.99595i) q^{15} +(0.439455 + 0.319283i) q^{16} +(-0.309017 - 0.951057i) q^{17} -1.78812 q^{18} +(-0.0608886 - 0.187396i) q^{19} +(-1.30977 - 2.11125i) q^{20} +(0.969777 - 2.98467i) q^{21} +(0.320751 - 0.987169i) q^{22} +(4.69845 - 3.41362i) q^{23} +3.08111 q^{24} +(-0.836327 - 4.92956i) q^{25} +0.275335 q^{26} +(-4.16121 + 3.02330i) q^{27} +(1.02580 - 3.15708i) q^{28} +(0.315623 - 0.971387i) q^{29} +(2.05056 + 0.836214i) q^{30} +(3.00543 + 9.24977i) q^{31} +5.35423 q^{32} +(-0.357366 - 1.09986i) q^{33} +(0.762747 + 0.554168i) q^{34} +(4.31066 - 5.10359i) q^{35} +(-1.70486 + 1.23866i) q^{36} +(-6.10089 - 4.43255i) q^{37} +(0.150291 + 0.109193i) q^{38} +(0.248179 - 0.180312i) q^{39} +(6.07322 + 2.47665i) q^{40} +(-7.49579 - 5.44601i) q^{41} +(0.914313 + 2.81397i) q^{42} -6.74894 q^{43} +(-0.378010 - 1.16340i) q^{44} +(-4.11823 + 1.01263i) q^{45} +(-1.69201 + 5.20746i) q^{46} +(-2.54046 + 7.81874i) q^{47} +(-0.461618 + 0.335385i) q^{48} +1.92568 q^{49} +(3.36971 + 3.29654i) q^{50} +1.05043 q^{51} +(0.262515 - 0.190728i) q^{52} +(4.04225 - 12.4408i) q^{53} +(1.49854 - 4.61203i) q^{54} +(0.179677 - 2.45520i) q^{55} +(2.70796 + 8.33424i) q^{56} +0.206977 q^{57} +(0.297572 + 0.915831i) q^{58} +(-4.42688 - 3.21631i) q^{59} +(2.53434 - 0.623171i) q^{60} +(-2.13763 + 1.55308i) q^{61} +(-7.41831 - 5.38972i) q^{62} +(-4.58407 - 3.33052i) q^{63} +(-4.96284 + 3.60571i) q^{64} +(0.634125 - 0.155926i) q^{65} +(0.882088 + 0.640874i) q^{66} +(0.607795 + 1.87060i) q^{67} +1.11111 q^{68} +(1.88516 + 5.80192i) q^{69} +(-0.459699 + 6.28158i) q^{70} +(-3.79117 + 11.6680i) q^{71} +(1.71907 - 5.29076i) q^{72} +(-7.08602 + 5.14830i) q^{73} +7.10982 q^{74} +(5.19621 + 0.764635i) q^{75} +0.218933 q^{76} +(2.66097 - 1.93331i) q^{77} +(-0.0893741 + 0.275065i) q^{78} +(-0.893899 + 2.75114i) q^{79} +(-1.17949 + 0.290025i) q^{80} +(0.0886289 + 0.272772i) q^{81} +8.73539 q^{82} +(0.182744 + 0.562427i) q^{83} +(2.82102 + 2.04959i) q^{84} +(2.07052 + 0.844356i) q^{85} +(5.14773 - 3.74005i) q^{86} +(0.867986 + 0.630629i) q^{87} +(2.61251 + 1.89810i) q^{88} +(6.00901 - 4.36580i) q^{89} +(2.58000 - 3.05457i) q^{90} +(0.705856 + 0.512834i) q^{91} +(1.99406 + 6.13708i) q^{92} -10.2163 q^{93} +(-2.39517 - 7.37156i) q^{94} +(0.407975 + 0.166372i) q^{95} +(-1.73800 + 5.34900i) q^{96} +(-5.84338 + 17.9841i) q^{97} +(-1.46881 + 1.06715i) q^{98} -2.08802 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 2 q^{2} + 2 q^{3} - 20 q^{4} - 17 q^{6} - 44 q^{7} + 15 q^{8} - 22 q^{9} - 2 q^{10} + 4 q^{11} + 14 q^{12} + 6 q^{13} - 10 q^{14} + 14 q^{15} - 32 q^{16} + 20 q^{17} - 62 q^{18} - 3 q^{19} + 16 q^{21}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.762747 + 0.554168i −0.539344 + 0.391856i −0.823841 0.566821i \(-0.808173\pi\)
0.284498 + 0.958677i \(0.408173\pi\)
\(3\) −0.324602 + 0.999022i −0.187409 + 0.576786i −0.999982 0.00607434i \(-0.998066\pi\)
0.812572 + 0.582860i \(0.198066\pi\)
\(4\) −0.343353 + 1.05673i −0.171677 + 0.528366i
\(5\) −1.44286 + 1.70826i −0.645265 + 0.763959i
\(6\) −0.306037 0.941886i −0.124939 0.384523i
\(7\) −2.98759 −1.12920 −0.564601 0.825364i \(-0.690970\pi\)
−0.564601 + 0.825364i \(0.690970\pi\)
\(8\) −0.906403 2.78962i −0.320462 0.986280i
\(9\) 1.53437 + 1.11479i 0.511457 + 0.371595i
\(10\) 0.153870 2.10256i 0.0486579 0.664887i
\(11\) −0.890676 + 0.647114i −0.268549 + 0.195112i −0.713907 0.700240i \(-0.753076\pi\)
0.445358 + 0.895352i \(0.353076\pi\)
\(12\) −0.944246 0.686035i −0.272580 0.198041i
\(13\) −0.236263 0.171655i −0.0655275 0.0476085i 0.554539 0.832158i \(-0.312895\pi\)
−0.620067 + 0.784549i \(0.712895\pi\)
\(14\) 2.27877 1.65563i 0.609028 0.442485i
\(15\) −1.23824 1.99595i −0.319712 0.515353i
\(16\) 0.439455 + 0.319283i 0.109864 + 0.0798206i
\(17\) −0.309017 0.951057i −0.0749476 0.230665i
\(18\) −1.78812 −0.421463
\(19\) −0.0608886 0.187396i −0.0139688 0.0429915i 0.943829 0.330434i \(-0.107195\pi\)
−0.957798 + 0.287442i \(0.907195\pi\)
\(20\) −1.30977 2.11125i −0.292873 0.472090i
\(21\) 0.969777 2.98467i 0.211623 0.651308i
\(22\) 0.320751 0.987169i 0.0683843 0.210465i
\(23\) 4.69845 3.41362i 0.979694 0.711790i 0.0220540 0.999757i \(-0.492979\pi\)
0.957640 + 0.287967i \(0.0929794\pi\)
\(24\) 3.08111 0.628930
\(25\) −0.836327 4.92956i −0.167265 0.985912i
\(26\) 0.275335 0.0539975
\(27\) −4.16121 + 3.02330i −0.800826 + 0.581834i
\(28\) 1.02580 3.15708i 0.193858 0.596632i
\(29\) 0.315623 0.971387i 0.0586097 0.180382i −0.917465 0.397815i \(-0.869768\pi\)
0.976075 + 0.217433i \(0.0697685\pi\)
\(30\) 2.05056 + 0.836214i 0.374379 + 0.152671i
\(31\) 3.00543 + 9.24977i 0.539792 + 1.66131i 0.733062 + 0.680162i \(0.238091\pi\)
−0.193270 + 0.981146i \(0.561909\pi\)
\(32\) 5.35423 0.946504
\(33\) −0.357366 1.09986i −0.0622095 0.191461i
\(34\) 0.762747 + 0.554168i 0.130810 + 0.0950391i
\(35\) 4.31066 5.10359i 0.728635 0.862664i
\(36\) −1.70486 + 1.23866i −0.284144 + 0.206443i
\(37\) −6.10089 4.43255i −1.00298 0.728707i −0.0402547 0.999189i \(-0.512817\pi\)
−0.962725 + 0.270482i \(0.912817\pi\)
\(38\) 0.150291 + 0.109193i 0.0243805 + 0.0177135i
\(39\) 0.248179 0.180312i 0.0397404 0.0288731i
\(40\) 6.07322 + 2.47665i 0.960260 + 0.391593i
\(41\) −7.49579 5.44601i −1.17065 0.850524i −0.179559 0.983747i \(-0.557467\pi\)
−0.991086 + 0.133224i \(0.957467\pi\)
\(42\) 0.914313 + 2.81397i 0.141082 + 0.434204i
\(43\) −6.74894 −1.02920 −0.514602 0.857429i \(-0.672060\pi\)
−0.514602 + 0.857429i \(0.672060\pi\)
\(44\) −0.378010 1.16340i −0.0569872 0.175388i
\(45\) −4.11823 + 1.01263i −0.613909 + 0.150955i
\(46\) −1.69201 + 5.20746i −0.249473 + 0.767798i
\(47\) −2.54046 + 7.81874i −0.370564 + 1.14048i 0.575858 + 0.817550i \(0.304668\pi\)
−0.946423 + 0.322931i \(0.895332\pi\)
\(48\) −0.461618 + 0.335385i −0.0666289 + 0.0484087i
\(49\) 1.92568 0.275097
\(50\) 3.36971 + 3.29654i 0.476549 + 0.466201i
\(51\) 1.05043 0.147090
\(52\) 0.262515 0.190728i 0.0364043 0.0264493i
\(53\) 4.04225 12.4408i 0.555246 1.70887i −0.140045 0.990145i \(-0.544725\pi\)
0.695292 0.718728i \(-0.255275\pi\)
\(54\) 1.49854 4.61203i 0.203925 0.627617i
\(55\) 0.179677 2.45520i 0.0242276 0.331059i
\(56\) 2.70796 + 8.33424i 0.361866 + 1.11371i
\(57\) 0.206977 0.0274148
\(58\) 0.297572 + 0.915831i 0.0390731 + 0.120255i
\(59\) −4.42688 3.21631i −0.576330 0.418728i 0.261069 0.965320i \(-0.415925\pi\)
−0.837399 + 0.546592i \(0.815925\pi\)
\(60\) 2.53434 0.623171i 0.327182 0.0804510i
\(61\) −2.13763 + 1.55308i −0.273695 + 0.198851i −0.716163 0.697933i \(-0.754103\pi\)
0.442468 + 0.896784i \(0.354103\pi\)
\(62\) −7.41831 5.38972i −0.942127 0.684495i
\(63\) −4.58407 3.33052i −0.577539 0.419606i
\(64\) −4.96284 + 3.60571i −0.620354 + 0.450714i
\(65\) 0.634125 0.155926i 0.0786536 0.0193402i
\(66\) 0.882088 + 0.640874i 0.108577 + 0.0788861i
\(67\) 0.607795 + 1.87060i 0.0742540 + 0.228530i 0.981294 0.192513i \(-0.0616639\pi\)
−0.907040 + 0.421044i \(0.861664\pi\)
\(68\) 1.11111 0.134742
\(69\) 1.88516 + 5.80192i 0.226947 + 0.698470i
\(70\) −0.459699 + 6.28158i −0.0549446 + 0.750792i
\(71\) −3.79117 + 11.6680i −0.449930 + 1.38474i 0.427056 + 0.904225i \(0.359551\pi\)
−0.876986 + 0.480516i \(0.840449\pi\)
\(72\) 1.71907 5.29076i 0.202595 0.623522i
\(73\) −7.08602 + 5.14830i −0.829356 + 0.602562i −0.919377 0.393378i \(-0.871307\pi\)
0.0900211 + 0.995940i \(0.471307\pi\)
\(74\) 7.10982 0.826499
\(75\) 5.19621 + 0.764635i 0.600007 + 0.0882925i
\(76\) 0.218933 0.0251134
\(77\) 2.66097 1.93331i 0.303246 0.220321i
\(78\) −0.0893741 + 0.275065i −0.0101196 + 0.0311450i
\(79\) −0.893899 + 2.75114i −0.100571 + 0.309527i −0.988666 0.150135i \(-0.952029\pi\)
0.888094 + 0.459662i \(0.152029\pi\)
\(80\) −1.17949 + 0.290025i −0.131871 + 0.0324258i
\(81\) 0.0886289 + 0.272772i 0.00984765 + 0.0303080i
\(82\) 8.73539 0.964663
\(83\) 0.182744 + 0.562427i 0.0200587 + 0.0617344i 0.960585 0.277987i \(-0.0896672\pi\)
−0.940526 + 0.339721i \(0.889667\pi\)
\(84\) 2.82102 + 2.04959i 0.307798 + 0.223629i
\(85\) 2.07052 + 0.844356i 0.224580 + 0.0915833i
\(86\) 5.14773 3.74005i 0.555094 0.403299i
\(87\) 0.867986 + 0.630629i 0.0930579 + 0.0676105i
\(88\) 2.61251 + 1.89810i 0.278495 + 0.202338i
\(89\) 6.00901 4.36580i 0.636953 0.462774i −0.221849 0.975081i \(-0.571209\pi\)
0.858802 + 0.512307i \(0.171209\pi\)
\(90\) 2.58000 3.05457i 0.271956 0.321980i
\(91\) 0.705856 + 0.512834i 0.0739938 + 0.0537596i
\(92\) 1.99406 + 6.13708i 0.207895 + 0.639835i
\(93\) −10.2163 −1.05938
\(94\) −2.39517 7.37156i −0.247043 0.760319i
\(95\) 0.407975 + 0.166372i 0.0418573 + 0.0170694i
\(96\) −1.73800 + 5.34900i −0.177383 + 0.545930i
\(97\) −5.84338 + 17.9841i −0.593306 + 1.82601i −0.0303195 + 0.999540i \(0.509652\pi\)
−0.562986 + 0.826466i \(0.690348\pi\)
\(98\) −1.46881 + 1.06715i −0.148372 + 0.107799i
\(99\) −2.08802 −0.209854
\(100\) 5.49638 + 0.808806i 0.549638 + 0.0808806i
\(101\) 15.0028 1.49284 0.746420 0.665476i \(-0.231771\pi\)
0.746420 + 0.665476i \(0.231771\pi\)
\(102\) −0.801216 + 0.582117i −0.0793322 + 0.0576382i
\(103\) −0.822546 + 2.53154i −0.0810479 + 0.249440i −0.983367 0.181628i \(-0.941863\pi\)
0.902319 + 0.431068i \(0.141863\pi\)
\(104\) −0.264703 + 0.814672i −0.0259563 + 0.0798852i
\(105\) 3.69935 + 5.96308i 0.361019 + 0.581937i
\(106\) 3.81107 + 11.7293i 0.370164 + 1.13925i
\(107\) −18.4353 −1.78220 −0.891102 0.453803i \(-0.850067\pi\)
−0.891102 + 0.453803i \(0.850067\pi\)
\(108\) −1.76605 5.43535i −0.169938 0.523017i
\(109\) −3.85676 2.80210i −0.369411 0.268393i 0.387556 0.921846i \(-0.373319\pi\)
−0.756967 + 0.653454i \(0.773319\pi\)
\(110\) 1.22355 + 1.97227i 0.116661 + 0.188049i
\(111\) 6.40858 4.65611i 0.608276 0.441938i
\(112\) −1.31291 0.953885i −0.124058 0.0901336i
\(113\) 4.58330 + 3.32996i 0.431160 + 0.313256i 0.782113 0.623137i \(-0.214142\pi\)
−0.350952 + 0.936393i \(0.614142\pi\)
\(114\) −0.157871 + 0.114700i −0.0147860 + 0.0107427i
\(115\) −0.947823 + 12.9516i −0.0883849 + 1.20774i
\(116\) 0.918127 + 0.667058i 0.0852459 + 0.0619348i
\(117\) −0.171156 0.526765i −0.0158234 0.0486995i
\(118\) 5.15896 0.474921
\(119\) 0.923215 + 2.84136i 0.0846310 + 0.260467i
\(120\) −4.44561 + 5.26335i −0.405827 + 0.480476i
\(121\) −3.02464 + 9.30888i −0.274967 + 0.846262i
\(122\) 0.769803 2.36921i 0.0696947 0.214498i
\(123\) 7.87383 5.72067i 0.709960 0.515816i
\(124\) −10.8065 −0.970449
\(125\) 9.62769 + 5.68398i 0.861126 + 0.508391i
\(126\) 5.34216 0.475917
\(127\) −10.8208 + 7.86176i −0.960190 + 0.697619i −0.953195 0.302357i \(-0.902227\pi\)
−0.00699486 + 0.999976i \(0.502227\pi\)
\(128\) −1.52188 + 4.68387i −0.134516 + 0.413999i
\(129\) 2.19072 6.74234i 0.192882 0.593630i
\(130\) −0.397268 + 0.470344i −0.0348427 + 0.0412519i
\(131\) −5.18237 15.9497i −0.452786 1.39353i −0.873715 0.486438i \(-0.838296\pi\)
0.420929 0.907094i \(-0.361704\pi\)
\(132\) 1.28496 0.111841
\(133\) 0.181910 + 0.559861i 0.0157736 + 0.0485461i
\(134\) −1.50022 1.08998i −0.129599 0.0941595i
\(135\) 0.839446 11.4706i 0.0722480 0.987235i
\(136\) −2.37299 + 1.72408i −0.203483 + 0.147839i
\(137\) −12.7264 9.24625i −1.08729 0.789960i −0.108348 0.994113i \(-0.534556\pi\)
−0.978939 + 0.204153i \(0.934556\pi\)
\(138\) −4.65314 3.38071i −0.396102 0.287785i
\(139\) 1.44142 1.04726i 0.122260 0.0888271i −0.524975 0.851118i \(-0.675925\pi\)
0.647235 + 0.762291i \(0.275925\pi\)
\(140\) 3.91305 + 6.30755i 0.330713 + 0.533085i
\(141\) −6.98645 5.07596i −0.588366 0.427473i
\(142\) −3.57435 11.0007i −0.299952 0.923159i
\(143\) 0.321514 0.0268864
\(144\) 0.318355 + 0.979796i 0.0265296 + 0.0816497i
\(145\) 1.20399 + 1.94074i 0.0999857 + 0.161170i
\(146\) 2.55182 7.85369i 0.211190 0.649976i
\(147\) −0.625080 + 1.92380i −0.0515557 + 0.158672i
\(148\) 6.77878 4.92507i 0.557213 0.404839i
\(149\) 17.3523 1.42155 0.710777 0.703417i \(-0.248343\pi\)
0.710777 + 0.703417i \(0.248343\pi\)
\(150\) −4.38713 + 2.29635i −0.358208 + 0.187496i
\(151\) 12.2796 0.999301 0.499650 0.866227i \(-0.333462\pi\)
0.499650 + 0.866227i \(0.333462\pi\)
\(152\) −0.467574 + 0.339712i −0.0379252 + 0.0275543i
\(153\) 0.586078 1.80376i 0.0473816 0.145826i
\(154\) −0.958271 + 2.94925i −0.0772196 + 0.237658i
\(155\) −20.1375 8.21203i −1.61748 0.659606i
\(156\) 0.105329 + 0.324169i 0.00843307 + 0.0259543i
\(157\) 3.26062 0.260225 0.130113 0.991499i \(-0.458466\pi\)
0.130113 + 0.991499i \(0.458466\pi\)
\(158\) −0.842774 2.59379i −0.0670475 0.206351i
\(159\) 11.1165 + 8.07661i 0.881595 + 0.640516i
\(160\) −7.72539 + 9.14644i −0.610746 + 0.723090i
\(161\) −14.0370 + 10.1985i −1.10627 + 0.803754i
\(162\) −0.218763 0.158941i −0.0171876 0.0124875i
\(163\) 6.03600 + 4.38541i 0.472776 + 0.343492i 0.798522 0.601965i \(-0.205615\pi\)
−0.325746 + 0.945457i \(0.605615\pi\)
\(164\) 8.32868 6.05114i 0.650360 0.472515i
\(165\) 2.39448 + 0.976465i 0.186410 + 0.0760177i
\(166\) −0.451067 0.327719i −0.0350096 0.0254359i
\(167\) 3.87712 + 11.9325i 0.300021 + 0.923368i 0.981489 + 0.191520i \(0.0613418\pi\)
−0.681468 + 0.731848i \(0.738658\pi\)
\(168\) −9.20510 −0.710189
\(169\) −3.99087 12.2826i −0.306990 0.944817i
\(170\) −2.04720 + 0.503387i −0.157013 + 0.0386081i
\(171\) 0.115481 0.355412i 0.00883102 0.0271791i
\(172\) 2.31727 7.13182i 0.176690 0.543796i
\(173\) 13.5928 9.87572i 1.03344 0.750837i 0.0644442 0.997921i \(-0.479473\pi\)
0.968994 + 0.247085i \(0.0794725\pi\)
\(174\) −1.01153 −0.0766837
\(175\) 2.49860 + 14.7275i 0.188876 + 1.11329i
\(176\) −0.598024 −0.0450778
\(177\) 4.65014 3.37853i 0.349526 0.253946i
\(178\) −2.16397 + 6.66000i −0.162196 + 0.499188i
\(179\) −1.35029 + 4.15577i −0.100926 + 0.310617i −0.988753 0.149560i \(-0.952214\pi\)
0.887827 + 0.460177i \(0.152214\pi\)
\(180\) 0.343924 4.69956i 0.0256346 0.350284i
\(181\) 0.474695 + 1.46096i 0.0352838 + 0.108592i 0.967147 0.254217i \(-0.0818177\pi\)
−0.931863 + 0.362809i \(0.881818\pi\)
\(182\) −0.822586 −0.0609741
\(183\) −0.857681 2.63967i −0.0634016 0.195130i
\(184\) −13.7814 10.0128i −1.01598 0.738152i
\(185\) 16.3747 4.02638i 1.20389 0.296025i
\(186\) 7.79245 5.66155i 0.571370 0.415125i
\(187\) 0.890676 + 0.647114i 0.0651327 + 0.0473217i
\(188\) −7.39004 5.36918i −0.538974 0.391588i
\(189\) 12.4320 9.03237i 0.904294 0.657008i
\(190\) −0.403379 + 0.0991872i −0.0292642 + 0.00719580i
\(191\) −13.5352 9.83392i −0.979374 0.711557i −0.0218057 0.999762i \(-0.506942\pi\)
−0.957569 + 0.288205i \(0.906942\pi\)
\(192\) −1.99124 6.12841i −0.143705 0.442280i
\(193\) −14.5964 −1.05068 −0.525338 0.850894i \(-0.676061\pi\)
−0.525338 + 0.850894i \(0.676061\pi\)
\(194\) −5.50918 16.9555i −0.395536 1.21734i
\(195\) −0.0500653 + 0.684119i −0.00358525 + 0.0489908i
\(196\) −0.661189 + 2.03493i −0.0472278 + 0.145352i
\(197\) −0.388632 + 1.19609i −0.0276889 + 0.0852176i −0.963946 0.266098i \(-0.914266\pi\)
0.936257 + 0.351316i \(0.114266\pi\)
\(198\) 1.59263 1.15712i 0.113184 0.0822326i
\(199\) −6.04347 −0.428410 −0.214205 0.976789i \(-0.568716\pi\)
−0.214205 + 0.976789i \(0.568716\pi\)
\(200\) −12.9936 + 6.80120i −0.918783 + 0.480918i
\(201\) −2.06606 −0.145729
\(202\) −11.4434 + 8.31410i −0.805153 + 0.584978i
\(203\) −0.942951 + 2.90211i −0.0661822 + 0.203688i
\(204\) −0.360670 + 1.11003i −0.0252520 + 0.0777175i
\(205\) 20.1186 4.94697i 1.40514 0.345511i
\(206\) −0.775503 2.38675i −0.0540318 0.166293i
\(207\) 11.0146 0.765570
\(208\) −0.0490204 0.150869i −0.00339895 0.0104609i
\(209\) 0.175498 + 0.127507i 0.0121395 + 0.00881985i
\(210\) −6.12622 2.49826i −0.422749 0.172397i
\(211\) 2.17852 1.58279i 0.149976 0.108964i −0.510267 0.860016i \(-0.670453\pi\)
0.660243 + 0.751052i \(0.270453\pi\)
\(212\) 11.7587 + 8.54316i 0.807588 + 0.586747i
\(213\) −10.4260 7.57494i −0.714378 0.519026i
\(214\) 14.0614 10.2162i 0.961221 0.698368i
\(215\) 9.73775 11.5290i 0.664109 0.786268i
\(216\) 12.2056 + 8.86788i 0.830486 + 0.603383i
\(217\) −8.97899 27.6345i −0.609534 1.87595i
\(218\) 4.49457 0.304411
\(219\) −2.84313 8.75024i −0.192121 0.591286i
\(220\) 2.53280 + 1.03287i 0.170761 + 0.0696362i
\(221\) −0.0902444 + 0.277744i −0.00607049 + 0.0186831i
\(222\) −2.30786 + 7.10286i −0.154893 + 0.476713i
\(223\) 2.45270 1.78199i 0.164245 0.119331i −0.502627 0.864504i \(-0.667633\pi\)
0.666872 + 0.745173i \(0.267633\pi\)
\(224\) −15.9962 −1.06879
\(225\) 4.21217 8.49610i 0.280811 0.566407i
\(226\) −5.34126 −0.355295
\(227\) 14.0255 10.1901i 0.930906 0.676343i −0.0153085 0.999883i \(-0.504873\pi\)
0.946214 + 0.323540i \(0.104873\pi\)
\(228\) −0.0710662 + 0.218719i −0.00470648 + 0.0144850i
\(229\) −4.89542 + 15.0665i −0.323498 + 0.995626i 0.648615 + 0.761116i \(0.275348\pi\)
−0.972114 + 0.234509i \(0.924652\pi\)
\(230\) −6.45439 10.4040i −0.425590 0.686021i
\(231\) 1.06766 + 3.28593i 0.0702471 + 0.216198i
\(232\) −2.99588 −0.196689
\(233\) 4.27931 + 13.1704i 0.280347 + 0.862820i 0.987755 + 0.156014i \(0.0498645\pi\)
−0.707408 + 0.706806i \(0.750135\pi\)
\(234\) 0.422466 + 0.306939i 0.0276174 + 0.0200652i
\(235\) −9.69094 15.6211i −0.632167 1.01901i
\(236\) 4.91876 3.57369i 0.320184 0.232628i
\(237\) −2.45829 1.78605i −0.159683 0.116016i
\(238\) −2.27877 1.65563i −0.147711 0.107318i
\(239\) −15.1994 + 11.0430i −0.983165 + 0.714311i −0.958414 0.285382i \(-0.907879\pi\)
−0.0247516 + 0.999694i \(0.507879\pi\)
\(240\) 0.0931228 1.27248i 0.00601105 0.0821382i
\(241\) −20.4696 14.8721i −1.31857 0.957994i −0.999949 0.0101100i \(-0.996782\pi\)
−0.318616 0.947884i \(-0.603218\pi\)
\(242\) −2.85165 8.77648i −0.183311 0.564174i
\(243\) −15.7319 −1.00920
\(244\) −0.907226 2.79215i −0.0580792 0.178749i
\(245\) −2.77848 + 3.28957i −0.177511 + 0.210163i
\(246\) −2.83553 + 8.72685i −0.180787 + 0.556404i
\(247\) −0.0177817 + 0.0547265i −0.00113142 + 0.00348216i
\(248\) 23.0792 16.7680i 1.46553 1.06477i
\(249\) −0.621197 −0.0393667
\(250\) −10.4934 + 0.999917i −0.663659 + 0.0632403i
\(251\) −21.2449 −1.34096 −0.670482 0.741926i \(-0.733913\pi\)
−0.670482 + 0.741926i \(0.733913\pi\)
\(252\) 5.09343 3.70059i 0.320856 0.233115i
\(253\) −1.97579 + 6.08087i −0.124217 + 0.382301i
\(254\) 3.89679 11.9931i 0.244506 0.752512i
\(255\) −1.51563 + 1.79442i −0.0949122 + 0.112371i
\(256\) −5.22611 16.0843i −0.326632 1.00527i
\(257\) 5.82085 0.363095 0.181547 0.983382i \(-0.441889\pi\)
0.181547 + 0.983382i \(0.441889\pi\)
\(258\) 2.06543 + 6.35672i 0.128588 + 0.395752i
\(259\) 18.2269 + 13.2426i 1.13257 + 0.822858i
\(260\) −0.0529574 + 0.723638i −0.00328428 + 0.0448782i
\(261\) 1.56717 1.13862i 0.0970055 0.0704786i
\(262\) 12.7917 + 9.29368i 0.790271 + 0.574166i
\(263\) −2.11070 1.53351i −0.130151 0.0945603i 0.520805 0.853676i \(-0.325632\pi\)
−0.650956 + 0.759115i \(0.725632\pi\)
\(264\) −2.74428 + 1.99383i −0.168898 + 0.122712i
\(265\) 15.4197 + 24.8555i 0.947227 + 1.52686i
\(266\) −0.449009 0.326224i −0.0275305 0.0200021i
\(267\) 2.41099 + 7.42028i 0.147550 + 0.454114i
\(268\) −2.18541 −0.133495
\(269\) −0.188821 0.581130i −0.0115126 0.0354321i 0.945135 0.326679i \(-0.105930\pi\)
−0.956648 + 0.291247i \(0.905930\pi\)
\(270\) 5.71638 + 9.21439i 0.347888 + 0.560770i
\(271\) 1.89464 5.83109i 0.115091 0.354213i −0.876875 0.480718i \(-0.840376\pi\)
0.991966 + 0.126505i \(0.0403760\pi\)
\(272\) 0.167857 0.516610i 0.0101778 0.0313241i
\(273\) −0.741455 + 0.538699i −0.0448749 + 0.0326035i
\(274\) 14.8310 0.895972
\(275\) 3.93488 + 3.84944i 0.237282 + 0.232130i
\(276\) −6.77836 −0.408009
\(277\) −2.34270 + 1.70207i −0.140759 + 0.102268i −0.655936 0.754816i \(-0.727726\pi\)
0.515177 + 0.857084i \(0.327726\pi\)
\(278\) −0.519086 + 1.59758i −0.0311327 + 0.0958166i
\(279\) −5.70007 + 17.5430i −0.341254 + 1.05027i
\(280\) −18.1443 7.39921i −1.08433 0.442187i
\(281\) −3.16488 9.74050i −0.188801 0.581070i 0.811192 0.584780i \(-0.198819\pi\)
−0.999993 + 0.00371008i \(0.998819\pi\)
\(282\) 8.14183 0.484839
\(283\) 2.15784 + 6.64115i 0.128270 + 0.394776i 0.994483 0.104900i \(-0.0334524\pi\)
−0.866212 + 0.499676i \(0.833452\pi\)
\(284\) −11.0283 8.01251i −0.654408 0.475455i
\(285\) −0.298638 + 0.353571i −0.0176898 + 0.0209438i
\(286\) −0.245234 + 0.178173i −0.0145010 + 0.0105356i
\(287\) 22.3943 + 16.2704i 1.32190 + 0.960413i
\(288\) 8.21539 + 5.96883i 0.484096 + 0.351716i
\(289\) −0.809017 + 0.587785i −0.0475892 + 0.0345756i
\(290\) −1.99383 0.813083i −0.117082 0.0477459i
\(291\) −16.0697 11.6753i −0.942024 0.684420i
\(292\) −3.00736 9.25571i −0.175993 0.541650i
\(293\) −0.508765 −0.0297223 −0.0148612 0.999890i \(-0.504731\pi\)
−0.0148612 + 0.999890i \(0.504731\pi\)
\(294\) −0.589330 1.81377i −0.0343704 0.105781i
\(295\) 11.8817 2.92159i 0.691777 0.170101i
\(296\) −6.83529 + 21.0368i −0.397293 + 1.22274i
\(297\) 1.74987 5.38556i 0.101538 0.312502i
\(298\) −13.2354 + 9.61609i −0.766707 + 0.557045i
\(299\) −1.69603 −0.0980842
\(300\) −2.59215 + 5.22847i −0.149658 + 0.301866i
\(301\) 20.1630 1.16218
\(302\) −9.36624 + 6.80497i −0.538967 + 0.391582i
\(303\) −4.86996 + 14.9882i −0.279772 + 0.861049i
\(304\) 0.0330744 0.101793i 0.00189695 0.00583821i
\(305\) 0.431226 5.89250i 0.0246919 0.337404i
\(306\) 0.552559 + 1.70060i 0.0315877 + 0.0972168i
\(307\) 2.58902 0.147763 0.0738817 0.997267i \(-0.476461\pi\)
0.0738817 + 0.997267i \(0.476461\pi\)
\(308\) 1.12934 + 3.47575i 0.0643500 + 0.198049i
\(309\) −2.26206 1.64348i −0.128684 0.0934945i
\(310\) 19.9106 4.89584i 1.13085 0.278065i
\(311\) −9.84996 + 7.15642i −0.558540 + 0.405803i −0.830924 0.556385i \(-0.812188\pi\)
0.272384 + 0.962189i \(0.412188\pi\)
\(312\) −0.727953 0.528889i −0.0412122 0.0299424i
\(313\) 12.1701 + 8.84213i 0.687897 + 0.499787i 0.875968 0.482369i \(-0.160223\pi\)
−0.188071 + 0.982155i \(0.560223\pi\)
\(314\) −2.48702 + 1.80693i −0.140351 + 0.101971i
\(315\) 12.3036 3.02533i 0.693227 0.170458i
\(316\) −2.60029 1.88922i −0.146278 0.106277i
\(317\) 4.56111 + 14.0376i 0.256177 + 0.788433i 0.993595 + 0.112996i \(0.0360448\pi\)
−0.737418 + 0.675437i \(0.763955\pi\)
\(318\) −12.9549 −0.726473
\(319\) 0.347481 + 1.06944i 0.0194552 + 0.0598769i
\(320\) 1.00116 13.6804i 0.0559664 0.764755i
\(321\) 5.98412 18.4172i 0.334001 1.02795i
\(322\) 5.05502 15.5577i 0.281705 0.866999i
\(323\) −0.159408 + 0.115817i −0.00886972 + 0.00644423i
\(324\) −0.318678 −0.0177043
\(325\) −0.648590 + 1.30823i −0.0359773 + 0.0725676i
\(326\) −7.03420 −0.389588
\(327\) 4.05127 2.94342i 0.224036 0.162772i
\(328\) −8.39810 + 25.8467i −0.463707 + 1.42714i
\(329\) 7.58985 23.3592i 0.418442 1.28783i
\(330\) −2.36751 + 0.582148i −0.130327 + 0.0320462i
\(331\) 3.21481 + 9.89416i 0.176702 + 0.543832i 0.999707 0.0242015i \(-0.00770432\pi\)
−0.823005 + 0.568034i \(0.807704\pi\)
\(332\) −0.657081 −0.0360620
\(333\) −4.41968 13.6024i −0.242197 0.745405i
\(334\) −9.56990 6.95294i −0.523642 0.380448i
\(335\) −4.07244 1.66074i −0.222501 0.0907357i
\(336\) 1.37913 1.00199i 0.0752375 0.0546632i
\(337\) 9.06632 + 6.58707i 0.493874 + 0.358821i 0.806672 0.590999i \(-0.201266\pi\)
−0.312798 + 0.949820i \(0.601266\pi\)
\(338\) 9.85066 + 7.15692i 0.535805 + 0.389285i
\(339\) −4.81445 + 3.49790i −0.261485 + 0.189980i
\(340\) −1.60318 + 1.89808i −0.0869446 + 0.102938i
\(341\) −8.66253 6.29369i −0.469102 0.340823i
\(342\) 0.108876 + 0.335085i 0.00588733 + 0.0181193i
\(343\) 15.1600 0.818562
\(344\) 6.11725 + 18.8270i 0.329820 + 1.01508i
\(345\) −12.6312 5.15100i −0.680043 0.277320i
\(346\) −4.89503 + 15.0653i −0.263158 + 0.809918i
\(347\) 4.33171 13.3316i 0.232539 0.715680i −0.764900 0.644149i \(-0.777212\pi\)
0.997438 0.0715309i \(-0.0227885\pi\)
\(348\) −0.964432 + 0.700701i −0.0516990 + 0.0375615i
\(349\) 4.62104 0.247359 0.123679 0.992322i \(-0.460531\pi\)
0.123679 + 0.992322i \(0.460531\pi\)
\(350\) −10.0673 9.84871i −0.538120 0.526435i
\(351\) 1.50210 0.0801764
\(352\) −4.76889 + 3.46480i −0.254183 + 0.184674i
\(353\) −8.79972 + 27.0827i −0.468362 + 1.44147i 0.386343 + 0.922355i \(0.373738\pi\)
−0.854705 + 0.519114i \(0.826262\pi\)
\(354\) −1.67461 + 5.15392i −0.0890045 + 0.273928i
\(355\) −14.4620 23.3116i −0.767561 1.23725i
\(356\) 2.55027 + 7.84892i 0.135164 + 0.415992i
\(357\) −3.13826 −0.166095
\(358\) −1.27307 3.91809i −0.0672836 0.207078i
\(359\) 21.2494 + 15.4386i 1.12150 + 0.814816i 0.984435 0.175746i \(-0.0562339\pi\)
0.137062 + 0.990562i \(0.456234\pi\)
\(360\) 6.55764 + 10.5704i 0.345618 + 0.557111i
\(361\) 15.3399 11.1451i 0.807364 0.586584i
\(362\) −1.17169 0.851283i −0.0615827 0.0447424i
\(363\) −8.31798 6.04336i −0.436581 0.317194i
\(364\) −0.784287 + 0.569818i −0.0411078 + 0.0298666i
\(365\) 1.42947 19.5330i 0.0748219 1.02241i
\(366\) 2.11701 + 1.53810i 0.110658 + 0.0803978i
\(367\) 5.19225 + 15.9801i 0.271033 + 0.834154i 0.990242 + 0.139360i \(0.0445046\pi\)
−0.719209 + 0.694794i \(0.755495\pi\)
\(368\) 3.15467 0.164448
\(369\) −5.43019 16.7124i −0.282684 0.870013i
\(370\) −10.2584 + 12.1454i −0.533311 + 0.631411i
\(371\) −12.0766 + 37.1679i −0.626985 + 1.92966i
\(372\) 3.50780 10.7959i 0.181871 0.559741i
\(373\) 15.8009 11.4800i 0.818138 0.594412i −0.0980405 0.995182i \(-0.531257\pi\)
0.916179 + 0.400770i \(0.131257\pi\)
\(374\) −1.03797 −0.0536722
\(375\) −8.80359 + 7.77324i −0.454616 + 0.401408i
\(376\) 24.1140 1.24358
\(377\) −0.241313 + 0.175324i −0.0124283 + 0.00902967i
\(378\) −4.47701 + 13.7788i −0.230273 + 0.708707i
\(379\) −8.95418 + 27.5581i −0.459945 + 1.41557i 0.405285 + 0.914191i \(0.367172\pi\)
−0.865230 + 0.501375i \(0.832828\pi\)
\(380\) −0.315890 + 0.373996i −0.0162048 + 0.0191856i
\(381\) −4.34163 13.3622i −0.222428 0.684564i
\(382\) 15.7736 0.807047
\(383\) 7.96971 + 24.5283i 0.407233 + 1.25334i 0.919016 + 0.394220i \(0.128985\pi\)
−0.511783 + 0.859115i \(0.671015\pi\)
\(384\) −4.18528 3.04078i −0.213579 0.155174i
\(385\) −0.536801 + 7.33513i −0.0273579 + 0.373833i
\(386\) 11.1334 8.08889i 0.566675 0.411714i
\(387\) −10.3554 7.52362i −0.526393 0.382447i
\(388\) −16.9980 12.3498i −0.862944 0.626965i
\(389\) −3.14553 + 2.28536i −0.159485 + 0.115873i −0.664665 0.747141i \(-0.731426\pi\)
0.505181 + 0.863014i \(0.331426\pi\)
\(390\) −0.340930 0.549555i −0.0172637 0.0278278i
\(391\) −4.69845 3.41362i −0.237611 0.172634i
\(392\) −1.74544 5.37192i −0.0881581 0.271323i
\(393\) 17.6163 0.888626
\(394\) −0.366405 1.12768i −0.0184592 0.0568116i
\(395\) −3.40990 5.49651i −0.171571 0.276560i
\(396\) 0.716929 2.20648i 0.0360271 0.110880i
\(397\) −4.70748 + 14.4881i −0.236262 + 0.727139i 0.760690 + 0.649116i \(0.224861\pi\)
−0.996952 + 0.0780234i \(0.975139\pi\)
\(398\) 4.60964 3.34910i 0.231060 0.167875i
\(399\) −0.618362 −0.0309568
\(400\) 1.20639 2.43334i 0.0603197 0.121667i
\(401\) 20.8713 1.04226 0.521130 0.853477i \(-0.325511\pi\)
0.521130 + 0.853477i \(0.325511\pi\)
\(402\) 1.57588 1.14495i 0.0785980 0.0571048i
\(403\) 0.877697 2.70127i 0.0437212 0.134560i
\(404\) −5.15128 + 15.8540i −0.256286 + 0.788766i
\(405\) −0.593845 0.242169i −0.0295084 0.0120335i
\(406\) −0.889021 2.73613i −0.0441214 0.135792i
\(407\) 8.30228 0.411529
\(408\) −0.952117 2.93031i −0.0471368 0.145072i
\(409\) 27.2884 + 19.8262i 1.34933 + 0.980343i 0.999045 + 0.0436984i \(0.0139140\pi\)
0.350281 + 0.936645i \(0.386086\pi\)
\(410\) −12.6039 + 14.9224i −0.622464 + 0.736963i
\(411\) 13.3682 9.71257i 0.659405 0.479086i
\(412\) −2.39273 1.73842i −0.117882 0.0856459i
\(413\) 13.2257 + 9.60902i 0.650793 + 0.472829i
\(414\) −8.40138 + 6.10396i −0.412905 + 0.299993i
\(415\) −1.22445 0.499328i −0.0601057 0.0245110i
\(416\) −1.26501 0.919081i −0.0620220 0.0450616i
\(417\) 0.578343 + 1.77996i 0.0283216 + 0.0871648i
\(418\) −0.204521 −0.0100035
\(419\) 5.37823 + 16.5525i 0.262744 + 0.808642i 0.992205 + 0.124620i \(0.0397710\pi\)
−0.729461 + 0.684023i \(0.760229\pi\)
\(420\) −7.57157 + 1.86178i −0.369455 + 0.0908454i
\(421\) 5.24682 16.1481i 0.255714 0.787008i −0.737974 0.674830i \(-0.764217\pi\)
0.993688 0.112179i \(-0.0357829\pi\)
\(422\) −0.784531 + 2.41454i −0.0381904 + 0.117538i
\(423\) −12.6142 + 9.16478i −0.613325 + 0.445607i
\(424\) −38.3690 −1.86336
\(425\) −4.42985 + 2.31871i −0.214879 + 0.112474i
\(426\) 12.1502 0.588679
\(427\) 6.38635 4.63995i 0.309057 0.224543i
\(428\) 6.32981 19.4811i 0.305963 0.941657i
\(429\) −0.104364 + 0.321200i −0.00503875 + 0.0155077i
\(430\) −1.03846 + 14.1900i −0.0500789 + 0.684304i
\(431\) −4.85539 14.9433i −0.233876 0.719796i −0.997269 0.0738611i \(-0.976468\pi\)
0.763393 0.645935i \(-0.223532\pi\)
\(432\) −2.79395 −0.134424
\(433\) −3.06895 9.44525i −0.147484 0.453910i 0.849838 0.527044i \(-0.176700\pi\)
−0.997322 + 0.0731344i \(0.976700\pi\)
\(434\) 22.1629 + 16.1023i 1.06385 + 0.772933i
\(435\) −2.32966 + 0.572841i −0.111699 + 0.0274656i
\(436\) 4.28530 3.11345i 0.205229 0.149107i
\(437\) −0.925780 0.672619i −0.0442861 0.0321757i
\(438\) 7.01769 + 5.09865i 0.335318 + 0.243623i
\(439\) −0.520103 + 0.377877i −0.0248232 + 0.0180351i −0.600128 0.799904i \(-0.704884\pi\)
0.575304 + 0.817939i \(0.304884\pi\)
\(440\) −7.01195 + 1.72417i −0.334281 + 0.0821967i
\(441\) 2.95471 + 2.14672i 0.140700 + 0.102225i
\(442\) −0.0850830 0.261859i −0.00404699 0.0124553i
\(443\) −9.12289 −0.433442 −0.216721 0.976234i \(-0.569536\pi\)
−0.216721 + 0.976234i \(0.569536\pi\)
\(444\) 2.71985 + 8.37085i 0.129079 + 0.397263i
\(445\) −1.21220 + 16.5642i −0.0574639 + 0.785218i
\(446\) −0.883266 + 2.71841i −0.0418239 + 0.128721i
\(447\) −5.63259 + 17.3353i −0.266412 + 0.819933i
\(448\) 14.8269 10.7724i 0.700506 0.508947i
\(449\) −11.1964 −0.528391 −0.264195 0.964469i \(-0.585106\pi\)
−0.264195 + 0.964469i \(0.585106\pi\)
\(450\) 1.49545 + 8.81463i 0.0704962 + 0.415526i
\(451\) 10.2005 0.480323
\(452\) −5.09257 + 3.69997i −0.239534 + 0.174032i
\(453\) −3.98599 + 12.2676i −0.187278 + 0.576383i
\(454\) −5.05087 + 15.5450i −0.237049 + 0.729562i
\(455\) −1.89451 + 0.465841i −0.0888158 + 0.0218390i
\(456\) −0.187605 0.577388i −0.00878539 0.0270387i
\(457\) −25.2963 −1.18331 −0.591655 0.806192i \(-0.701525\pi\)
−0.591655 + 0.806192i \(0.701525\pi\)
\(458\) −4.61544 14.2049i −0.215665 0.663749i
\(459\) 4.16121 + 3.02330i 0.194229 + 0.141116i
\(460\) −13.3609 5.44855i −0.622955 0.254040i
\(461\) −9.09821 + 6.61024i −0.423746 + 0.307869i −0.779143 0.626846i \(-0.784346\pi\)
0.355397 + 0.934715i \(0.384346\pi\)
\(462\) −2.63531 1.91467i −0.122606 0.0890784i
\(463\) 18.0948 + 13.1466i 0.840936 + 0.610976i 0.922632 0.385681i \(-0.126034\pi\)
−0.0816958 + 0.996657i \(0.526034\pi\)
\(464\) 0.448849 0.326108i 0.0208373 0.0151392i
\(465\) 14.7407 17.4521i 0.683582 0.809323i
\(466\) −10.5626 7.67420i −0.489305 0.355501i
\(467\) 1.07567 + 3.31056i 0.0497759 + 0.153195i 0.972855 0.231416i \(-0.0743358\pi\)
−0.923079 + 0.384610i \(0.874336\pi\)
\(468\) 0.615417 0.0284477
\(469\) −1.81584 5.58859i −0.0838478 0.258057i
\(470\) 16.0485 + 6.54454i 0.740260 + 0.301877i
\(471\) −1.05840 + 3.25743i −0.0487686 + 0.150094i
\(472\) −4.95976 + 15.2646i −0.228292 + 0.702609i
\(473\) 6.01112 4.36733i 0.276391 0.200810i
\(474\) 2.86482 0.131586
\(475\) −0.872856 + 0.456878i −0.0400494 + 0.0209630i
\(476\) −3.31955 −0.152151
\(477\) 20.0711 14.5825i 0.918994 0.667688i
\(478\) 5.47360 16.8460i 0.250357 0.770519i
\(479\) 2.97186 9.14643i 0.135788 0.417911i −0.859924 0.510422i \(-0.829489\pi\)
0.995712 + 0.0925108i \(0.0294893\pi\)
\(480\) −6.62982 10.6868i −0.302609 0.487783i
\(481\) 0.680543 + 2.09450i 0.0310301 + 0.0955008i
\(482\) 23.8548 1.08656
\(483\) −5.63208 17.3338i −0.256268 0.788713i
\(484\) −8.79848 6.39247i −0.399931 0.290567i
\(485\) −22.2904 35.9305i −1.01215 1.63152i
\(486\) 11.9995 8.71812i 0.544307 0.395462i
\(487\) −6.71041 4.87540i −0.304078 0.220925i 0.425274 0.905065i \(-0.360178\pi\)
−0.729351 + 0.684140i \(0.760178\pi\)
\(488\) 6.27005 + 4.55546i 0.283832 + 0.206216i
\(489\) −6.34042 + 4.60659i −0.286724 + 0.208317i
\(490\) 0.296304 4.04886i 0.0133856 0.182909i
\(491\) 14.9225 + 10.8418i 0.673443 + 0.489285i 0.871176 0.490971i \(-0.163358\pi\)
−0.197733 + 0.980256i \(0.563358\pi\)
\(492\) 3.34172 + 10.2847i 0.150656 + 0.463672i
\(493\) −1.02138 −0.0460005
\(494\) −0.0167647 0.0515965i −0.000754281 0.00232144i
\(495\) 3.01272 3.56689i 0.135412 0.160320i
\(496\) −1.63254 + 5.02444i −0.0733032 + 0.225604i
\(497\) 11.3265 34.8593i 0.508061 1.56365i
\(498\) 0.473816 0.344247i 0.0212322 0.0154261i
\(499\) −29.9613 −1.34125 −0.670625 0.741796i \(-0.733974\pi\)
−0.670625 + 0.741796i \(0.733974\pi\)
\(500\) −9.31215 + 8.22228i −0.416452 + 0.367711i
\(501\) −13.1794 −0.588812
\(502\) 16.2045 11.7732i 0.723240 0.525465i
\(503\) −11.8704 + 36.5333i −0.529274 + 1.62894i 0.226432 + 0.974027i \(0.427294\pi\)
−0.755706 + 0.654911i \(0.772706\pi\)
\(504\) −5.13588 + 15.8066i −0.228770 + 0.704083i
\(505\) −21.6470 + 25.6288i −0.963277 + 1.14047i
\(506\) −1.86279 5.73308i −0.0828112 0.254867i
\(507\) 13.5661 0.602490
\(508\) −4.59243 14.1340i −0.203756 0.627097i
\(509\) −7.44262 5.40738i −0.329888 0.239678i 0.410495 0.911863i \(-0.365356\pi\)
−0.740383 + 0.672185i \(0.765356\pi\)
\(510\) 0.161630 2.20860i 0.00715710 0.0977984i
\(511\) 21.1701 15.3810i 0.936510 0.680415i
\(512\) 4.93094 + 3.58254i 0.217919 + 0.158327i
\(513\) 0.819924 + 0.595709i 0.0362005 + 0.0263012i
\(514\) −4.43984 + 3.22573i −0.195833 + 0.142281i
\(515\) −3.13772 5.05777i −0.138264 0.222872i
\(516\) 6.37266 + 4.63001i 0.280541 + 0.203825i
\(517\) −2.79689 8.60793i −0.123007 0.378576i
\(518\) −21.2412 −0.933285
\(519\) 5.45382 + 16.7851i 0.239396 + 0.736786i
\(520\) −1.00975 1.62764i −0.0442803 0.0713767i
\(521\) −4.06407 + 12.5079i −0.178050 + 0.547982i −0.999760 0.0219248i \(-0.993021\pi\)
0.821710 + 0.569906i \(0.193021\pi\)
\(522\) −0.564371 + 1.73695i −0.0247018 + 0.0760244i
\(523\) 31.0434 22.5544i 1.35743 0.986234i 0.358831 0.933402i \(-0.383175\pi\)
0.998603 0.0528318i \(-0.0168247\pi\)
\(524\) 18.6340 0.814028
\(525\) −15.5241 2.28442i −0.677529 0.0997001i
\(526\) 2.45975 0.107250
\(527\) 7.86833 5.71667i 0.342750 0.249022i
\(528\) 0.194120 0.597440i 0.00844798 0.0260002i
\(529\) 3.31521 10.2032i 0.144139 0.443616i
\(530\) −25.5355 10.4133i −1.10919 0.452326i
\(531\) −3.20697 9.87004i −0.139171 0.428323i
\(532\) −0.654083 −0.0283581
\(533\) 0.836141 + 2.57338i 0.0362173 + 0.111465i
\(534\) −5.95106 4.32370i −0.257528 0.187105i
\(535\) 26.5995 31.4923i 1.14999 1.36153i
\(536\) 4.66736 3.39104i 0.201599 0.146471i
\(537\) −3.71340 2.69794i −0.160245 0.116425i
\(538\) 0.466066 + 0.338617i 0.0200935 + 0.0145988i
\(539\) −1.71516 + 1.24613i −0.0738771 + 0.0536748i
\(540\) 11.8332 + 4.82555i 0.509219 + 0.207659i
\(541\) −2.77792 2.01827i −0.119432 0.0867724i 0.526466 0.850196i \(-0.323517\pi\)
−0.645898 + 0.763424i \(0.723517\pi\)
\(542\) 1.78628 + 5.49759i 0.0767271 + 0.236142i
\(543\) −1.61362 −0.0692470
\(544\) −1.65455 5.09218i −0.0709382 0.218325i
\(545\) 10.3515 2.54533i 0.443409 0.109030i
\(546\) 0.267013 0.821782i 0.0114271 0.0351690i
\(547\) −0.131849 + 0.405791i −0.00563747 + 0.0173504i −0.953836 0.300329i \(-0.902904\pi\)
0.948198 + 0.317679i \(0.102904\pi\)
\(548\) 14.1404 10.2736i 0.604050 0.438868i
\(549\) −5.01126 −0.213876
\(550\) −5.13456 0.755563i −0.218938 0.0322173i
\(551\) −0.201252 −0.00857361
\(552\) 14.4765 10.5178i 0.616159 0.447666i
\(553\) 2.67060 8.21927i 0.113566 0.349519i
\(554\) 0.843654 2.59650i 0.0358434 0.110315i
\(555\) −1.29281 + 17.6656i −0.0548767 + 0.749865i
\(556\) 0.611752 + 1.88278i 0.0259440 + 0.0798476i
\(557\) −29.6009 −1.25423 −0.627115 0.778927i \(-0.715764\pi\)
−0.627115 + 0.778927i \(0.715764\pi\)
\(558\) −5.37407 16.5397i −0.227502 0.700180i
\(559\) 1.59452 + 1.15849i 0.0674411 + 0.0489988i
\(560\) 3.52383 0.866476i 0.148909 0.0366153i
\(561\) −0.935597 + 0.679751i −0.0395009 + 0.0286991i
\(562\) 7.81188 + 5.67566i 0.329524 + 0.239413i
\(563\) 5.35336 + 3.88944i 0.225617 + 0.163920i 0.694852 0.719153i \(-0.255470\pi\)
−0.469234 + 0.883074i \(0.655470\pi\)
\(564\) 7.76275 5.63997i 0.326871 0.237486i
\(565\) −12.3015 + 3.02482i −0.517528 + 0.127255i
\(566\) −5.32620 3.86971i −0.223877 0.162656i
\(567\) −0.264787 0.814929i −0.0111200 0.0342238i
\(568\) 35.9857 1.50993
\(569\) 6.86753 + 21.1361i 0.287902 + 0.886071i 0.985514 + 0.169595i \(0.0542461\pi\)
−0.697612 + 0.716476i \(0.745754\pi\)
\(570\) 0.0318475 0.435181i 0.00133395 0.0182277i
\(571\) 13.6249 41.9330i 0.570183 1.75484i −0.0818437 0.996645i \(-0.526081\pi\)
0.652026 0.758196i \(-0.273919\pi\)
\(572\) −0.110393 + 0.339754i −0.00461576 + 0.0142058i
\(573\) 14.2179 10.3299i 0.593960 0.431537i
\(574\) −26.0978 −1.08930
\(575\) −20.7571 20.3064i −0.865631 0.846834i
\(576\) −11.6344 −0.484768
\(577\) −5.37974 + 3.90861i −0.223962 + 0.162718i −0.694108 0.719871i \(-0.744201\pi\)
0.470147 + 0.882588i \(0.344201\pi\)
\(578\) 0.291343 0.896663i 0.0121183 0.0372963i
\(579\) 4.73804 14.5822i 0.196906 0.606015i
\(580\) −2.46424 + 0.605933i −0.102322 + 0.0251600i
\(581\) −0.545963 1.68030i −0.0226504 0.0697106i
\(582\) 18.7272 0.776269
\(583\) 4.45027 + 13.6965i 0.184311 + 0.567251i
\(584\) 20.7846 + 15.1009i 0.860072 + 0.624879i
\(585\) 1.14681 + 0.467667i 0.0474147 + 0.0193356i
\(586\) 0.388059 0.281941i 0.0160306 0.0116469i
\(587\) 14.8192 + 10.7668i 0.611653 + 0.444392i 0.849996 0.526789i \(-0.176604\pi\)
−0.238343 + 0.971181i \(0.576604\pi\)
\(588\) −1.81832 1.32108i −0.0749861 0.0544806i
\(589\) 1.55037 1.12641i 0.0638819 0.0464129i
\(590\) −7.44365 + 8.81287i −0.306450 + 0.362820i
\(591\) −1.06877 0.776504i −0.0439632 0.0319411i
\(592\) −1.26583 3.89581i −0.0520252 0.160117i
\(593\) −12.2313 −0.502279 −0.251140 0.967951i \(-0.580805\pi\)
−0.251140 + 0.967951i \(0.580805\pi\)
\(594\) 1.64979 + 5.07755i 0.0676919 + 0.208334i
\(595\) −6.18587 2.52259i −0.253596 0.103416i
\(596\) −5.95796 + 18.3367i −0.244048 + 0.751102i
\(597\) 1.96172 6.03756i 0.0802879 0.247101i
\(598\) 1.29365 0.939888i 0.0529011 0.0384349i
\(599\) −5.63970 −0.230432 −0.115216 0.993340i \(-0.536756\pi\)
−0.115216 + 0.993340i \(0.536756\pi\)
\(600\) −2.57682 15.1885i −0.105198 0.620069i
\(601\) 17.9321 0.731465 0.365733 0.930720i \(-0.380818\pi\)
0.365733 + 0.930720i \(0.380818\pi\)
\(602\) −15.3793 + 11.1737i −0.626813 + 0.455407i
\(603\) −1.15274 + 3.54776i −0.0469431 + 0.144476i
\(604\) −4.21625 + 12.9763i −0.171557 + 0.527997i
\(605\) −11.5379 18.5983i −0.469082 0.756127i
\(606\) −4.59143 14.1310i −0.186514 0.574031i
\(607\) −29.7932 −1.20927 −0.604634 0.796503i \(-0.706681\pi\)
−0.604634 + 0.796503i \(0.706681\pi\)
\(608\) −0.326012 1.00336i −0.0132215 0.0406916i
\(609\) −2.59318 1.88406i −0.105081 0.0763459i
\(610\) 2.93652 + 4.73346i 0.118896 + 0.191652i
\(611\) 1.94234 1.41119i 0.0785787 0.0570908i
\(612\) 1.70486 + 1.23866i 0.0689150 + 0.0500697i
\(613\) 11.2019 + 8.13864i 0.452440 + 0.328717i 0.790558 0.612387i \(-0.209790\pi\)
−0.338119 + 0.941104i \(0.609790\pi\)
\(614\) −1.97477 + 1.43475i −0.0796953 + 0.0579020i
\(615\) −1.58840 + 21.7047i −0.0640503 + 0.875218i
\(616\) −7.80512 5.67075i −0.314477 0.228481i
\(617\) −0.685798 2.11067i −0.0276092 0.0849724i 0.936302 0.351195i \(-0.114224\pi\)
−0.963912 + 0.266222i \(0.914224\pi\)
\(618\) 2.63615 0.106041
\(619\) 9.41170 + 28.9662i 0.378288 + 1.16425i 0.941233 + 0.337757i \(0.109668\pi\)
−0.562945 + 0.826494i \(0.690332\pi\)
\(620\) 15.5922 18.4603i 0.626197 0.741383i
\(621\) −9.23085 + 28.4096i −0.370421 + 1.14004i
\(622\) 3.54717 10.9171i 0.142229 0.437735i
\(623\) −17.9524 + 13.0432i −0.719249 + 0.522565i
\(624\) 0.166634 0.00667069
\(625\) −23.6011 + 8.24545i −0.944045 + 0.329818i
\(626\) −14.1828 −0.566858
\(627\) −0.184350 + 0.133938i −0.00736221 + 0.00534896i
\(628\) −1.11954 + 3.44560i −0.0446746 + 0.137494i
\(629\) −2.33033 + 7.17202i −0.0929164 + 0.285967i
\(630\) −7.70797 + 9.12581i −0.307093 + 0.363581i
\(631\) 2.89503 + 8.90998i 0.115249 + 0.354701i 0.991999 0.126246i \(-0.0402930\pi\)
−0.876750 + 0.480947i \(0.840293\pi\)
\(632\) 8.48486 0.337510
\(633\) 0.874090 + 2.69017i 0.0347420 + 0.106925i
\(634\) −11.2582 8.17955i −0.447120 0.324852i
\(635\) 2.18289 29.8282i 0.0866253 1.18369i
\(636\) −12.3517 + 8.97403i −0.489777 + 0.355844i
\(637\) −0.454967 0.330553i −0.0180264 0.0130970i
\(638\) −0.857687 0.623146i −0.0339562 0.0246706i
\(639\) −18.8244 + 13.6768i −0.744683 + 0.541044i
\(640\) −5.80542 9.35792i −0.229479 0.369904i
\(641\) −30.3011 22.0150i −1.19682 0.869542i −0.202853 0.979209i \(-0.565021\pi\)
−0.993968 + 0.109668i \(0.965021\pi\)
\(642\) 5.64188 + 17.3639i 0.222667 + 0.685299i
\(643\) −33.8632 −1.33543 −0.667717 0.744415i \(-0.732728\pi\)
−0.667717 + 0.744415i \(0.732728\pi\)
\(644\) −5.95743 18.3351i −0.234755 0.722503i
\(645\) 8.35679 + 13.4706i 0.329048 + 0.530402i
\(646\) 0.0574062 0.176678i 0.00225862 0.00695131i
\(647\) −2.80429 + 8.63073i −0.110248 + 0.339309i −0.990926 0.134406i \(-0.957087\pi\)
0.880678 + 0.473715i \(0.157087\pi\)
\(648\) 0.680596 0.494482i 0.0267363 0.0194251i
\(649\) 6.02423 0.236472
\(650\) −0.230270 1.35728i −0.00903192 0.0532368i
\(651\) 30.5221 1.19625
\(652\) −6.70669 + 4.87269i −0.262654 + 0.190829i
\(653\) 8.31105 25.5788i 0.325237 1.00098i −0.646097 0.763255i \(-0.723600\pi\)
0.971334 0.237720i \(-0.0764001\pi\)
\(654\) −1.45895 + 4.49017i −0.0570493 + 0.175580i
\(655\) 34.7237 + 14.1603i 1.35677 + 0.553288i
\(656\) −1.55524 4.78655i −0.0607221 0.186883i
\(657\) −16.6118 −0.648090
\(658\) 7.15577 + 22.0232i 0.278961 + 0.858553i
\(659\) −38.0659 27.6565i −1.48284 1.07734i −0.976628 0.214935i \(-0.931046\pi\)
−0.506210 0.862410i \(-0.668954\pi\)
\(660\) −1.85401 + 2.19505i −0.0721674 + 0.0854423i
\(661\) 25.1546 18.2759i 0.978401 0.710850i 0.0210501 0.999778i \(-0.493299\pi\)
0.957351 + 0.288929i \(0.0932990\pi\)
\(662\) −7.93511 5.76520i −0.308407 0.224071i
\(663\) −0.248179 0.180312i −0.00963846 0.00700275i
\(664\) 1.40332 1.01957i 0.0544594 0.0395671i
\(665\) −1.21886 0.497050i −0.0472654 0.0192748i
\(666\) 10.9091 + 7.92593i 0.422719 + 0.307123i
\(667\) −1.83301 5.64143i −0.0709745 0.218437i
\(668\) −13.9407 −0.539383
\(669\) 0.984096 + 3.02874i 0.0380474 + 0.117098i
\(670\) 4.02657 0.990096i 0.155560 0.0382508i
\(671\) 0.898916 2.76658i 0.0347023 0.106803i
\(672\) 5.19241 15.9806i 0.200302 0.616465i
\(673\) −35.6286 + 25.8857i −1.37338 + 0.997821i −0.375918 + 0.926653i \(0.622673\pi\)
−0.997464 + 0.0711681i \(0.977327\pi\)
\(674\) −10.5657 −0.406974
\(675\) 18.3837 + 17.9845i 0.707588 + 0.692223i
\(676\) 14.3497 0.551913
\(677\) 18.7237 13.6036i 0.719611 0.522828i −0.166649 0.986016i \(-0.553295\pi\)
0.886260 + 0.463188i \(0.153295\pi\)
\(678\) 1.73378 5.33603i 0.0665855 0.204929i
\(679\) 17.4576 53.7290i 0.669962 2.06193i
\(680\) 0.478706 6.54130i 0.0183576 0.250847i
\(681\) 5.62746 + 17.3195i 0.215645 + 0.663686i
\(682\) 10.0951 0.386561
\(683\) 14.1788 + 43.6378i 0.542535 + 1.66975i 0.726779 + 0.686872i \(0.241017\pi\)
−0.184243 + 0.982881i \(0.558983\pi\)
\(684\) 0.335925 + 0.244064i 0.0128444 + 0.00933202i
\(685\) 34.1573 8.39897i 1.30509 0.320908i
\(686\) −11.5632 + 8.40118i −0.441486 + 0.320758i
\(687\) −13.4628 9.78127i −0.513636 0.373179i
\(688\) −2.96585 2.15482i −0.113072 0.0821516i
\(689\) −3.09056 + 2.24542i −0.117741 + 0.0855437i
\(690\) 12.4890 3.07092i 0.475446 0.116908i
\(691\) −38.9330 28.2864i −1.48108 1.07607i −0.977207 0.212289i \(-0.931908\pi\)
−0.503873 0.863778i \(-0.668092\pi\)
\(692\) 5.76887 + 17.7548i 0.219300 + 0.674935i
\(693\) 6.23815 0.236968
\(694\) 4.08397 + 12.5692i 0.155025 + 0.477119i
\(695\) −0.290780 + 3.97337i −0.0110299 + 0.150719i
\(696\) 0.972470 2.99296i 0.0368614 0.113448i
\(697\) −2.86314 + 8.81183i −0.108449 + 0.333772i
\(698\) −3.52468 + 2.56083i −0.133411 + 0.0969290i
\(699\) −14.5466 −0.550202
\(700\) −16.4209 2.41638i −0.620653 0.0913305i
\(701\) −48.7471 −1.84115 −0.920577 0.390562i \(-0.872281\pi\)
−0.920577 + 0.390562i \(0.872281\pi\)
\(702\) −1.14573 + 0.832419i −0.0432426 + 0.0314176i
\(703\) −0.459167 + 1.41317i −0.0173178 + 0.0532988i
\(704\) 2.08697 6.42304i 0.0786558 0.242078i
\(705\) 18.7515 4.61083i 0.706223 0.173654i
\(706\) −8.29644 25.5338i −0.312241 0.960978i
\(707\) −44.8223 −1.68572
\(708\) 1.97356 + 6.07398i 0.0741708 + 0.228274i
\(709\) −30.4383 22.1147i −1.14313 0.830535i −0.155581 0.987823i \(-0.549725\pi\)
−0.987553 + 0.157288i \(0.949725\pi\)
\(710\) 23.9494 + 9.76652i 0.898804 + 0.366531i
\(711\) −4.43850 + 3.22476i −0.166457 + 0.120938i
\(712\) −17.6255 12.8057i −0.660544 0.479913i
\(713\) 45.6961 + 33.2002i 1.71133 + 1.24336i
\(714\) 2.39370 1.73913i 0.0895821 0.0650852i
\(715\) −0.463899 + 0.549231i −0.0173488 + 0.0205401i
\(716\) −3.92791 2.85380i −0.146793 0.106651i
\(717\) −6.09845 18.7691i −0.227751 0.700944i
\(718\) −24.7634 −0.924163
\(719\) −10.4296 32.0991i −0.388959 1.19709i −0.933567 0.358403i \(-0.883321\pi\)
0.544607 0.838691i \(-0.316679\pi\)
\(720\) −2.13309 0.869872i −0.0794956 0.0324182i
\(721\) 2.45743 7.56319i 0.0915194 0.281668i
\(722\) −5.52421 + 17.0018i −0.205590 + 0.632741i
\(723\) 21.5020 15.6221i 0.799668 0.580993i
\(724\) −1.70683 −0.0634340
\(725\) −5.05248 0.743484i −0.187644 0.0276123i
\(726\) 9.69355 0.359762
\(727\) 19.2817 14.0090i 0.715118 0.519563i −0.169703 0.985495i \(-0.554281\pi\)
0.884821 + 0.465932i \(0.154281\pi\)
\(728\) 0.790824 2.43391i 0.0293099 0.0902065i
\(729\) 4.84072 14.8982i 0.179286 0.551786i
\(730\) 9.73427 + 15.6909i 0.360281 + 0.580748i
\(731\) 2.08554 + 6.41862i 0.0771363 + 0.237401i
\(732\) 3.08391 0.113985
\(733\) −11.3579 34.9560i −0.419514 1.29113i −0.908151 0.418643i \(-0.862506\pi\)
0.488637 0.872487i \(-0.337494\pi\)
\(734\) −12.8160 9.31140i −0.473049 0.343690i
\(735\) −2.38445 3.84357i −0.0879518 0.141772i
\(736\) 25.1566 18.2773i 0.927284 0.673711i
\(737\) −1.75184 1.27279i −0.0645299 0.0468837i
\(738\) 13.4033 + 9.73810i 0.493384 + 0.358464i
\(739\) 11.8437 8.60496i 0.435678 0.316539i −0.348237 0.937406i \(-0.613220\pi\)
0.783915 + 0.620868i \(0.213220\pi\)
\(740\) −1.36749 + 18.6861i −0.0502700 + 0.686916i
\(741\) −0.0489010 0.0355286i −0.00179642 0.00130518i
\(742\) −11.3859 35.0422i −0.417989 1.28644i
\(743\) 17.2716 0.633633 0.316816 0.948487i \(-0.397386\pi\)
0.316816 + 0.948487i \(0.397386\pi\)
\(744\) 9.26008 + 28.4996i 0.339491 + 1.04485i
\(745\) −25.0369 + 29.6423i −0.917280 + 1.08601i
\(746\) −5.69022 + 17.5127i −0.208334 + 0.641185i
\(747\) −0.346590 + 1.06669i −0.0126810 + 0.0390283i
\(748\) −0.989643 + 0.719018i −0.0361849 + 0.0262899i
\(749\) 55.0770 2.01247
\(750\) 2.40723 10.8077i 0.0878996 0.394641i
\(751\) 44.8896 1.63804 0.819022 0.573762i \(-0.194517\pi\)
0.819022 + 0.573762i \(0.194517\pi\)
\(752\) −3.61280 + 2.62486i −0.131745 + 0.0957187i
\(753\) 6.89613 21.2241i 0.251309 0.773449i
\(754\) 0.0869019 0.267456i 0.00316478 0.00974019i
\(755\) −17.7177 + 20.9768i −0.644814 + 0.763424i
\(756\) 5.27624 + 16.2386i 0.191895 + 0.590592i
\(757\) −11.6458 −0.423272 −0.211636 0.977349i \(-0.567879\pi\)
−0.211636 + 0.977349i \(0.567879\pi\)
\(758\) −8.44206 25.9820i −0.306630 0.943709i
\(759\) −5.43357 3.94772i −0.197226 0.143293i
\(760\) 0.0943241 1.28889i 0.00342149 0.0467531i
\(761\) −3.79878 + 2.75997i −0.137706 + 0.100049i −0.654505 0.756057i \(-0.727123\pi\)
0.516800 + 0.856106i \(0.327123\pi\)
\(762\) 10.7164 + 7.78595i 0.388216 + 0.282055i
\(763\) 11.5224 + 8.37152i 0.417139 + 0.303069i
\(764\) 15.0392 10.9266i 0.544099 0.395311i
\(765\) 2.23567 + 3.60375i 0.0808310 + 0.130294i
\(766\) −19.6717 14.2923i −0.710766 0.516402i
\(767\) 0.493810 + 1.51979i 0.0178304 + 0.0548765i
\(768\) 17.7650 0.641039
\(769\) 9.08054 + 27.9470i 0.327453 + 1.00780i 0.970321 + 0.241819i \(0.0777441\pi\)
−0.642869 + 0.765976i \(0.722256\pi\)
\(770\) −3.65545 5.89233i −0.131733 0.212345i
\(771\) −1.88946 +