Properties

Label 425.2.k.c.86.3
Level $425$
Weight $2$
Character 425.86
Analytic conductor $3.394$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 86.3
Character \(\chi\) \(=\) 425.86
Dual form 425.2.k.c.341.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72275 + 1.25165i) q^{2} +(-0.0844546 + 0.259925i) q^{3} +(0.783211 - 2.41047i) q^{4} +(-2.13220 - 0.673604i) q^{5} +(-0.179841 - 0.553494i) q^{6} +0.609651 q^{7} +(0.351734 + 1.08253i) q^{8} +(2.36662 + 1.71945i) q^{9} +(4.51637 - 1.50832i) q^{10} +(1.38011 - 1.00271i) q^{11} +(0.560396 + 0.407152i) q^{12} +(-1.54945 - 1.12574i) q^{13} +(-1.05028 + 0.763073i) q^{14} +(0.355160 - 0.497321i) q^{15} +(2.14004 + 1.55483i) q^{16} +(-0.309017 - 0.951057i) q^{17} -6.22927 q^{18} +(2.39272 + 7.36405i) q^{19} +(-3.29366 + 4.61203i) q^{20} +(-0.0514879 + 0.158463i) q^{21} +(-1.12254 + 3.45483i) q^{22} +(-1.39658 + 1.01468i) q^{23} -0.311081 q^{24} +(4.09252 + 2.87251i) q^{25} +4.07836 q^{26} +(-1.31012 + 0.951855i) q^{27} +(0.477485 - 1.46955i) q^{28} +(-0.801966 + 2.46820i) q^{29} +(0.0106207 + 1.30130i) q^{30} +(0.0824305 + 0.253695i) q^{31} -7.90936 q^{32} +(0.144072 + 0.443407i) q^{33} +(1.72275 + 1.25165i) q^{34} +(-1.29990 - 0.410663i) q^{35} +(5.99826 - 4.35799i) q^{36} +(8.60996 + 6.25550i) q^{37} +(-13.3393 - 9.69159i) q^{38} +(0.423466 - 0.307666i) q^{39} +(-0.0207721 - 2.54509i) q^{40} +(-0.759890 - 0.552093i) q^{41} +(-0.109640 - 0.337439i) q^{42} -3.06317 q^{43} +(-1.33608 - 4.11204i) q^{44} +(-3.88787 - 5.26037i) q^{45} +(1.13594 - 3.49608i) q^{46} +(-1.51577 + 4.66507i) q^{47} +(-0.584876 + 0.424937i) q^{48} -6.62833 q^{49} +(-10.6458 + 0.173786i) q^{50} +0.273301 q^{51} +(-3.92712 + 2.85322i) q^{52} +(-2.06569 + 6.35754i) q^{53} +(1.06561 - 3.27962i) q^{54} +(-3.61808 + 1.20832i) q^{55} +(0.214435 + 0.659963i) q^{56} -2.11617 q^{57} +(-1.70774 - 5.25588i) q^{58} +(5.50085 + 3.99660i) q^{59} +(-0.920615 - 1.24561i) q^{60} +(2.37055 - 1.72231i) q^{61} +(-0.459546 - 0.333880i) q^{62} +(1.44281 + 1.04827i) q^{63} +(9.34579 - 6.79011i) q^{64} +(2.54543 + 3.44402i) q^{65} +(-0.803192 - 0.583553i) q^{66} +(3.50297 + 10.7810i) q^{67} -2.53452 q^{68} +(-0.145792 - 0.448700i) q^{69} +(2.75341 - 0.919548i) q^{70} +(-0.669700 + 2.06113i) q^{71} +(-1.02893 + 3.16672i) q^{72} +(4.24476 - 3.08400i) q^{73} -22.6626 q^{74} +(-1.09227 + 0.821149i) q^{75} +19.6249 q^{76} +(0.841383 - 0.611300i) q^{77} +(-0.344436 + 1.06007i) q^{78} +(3.72368 - 11.4603i) q^{79} +(-3.51565 - 4.75675i) q^{80} +(2.57514 + 7.92548i) q^{81} +2.00013 q^{82} +(0.582630 + 1.79315i) q^{83} +(0.341646 + 0.248220i) q^{84} +(0.0182494 + 2.23599i) q^{85} +(5.27709 - 3.83403i) q^{86} +(-0.573816 - 0.416901i) q^{87} +(1.57088 + 1.14131i) q^{88} +(10.1908 - 7.40406i) q^{89} +(13.2820 + 4.19606i) q^{90} +(-0.944624 - 0.686309i) q^{91} +(1.35203 + 4.16113i) q^{92} -0.0729032 q^{93} +(-3.22775 - 9.93399i) q^{94} +(-0.141305 - 17.3133i) q^{95} +(0.667982 - 2.05584i) q^{96} +(-2.98220 + 9.17827i) q^{97} +(11.4190 - 8.29637i) q^{98} +4.99029 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 2 q^{2} + 2 q^{3} - 20 q^{4} - 17 q^{6} - 44 q^{7} + 15 q^{8} - 22 q^{9} - 2 q^{10} + 4 q^{11} + 14 q^{12} + 6 q^{13} - 10 q^{14} + 14 q^{15} - 32 q^{16} + 20 q^{17} - 62 q^{18} - 3 q^{19} + 16 q^{21}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.72275 + 1.25165i −1.21817 + 0.885053i −0.995947 0.0899421i \(-0.971332\pi\)
−0.222224 + 0.974996i \(0.571332\pi\)
\(3\) −0.0844546 + 0.259925i −0.0487599 + 0.150068i −0.972472 0.233020i \(-0.925139\pi\)
0.923712 + 0.383088i \(0.125139\pi\)
\(4\) 0.783211 2.41047i 0.391605 1.20524i
\(5\) −2.13220 0.673604i −0.953547 0.301245i
\(6\) −0.179841 0.553494i −0.0734199 0.225963i
\(7\) 0.609651 0.230427 0.115213 0.993341i \(-0.463245\pi\)
0.115213 + 0.993341i \(0.463245\pi\)
\(8\) 0.351734 + 1.08253i 0.124357 + 0.382731i
\(9\) 2.36662 + 1.71945i 0.788874 + 0.573151i
\(10\) 4.51637 1.50832i 1.42820 0.476972i
\(11\) 1.38011 1.00271i 0.416117 0.302327i −0.359956 0.932969i \(-0.617208\pi\)
0.776074 + 0.630642i \(0.217208\pi\)
\(12\) 0.560396 + 0.407152i 0.161772 + 0.117535i
\(13\) −1.54945 1.12574i −0.429740 0.312224i 0.351805 0.936073i \(-0.385568\pi\)
−0.781545 + 0.623849i \(0.785568\pi\)
\(14\) −1.05028 + 0.763073i −0.280699 + 0.203940i
\(15\) 0.355160 0.497321i 0.0917019 0.128408i
\(16\) 2.14004 + 1.55483i 0.535011 + 0.388708i
\(17\) −0.309017 0.951057i −0.0749476 0.230665i
\(18\) −6.22927 −1.46825
\(19\) 2.39272 + 7.36405i 0.548929 + 1.68943i 0.711461 + 0.702726i \(0.248034\pi\)
−0.162532 + 0.986703i \(0.551966\pi\)
\(20\) −3.29366 + 4.61203i −0.736485 + 1.03128i
\(21\) −0.0514879 + 0.158463i −0.0112356 + 0.0345796i
\(22\) −1.12254 + 3.45483i −0.239327 + 0.736572i
\(23\) −1.39658 + 1.01468i −0.291207 + 0.211575i −0.723791 0.690019i \(-0.757602\pi\)
0.432584 + 0.901594i \(0.357602\pi\)
\(24\) −0.311081 −0.0634991
\(25\) 4.09252 + 2.87251i 0.818503 + 0.574502i
\(26\) 4.07836 0.799832
\(27\) −1.31012 + 0.951855i −0.252132 + 0.183185i
\(28\) 0.477485 1.46955i 0.0902362 0.277719i
\(29\) −0.801966 + 2.46820i −0.148921 + 0.458333i −0.997494 0.0707455i \(-0.977462\pi\)
0.848573 + 0.529078i \(0.177462\pi\)
\(30\) 0.0106207 + 1.30130i 0.00193907 + 0.237584i
\(31\) 0.0824305 + 0.253695i 0.0148050 + 0.0455650i 0.958186 0.286146i \(-0.0923742\pi\)
−0.943381 + 0.331711i \(0.892374\pi\)
\(32\) −7.90936 −1.39819
\(33\) 0.144072 + 0.443407i 0.0250796 + 0.0771872i
\(34\) 1.72275 + 1.25165i 0.295450 + 0.214657i
\(35\) −1.29990 0.410663i −0.219722 0.0694148i
\(36\) 5.99826 4.35799i 0.999710 0.726332i
\(37\) 8.60996 + 6.25550i 1.41547 + 1.02840i 0.992499 + 0.122254i \(0.0390122\pi\)
0.422969 + 0.906144i \(0.360988\pi\)
\(38\) −13.3393 9.69159i −2.16392 1.57218i
\(39\) 0.423466 0.307666i 0.0678088 0.0492660i
\(40\) −0.0207721 2.54509i −0.00328435 0.402413i
\(41\) −0.759890 0.552093i −0.118675 0.0862224i 0.526865 0.849949i \(-0.323367\pi\)
−0.645540 + 0.763727i \(0.723367\pi\)
\(42\) −0.109640 0.337439i −0.0169179 0.0520679i
\(43\) −3.06317 −0.467129 −0.233565 0.972341i \(-0.575039\pi\)
−0.233565 + 0.972341i \(0.575039\pi\)
\(44\) −1.33608 4.11204i −0.201422 0.619913i
\(45\) −3.88787 5.26037i −0.579570 0.784170i
\(46\) 1.13594 3.49608i 0.167486 0.515468i
\(47\) −1.51577 + 4.66507i −0.221098 + 0.680470i 0.777566 + 0.628801i \(0.216454\pi\)
−0.998664 + 0.0516690i \(0.983546\pi\)
\(48\) −0.584876 + 0.424937i −0.0844196 + 0.0613344i
\(49\) −6.62833 −0.946904
\(50\) −10.6458 + 0.173786i −1.50554 + 0.0245770i
\(51\) 0.273301 0.0382698
\(52\) −3.92712 + 2.85322i −0.544593 + 0.395670i
\(53\) −2.06569 + 6.35754i −0.283744 + 0.873276i 0.703028 + 0.711163i \(0.251831\pi\)
−0.986772 + 0.162113i \(0.948169\pi\)
\(54\) 1.06561 3.27962i 0.145012 0.446300i
\(55\) −3.61808 + 1.20832i −0.487862 + 0.162930i
\(56\) 0.214435 + 0.659963i 0.0286551 + 0.0881913i
\(57\) −2.11617 −0.280294
\(58\) −1.70774 5.25588i −0.224237 0.690131i
\(59\) 5.50085 + 3.99660i 0.716150 + 0.520313i 0.885152 0.465302i \(-0.154054\pi\)
−0.169002 + 0.985616i \(0.554054\pi\)
\(60\) −0.920615 1.24561i −0.118851 0.160808i
\(61\) 2.37055 1.72231i 0.303518 0.220519i −0.425592 0.904915i \(-0.639934\pi\)
0.729110 + 0.684396i \(0.239934\pi\)
\(62\) −0.459546 0.333880i −0.0583624 0.0424028i
\(63\) 1.44281 + 1.04827i 0.181778 + 0.132069i
\(64\) 9.34579 6.79011i 1.16822 0.848764i
\(65\) 2.54543 + 3.44402i 0.315721 + 0.427178i
\(66\) −0.803192 0.583553i −0.0988661 0.0718304i
\(67\) 3.50297 + 10.7810i 0.427956 + 1.31711i 0.900136 + 0.435610i \(0.143467\pi\)
−0.472180 + 0.881502i \(0.656533\pi\)
\(68\) −2.53452 −0.307356
\(69\) −0.145792 0.448700i −0.0175512 0.0540172i
\(70\) 2.75341 0.919548i 0.329095 0.109907i
\(71\) −0.669700 + 2.06113i −0.0794788 + 0.244611i −0.982899 0.184146i \(-0.941048\pi\)
0.903420 + 0.428756i \(0.141048\pi\)
\(72\) −1.02893 + 3.16672i −0.121260 + 0.373201i
\(73\) 4.24476 3.08400i 0.496811 0.360954i −0.310986 0.950414i \(-0.600659\pi\)
0.807798 + 0.589460i \(0.200659\pi\)
\(74\) −22.6626 −2.63447
\(75\) −1.09227 + 0.821149i −0.126124 + 0.0948181i
\(76\) 19.6249 2.25113
\(77\) 0.841383 0.611300i 0.0958845 0.0696642i
\(78\) −0.344436 + 1.06007i −0.0389998 + 0.120029i
\(79\) 3.72368 11.4603i 0.418946 1.28938i −0.489727 0.871876i \(-0.662903\pi\)
0.908673 0.417508i \(-0.137097\pi\)
\(80\) −3.51565 4.75675i −0.393062 0.531821i
\(81\) 2.57514 + 7.92548i 0.286127 + 0.880608i
\(82\) 2.00013 0.220878
\(83\) 0.582630 + 1.79315i 0.0639520 + 0.196824i 0.977927 0.208946i \(-0.0670034\pi\)
−0.913975 + 0.405770i \(0.867003\pi\)
\(84\) 0.341646 + 0.248220i 0.0372766 + 0.0270831i
\(85\) 0.0182494 + 2.23599i 0.00197942 + 0.242528i
\(86\) 5.27709 3.83403i 0.569043 0.413434i
\(87\) −0.573816 0.416901i −0.0615195 0.0446965i
\(88\) 1.57088 + 1.14131i 0.167457 + 0.121664i
\(89\) 10.1908 7.40406i 1.08022 0.784829i 0.102502 0.994733i \(-0.467315\pi\)
0.977722 + 0.209904i \(0.0673152\pi\)
\(90\) 13.2820 + 4.19606i 1.40005 + 0.442304i
\(91\) −0.944624 0.686309i −0.0990235 0.0719448i
\(92\) 1.35203 + 4.16113i 0.140959 + 0.433828i
\(93\) −0.0729032 −0.00755971
\(94\) −3.22775 9.93399i −0.332917 1.02461i
\(95\) −0.141305 17.3133i −0.0144976 1.77631i
\(96\) 0.667982 2.05584i 0.0681756 0.209823i
\(97\) −2.98220 + 9.17827i −0.302797 + 0.931912i 0.677694 + 0.735344i \(0.262980\pi\)
−0.980490 + 0.196568i \(0.937020\pi\)
\(98\) 11.4190 8.29637i 1.15349 0.838060i
\(99\) 4.99029 0.501543
\(100\) 10.1294 7.61512i 1.01294 0.761512i
\(101\) −3.26744 −0.325123 −0.162561 0.986698i \(-0.551976\pi\)
−0.162561 + 0.986698i \(0.551976\pi\)
\(102\) −0.470831 + 0.342078i −0.0466192 + 0.0338708i
\(103\) 4.04423 12.4469i 0.398490 1.22643i −0.527720 0.849419i \(-0.676953\pi\)
0.926210 0.377008i \(-0.123047\pi\)
\(104\) 0.673649 2.07328i 0.0660568 0.203302i
\(105\) 0.216524 0.303193i 0.0211306 0.0295886i
\(106\) −4.39877 13.5380i −0.427246 1.31493i
\(107\) 19.6831 1.90283 0.951416 0.307907i \(-0.0996286\pi\)
0.951416 + 0.307907i \(0.0996286\pi\)
\(108\) 1.26832 + 3.90350i 0.122045 + 0.375615i
\(109\) 9.71660 + 7.05952i 0.930682 + 0.676180i 0.946160 0.323701i \(-0.104927\pi\)
−0.0154781 + 0.999880i \(0.504927\pi\)
\(110\) 4.72067 6.61022i 0.450098 0.630260i
\(111\) −2.35311 + 1.70963i −0.223347 + 0.162271i
\(112\) 1.30468 + 0.947906i 0.123281 + 0.0895687i
\(113\) −8.46827 6.15256i −0.796628 0.578784i 0.113295 0.993561i \(-0.463859\pi\)
−0.909923 + 0.414778i \(0.863859\pi\)
\(114\) 3.64565 2.64872i 0.341446 0.248075i
\(115\) 3.66128 1.22274i 0.341416 0.114022i
\(116\) 5.32142 + 3.86624i 0.494081 + 0.358971i
\(117\) −1.73130 5.32841i −0.160059 0.492612i
\(118\) −14.4790 −1.33290
\(119\) −0.188393 0.579813i −0.0172699 0.0531514i
\(120\) 0.663285 + 0.209545i 0.0605493 + 0.0191288i
\(121\) −2.49991 + 7.69394i −0.227265 + 0.699449i
\(122\) −1.92815 + 5.93422i −0.174566 + 0.537259i
\(123\) 0.207679 0.150887i 0.0187258 0.0136051i
\(124\) 0.676086 0.0607143
\(125\) −6.79111 8.88149i −0.607415 0.794384i
\(126\) −3.79768 −0.338324
\(127\) 4.45825 3.23911i 0.395606 0.287425i −0.372143 0.928175i \(-0.621377\pi\)
0.767749 + 0.640751i \(0.221377\pi\)
\(128\) −2.71338 + 8.35091i −0.239831 + 0.738123i
\(129\) 0.258699 0.796194i 0.0227772 0.0701009i
\(130\) −8.69586 2.74720i −0.762678 0.240945i
\(131\) 3.91777 + 12.0577i 0.342297 + 1.05348i 0.963015 + 0.269448i \(0.0868413\pi\)
−0.620718 + 0.784034i \(0.713159\pi\)
\(132\) 1.18166 0.102850
\(133\) 1.45873 + 4.48950i 0.126488 + 0.389289i
\(134\) −19.5289 14.1886i −1.68704 1.22570i
\(135\) 3.43460 1.14704i 0.295603 0.0987216i
\(136\) 0.920851 0.669038i 0.0789623 0.0573695i
\(137\) 7.40947 + 5.38329i 0.633033 + 0.459926i 0.857450 0.514568i \(-0.172048\pi\)
−0.224416 + 0.974493i \(0.572048\pi\)
\(138\) 0.812781 + 0.590520i 0.0691885 + 0.0502684i
\(139\) 10.5378 7.65613i 0.893801 0.649384i −0.0430652 0.999072i \(-0.513712\pi\)
0.936866 + 0.349688i \(0.113712\pi\)
\(140\) −2.00799 + 2.81173i −0.169706 + 0.237634i
\(141\) −1.08455 0.787974i −0.0913358 0.0663593i
\(142\) −1.42609 4.38905i −0.119675 0.368321i
\(143\) −3.26719 −0.273216
\(144\) 2.39122 + 7.35941i 0.199268 + 0.613284i
\(145\) 3.37254 4.72247i 0.280074 0.392180i
\(146\) −3.45258 + 10.6259i −0.285737 + 0.879409i
\(147\) 0.559793 1.72287i 0.0461709 0.142100i
\(148\) 21.8221 15.8547i 1.79377 1.30325i
\(149\) −12.3327 −1.01034 −0.505168 0.863021i \(-0.668569\pi\)
−0.505168 + 0.863021i \(0.668569\pi\)
\(150\) 0.853915 2.78178i 0.0697219 0.227131i
\(151\) −6.47708 −0.527097 −0.263549 0.964646i \(-0.584893\pi\)
−0.263549 + 0.964646i \(0.584893\pi\)
\(152\) −7.13017 + 5.18037i −0.578333 + 0.420184i
\(153\) 0.903969 2.78213i 0.0730816 0.224922i
\(154\) −0.684359 + 2.10624i −0.0551472 + 0.169726i
\(155\) −0.00486803 0.596453i −0.000391010 0.0479082i
\(156\) −0.409958 1.26172i −0.0328229 0.101019i
\(157\) −14.5343 −1.15996 −0.579981 0.814630i \(-0.696940\pi\)
−0.579981 + 0.814630i \(0.696940\pi\)
\(158\) 7.92935 + 24.4040i 0.630825 + 1.94148i
\(159\) −1.47803 1.07385i −0.117215 0.0851617i
\(160\) 16.8643 + 5.32777i 1.33324 + 0.421197i
\(161\) −0.851428 + 0.618599i −0.0671019 + 0.0487524i
\(162\) −14.3563 10.4305i −1.12794 0.819494i
\(163\) 5.73892 + 4.16957i 0.449507 + 0.326586i 0.789401 0.613878i \(-0.210391\pi\)
−0.339894 + 0.940464i \(0.610391\pi\)
\(164\) −1.92596 + 1.39929i −0.150392 + 0.109266i
\(165\) −0.00850831 1.04248i −0.000662371 0.0811567i
\(166\) −3.24813 2.35991i −0.252104 0.183164i
\(167\) −1.20034 3.69427i −0.0928853 0.285871i 0.893812 0.448443i \(-0.148021\pi\)
−0.986697 + 0.162571i \(0.948021\pi\)
\(168\) −0.189651 −0.0146319
\(169\) −2.88372 8.87518i −0.221825 0.682706i
\(170\) −2.83013 3.82923i −0.217061 0.293688i
\(171\) −6.99945 + 21.5421i −0.535262 + 1.64737i
\(172\) −2.39911 + 7.38369i −0.182930 + 0.563001i
\(173\) −7.79637 + 5.66439i −0.592747 + 0.430656i −0.843297 0.537448i \(-0.819388\pi\)
0.250550 + 0.968104i \(0.419388\pi\)
\(174\) 1.51036 0.114500
\(175\) 2.49501 + 1.75123i 0.188605 + 0.132381i
\(176\) 4.51253 0.340144
\(177\) −1.50339 + 1.09228i −0.113002 + 0.0821004i
\(178\) −8.28895 + 25.5108i −0.621283 + 1.91211i
\(179\) −2.28072 + 7.01934i −0.170469 + 0.524650i −0.999398 0.0347047i \(-0.988951\pi\)
0.828929 + 0.559354i \(0.188951\pi\)
\(180\) −15.7250 + 5.25164i −1.17207 + 0.391434i
\(181\) −5.95005 18.3124i −0.442264 1.36115i −0.885457 0.464721i \(-0.846154\pi\)
0.443193 0.896426i \(-0.353846\pi\)
\(182\) 2.48638 0.184303
\(183\) 0.247466 + 0.761622i 0.0182932 + 0.0563007i
\(184\) −1.58964 1.15494i −0.117190 0.0851433i
\(185\) −14.1444 19.1377i −1.03992 1.40703i
\(186\) 0.125594 0.0912496i 0.00920902 0.00669075i
\(187\) −1.38011 1.00271i −0.100923 0.0733251i
\(188\) 10.0579 + 7.30746i 0.733545 + 0.532951i
\(189\) −0.798714 + 0.580299i −0.0580979 + 0.0422106i
\(190\) 21.9138 + 29.6498i 1.58979 + 2.15102i
\(191\) −12.1659 8.83903i −0.880293 0.639570i 0.0530363 0.998593i \(-0.483110\pi\)
−0.933329 + 0.359023i \(0.883110\pi\)
\(192\) 0.975623 + 3.00266i 0.0704095 + 0.216698i
\(193\) −14.8772 −1.07089 −0.535444 0.844571i \(-0.679856\pi\)
−0.535444 + 0.844571i \(0.679856\pi\)
\(194\) −6.35042 19.5446i −0.455934 1.40322i
\(195\) −1.11016 + 0.370756i −0.0795000 + 0.0265504i
\(196\) −5.19137 + 15.9774i −0.370812 + 1.14124i
\(197\) 0.690434 2.12494i 0.0491914 0.151396i −0.923444 0.383734i \(-0.874638\pi\)
0.972635 + 0.232339i \(0.0746378\pi\)
\(198\) −8.59705 + 6.24612i −0.610966 + 0.443893i
\(199\) −23.3729 −1.65686 −0.828432 0.560090i \(-0.810766\pi\)
−0.828432 + 0.560090i \(0.810766\pi\)
\(200\) −1.67009 + 5.44061i −0.118093 + 0.384709i
\(201\) −3.09810 −0.218523
\(202\) 5.62900 4.08971i 0.396055 0.287751i
\(203\) −0.488920 + 1.50474i −0.0343154 + 0.105612i
\(204\) 0.214052 0.658785i 0.0149867 0.0461242i
\(205\) 1.24834 + 1.68903i 0.0871881 + 0.117967i
\(206\) 8.61196 + 26.5049i 0.600024 + 1.84668i
\(207\) −5.04987 −0.350990
\(208\) −1.56555 4.81827i −0.108551 0.334087i
\(209\) 10.6862 + 7.76397i 0.739179 + 0.537045i
\(210\) 0.00647495 + 0.793339i 0.000446814 + 0.0547456i
\(211\) −14.4681 + 10.5117i −0.996028 + 0.723656i −0.961233 0.275738i \(-0.911078\pi\)
−0.0347948 + 0.999394i \(0.511078\pi\)
\(212\) 13.7068 + 9.95859i 0.941389 + 0.683959i
\(213\) −0.479178 0.348143i −0.0328328 0.0238544i
\(214\) −33.9091 + 24.6364i −2.31798 + 1.68411i
\(215\) 6.53128 + 2.06336i 0.445429 + 0.140720i
\(216\) −1.49122 1.08343i −0.101465 0.0737184i
\(217\) 0.0502538 + 0.154665i 0.00341145 + 0.0104994i
\(218\) −25.5754 −1.73218
\(219\) 0.443117 + 1.36377i 0.0299431 + 0.0921554i
\(220\) 0.0789039 + 9.66766i 0.00531970 + 0.651793i
\(221\) −0.591837 + 1.82149i −0.0398113 + 0.122526i
\(222\) 1.91396 5.89056i 0.128457 0.395349i
\(223\) 22.9685 16.6876i 1.53809 1.11749i 0.586566 0.809902i \(-0.300480\pi\)
0.951521 0.307584i \(-0.0995204\pi\)
\(224\) −4.82195 −0.322180
\(225\) 4.74630 + 13.8350i 0.316420 + 0.922335i
\(226\) 22.2896 1.48268
\(227\) 22.0947 16.0528i 1.46648 1.06546i 0.484862 0.874591i \(-0.338870\pi\)
0.981616 0.190868i \(-0.0611302\pi\)
\(228\) −1.65741 + 5.10099i −0.109765 + 0.337821i
\(229\) −2.32767 + 7.16382i −0.153817 + 0.473399i −0.998039 0.0625942i \(-0.980063\pi\)
0.844222 + 0.535993i \(0.180063\pi\)
\(230\) −4.77702 + 6.68914i −0.314988 + 0.441069i
\(231\) 0.0878334 + 0.270323i 0.00577901 + 0.0177860i
\(232\) −2.95396 −0.193937
\(233\) 0.265991 + 0.818638i 0.0174257 + 0.0536307i 0.959391 0.282079i \(-0.0910240\pi\)
−0.941966 + 0.335710i \(0.891024\pi\)
\(234\) 9.65194 + 7.01255i 0.630967 + 0.458424i
\(235\) 6.37433 8.92581i 0.415816 0.582256i
\(236\) 13.9420 10.1295i 0.907549 0.659373i
\(237\) 2.66433 + 1.93575i 0.173067 + 0.125741i
\(238\) 1.05028 + 0.763073i 0.0680795 + 0.0494627i
\(239\) −2.82468 + 2.05225i −0.182714 + 0.132749i −0.675382 0.737468i \(-0.736021\pi\)
0.492669 + 0.870217i \(0.336021\pi\)
\(240\) 1.53331 0.512075i 0.0989747 0.0330543i
\(241\) −15.9258 11.5708i −1.02587 0.745340i −0.0583936 0.998294i \(-0.518598\pi\)
−0.967478 + 0.252954i \(0.918598\pi\)
\(242\) −5.32342 16.3838i −0.342203 1.05319i
\(243\) −7.13569 −0.457754
\(244\) −2.29493 7.06308i −0.146918 0.452167i
\(245\) 14.1329 + 4.46487i 0.902917 + 0.285250i
\(246\) −0.168921 + 0.519884i −0.0107700 + 0.0331466i
\(247\) 4.58261 14.1038i 0.291584 0.897404i
\(248\) −0.245638 + 0.178466i −0.0155980 + 0.0113326i
\(249\) −0.515290 −0.0326552
\(250\) 22.8160 + 6.80050i 1.44301 + 0.430101i
\(251\) 9.29596 0.586756 0.293378 0.955997i \(-0.405221\pi\)
0.293378 + 0.955997i \(0.405221\pi\)
\(252\) 3.65685 2.65685i 0.230360 0.167366i
\(253\) −0.910009 + 2.80072i −0.0572118 + 0.176080i
\(254\) −3.62623 + 11.1604i −0.227530 + 0.700265i
\(255\) −0.582731 0.184097i −0.0364920 0.0115286i
\(256\) 1.36157 + 4.19049i 0.0850983 + 0.261906i
\(257\) −30.7179 −1.91613 −0.958064 0.286553i \(-0.907490\pi\)
−0.958064 + 0.286553i \(0.907490\pi\)
\(258\) 0.550884 + 1.69545i 0.0342966 + 0.105554i
\(259\) 5.24907 + 3.81367i 0.326161 + 0.236970i
\(260\) 10.2953 3.43829i 0.638488 0.213234i
\(261\) −6.14190 + 4.46235i −0.380174 + 0.276213i
\(262\) −21.8414 15.8687i −1.34937 0.980371i
\(263\) 8.18200 + 5.94457i 0.504524 + 0.366558i 0.810742 0.585403i \(-0.199064\pi\)
−0.306219 + 0.951961i \(0.599064\pi\)
\(264\) −0.429324 + 0.311922i −0.0264231 + 0.0191975i
\(265\) 8.68692 12.1641i 0.533633 0.747233i
\(266\) −8.13234 5.90849i −0.498625 0.362273i
\(267\) 1.06384 + 3.27415i 0.0651057 + 0.200375i
\(268\) 28.7310 1.75502
\(269\) −5.21215 16.0414i −0.317791 0.978059i −0.974591 0.223994i \(-0.928090\pi\)
0.656800 0.754065i \(-0.271910\pi\)
\(270\) −4.48127 + 6.27500i −0.272721 + 0.381884i
\(271\) 6.29022 19.3593i 0.382104 1.17599i −0.556456 0.830877i \(-0.687839\pi\)
0.938560 0.345117i \(-0.112161\pi\)
\(272\) 0.817424 2.51577i 0.0495636 0.152541i
\(273\) 0.258167 0.187569i 0.0156250 0.0113522i
\(274\) −19.5027 −1.17820
\(275\) 8.52838 0.139220i 0.514281 0.00839531i
\(276\) −1.19577 −0.0719766
\(277\) 6.22505 4.52276i 0.374027 0.271746i −0.384852 0.922978i \(-0.625747\pi\)
0.758879 + 0.651232i \(0.225747\pi\)
\(278\) −8.57114 + 26.3793i −0.514063 + 1.58212i
\(279\) −0.241134 + 0.742135i −0.0144363 + 0.0444305i
\(280\) −0.0126637 1.55161i −0.000756802 0.0927267i
\(281\) 6.71255 + 20.6591i 0.400437 + 1.23242i 0.924646 + 0.380828i \(0.124361\pi\)
−0.524209 + 0.851590i \(0.675639\pi\)
\(282\) 2.85469 0.169994
\(283\) 0.647887 + 1.99399i 0.0385129 + 0.118530i 0.968465 0.249151i \(-0.0801516\pi\)
−0.929952 + 0.367682i \(0.880152\pi\)
\(284\) 4.44377 + 3.22859i 0.263690 + 0.191582i
\(285\) 4.51210 + 1.42546i 0.267274 + 0.0844372i
\(286\) 5.62857 4.08939i 0.332824 0.241811i
\(287\) −0.463268 0.336584i −0.0273459 0.0198679i
\(288\) −18.7185 13.5998i −1.10300 0.801373i
\(289\) −0.809017 + 0.587785i −0.0475892 + 0.0345756i
\(290\) 0.100853 + 12.3569i 0.00592227 + 0.725623i
\(291\) −2.13380 1.55029i −0.125085 0.0908799i
\(292\) −4.10935 12.6473i −0.240482 0.740127i
\(293\) −1.51774 −0.0886676 −0.0443338 0.999017i \(-0.514117\pi\)
−0.0443338 + 0.999017i \(0.514117\pi\)
\(294\) 1.19205 + 3.66874i 0.0695216 + 0.213965i
\(295\) −9.03676 12.2269i −0.526141 0.711879i
\(296\) −3.74333 + 11.5208i −0.217576 + 0.669631i
\(297\) −0.853668 + 2.62732i −0.0495348 + 0.152453i
\(298\) 21.2463 15.4363i 1.23076 0.894201i
\(299\) 3.30620 0.191202
\(300\) 1.12388 + 3.27602i 0.0648874 + 0.189141i
\(301\) −1.86747 −0.107639
\(302\) 11.1584 8.10706i 0.642095 0.466509i
\(303\) 0.275951 0.849289i 0.0158530 0.0487904i
\(304\) −6.32933 + 19.4797i −0.363012 + 1.11724i
\(305\) −6.21463 + 2.07548i −0.355849 + 0.118842i
\(306\) 1.92495 + 5.92439i 0.110042 + 0.338675i
\(307\) −9.41647 −0.537427 −0.268713 0.963220i \(-0.586598\pi\)
−0.268713 + 0.963220i \(0.586598\pi\)
\(308\) −0.814544 2.50691i −0.0464130 0.142844i
\(309\) 2.89369 + 2.10239i 0.164617 + 0.119601i
\(310\) 0.754939 + 1.02145i 0.0428777 + 0.0580144i
\(311\) 12.9124 9.38142i 0.732196 0.531972i −0.158061 0.987429i \(-0.550524\pi\)
0.890257 + 0.455458i \(0.150524\pi\)
\(312\) 0.482004 + 0.350196i 0.0272881 + 0.0198260i
\(313\) −12.6666 9.20279i −0.715956 0.520172i 0.169134 0.985593i \(-0.445903\pi\)
−0.885090 + 0.465421i \(0.845903\pi\)
\(314\) 25.0390 18.1919i 1.41303 1.02663i
\(315\) −2.37025 3.20699i −0.133548 0.180694i
\(316\) −24.7083 17.9517i −1.38995 1.00986i
\(317\) 5.95022 + 18.3129i 0.334197 + 1.02855i 0.967116 + 0.254336i \(0.0818568\pi\)
−0.632919 + 0.774218i \(0.718143\pi\)
\(318\) 3.89036 0.218161
\(319\) 1.36808 + 4.21051i 0.0765976 + 0.235743i
\(320\) −24.5009 + 8.18249i −1.36964 + 0.457415i
\(321\) −1.66233 + 5.11611i −0.0927820 + 0.285554i
\(322\) 0.692530 2.13139i 0.0385932 0.118778i
\(323\) 6.26423 4.55123i 0.348551 0.253237i
\(324\) 21.1210 1.17339
\(325\) −3.10744 9.05792i −0.172370 0.502443i
\(326\) −15.1056 −0.836622
\(327\) −2.65556 + 1.92937i −0.146853 + 0.106695i
\(328\) 0.330375 1.01679i 0.0182419 0.0561429i
\(329\) −0.924093 + 2.84407i −0.0509469 + 0.156798i
\(330\) 1.31948 + 1.78528i 0.0726349 + 0.0982765i
\(331\) −2.94172 9.05368i −0.161692 0.497635i 0.837086 0.547072i \(-0.184258\pi\)
−0.998777 + 0.0494363i \(0.984258\pi\)
\(332\) 4.77867 0.262263
\(333\) 9.62049 + 29.6088i 0.527200 + 1.62255i
\(334\) 6.69185 + 4.86191i 0.366162 + 0.266032i
\(335\) −0.206872 25.3469i −0.0113026 1.38485i
\(336\) −0.356571 + 0.259064i −0.0194525 + 0.0141331i
\(337\) 2.24991 + 1.63465i 0.122560 + 0.0890453i 0.647377 0.762170i \(-0.275866\pi\)
−0.524816 + 0.851215i \(0.675866\pi\)
\(338\) 16.0766 + 11.6803i 0.874452 + 0.635326i
\(339\) 2.31439 1.68150i 0.125700 0.0913265i
\(340\) 5.40410 + 1.70726i 0.293078 + 0.0925894i
\(341\) 0.368144 + 0.267472i 0.0199361 + 0.0144844i
\(342\) −14.9049 45.8727i −0.805966 2.48051i
\(343\) −8.30853 −0.448618
\(344\) −1.07742 3.31596i −0.0580906 0.178785i
\(345\) 0.00860989 + 1.05492i 0.000463541 + 0.0567951i
\(346\) 6.34136 19.5167i 0.340914 1.04923i
\(347\) 7.38903 22.7411i 0.396664 1.22081i −0.530995 0.847375i \(-0.678182\pi\)
0.927658 0.373430i \(-0.121818\pi\)
\(348\) −1.45435 + 1.05665i −0.0779613 + 0.0566422i
\(349\) 22.3598 1.19689 0.598445 0.801164i \(-0.295785\pi\)
0.598445 + 0.801164i \(0.295785\pi\)
\(350\) −6.49022 + 0.105949i −0.346917 + 0.00566320i
\(351\) 3.10150 0.165546
\(352\) −10.9157 + 7.93075i −0.581811 + 0.422710i
\(353\) −3.47452 + 10.6935i −0.184930 + 0.569156i −0.999947 0.0102806i \(-0.996728\pi\)
0.815017 + 0.579437i \(0.196728\pi\)
\(354\) 1.22282 3.76344i 0.0649920 0.200025i
\(355\) 2.81631 3.94361i 0.149474 0.209305i
\(356\) −9.86574 30.3636i −0.522883 1.60927i
\(357\) 0.166618 0.00881838
\(358\) −4.85666 14.9473i −0.256683 0.789988i
\(359\) 12.4016 + 9.01031i 0.654533 + 0.475546i 0.864812 0.502095i \(-0.167437\pi\)
−0.210279 + 0.977641i \(0.567437\pi\)
\(360\) 4.32699 6.05897i 0.228053 0.319336i
\(361\) −33.1328 + 24.0724i −1.74383 + 1.26697i
\(362\) 33.1712 + 24.1003i 1.74344 + 1.26668i
\(363\) −1.78872 1.29958i −0.0938833 0.0682102i
\(364\) −2.39417 + 1.73947i −0.125489 + 0.0911728i
\(365\) −11.1280 + 3.71640i −0.582468 + 0.194525i
\(366\) −1.37961 1.00235i −0.0721134 0.0523934i
\(367\) 0.301641 + 0.928356i 0.0157455 + 0.0484598i 0.958621 0.284687i \(-0.0918896\pi\)
−0.942875 + 0.333147i \(0.891890\pi\)
\(368\) −4.56640 −0.238040
\(369\) −0.849077 2.61319i −0.0442012 0.136037i
\(370\) 48.3210 + 15.2656i 2.51209 + 0.793620i
\(371\) −1.25935 + 3.87588i −0.0653823 + 0.201226i
\(372\) −0.0570986 + 0.175731i −0.00296042 + 0.00911124i
\(373\) 10.8652 7.89403i 0.562578 0.408737i −0.269823 0.962910i \(-0.586965\pi\)
0.832402 + 0.554173i \(0.186965\pi\)
\(374\) 3.63262 0.187838
\(375\) 2.88206 1.01509i 0.148829 0.0524192i
\(376\) −5.58320 −0.287932
\(377\) 4.02116 2.92154i 0.207100 0.150467i
\(378\) 0.649653 1.99943i 0.0334146 0.102839i
\(379\) 7.01439 21.5881i 0.360305 1.10891i −0.592564 0.805523i \(-0.701884\pi\)
0.952869 0.303382i \(-0.0981157\pi\)
\(380\) −41.8440 13.2194i −2.14655 0.678140i
\(381\) 0.465405 + 1.43237i 0.0238434 + 0.0733824i
\(382\) 32.0223 1.63840
\(383\) 4.59650 + 14.1466i 0.234870 + 0.722856i 0.997139 + 0.0755952i \(0.0240857\pi\)
−0.762268 + 0.647261i \(0.775914\pi\)
\(384\) −1.94145 1.41055i −0.0990742 0.0719816i
\(385\) −2.20577 + 0.736653i −0.112416 + 0.0375433i
\(386\) 25.6298 18.6212i 1.30452 0.947792i
\(387\) −7.24937 5.26697i −0.368506 0.267735i
\(388\) 19.7883 + 14.3770i 1.00460 + 0.729883i
\(389\) −10.4242 + 7.57363i −0.528528 + 0.383998i −0.819807 0.572640i \(-0.805919\pi\)
0.291279 + 0.956638i \(0.405919\pi\)
\(390\) 1.44847 2.02826i 0.0733462 0.102705i
\(391\) 1.39658 + 1.01468i 0.0706282 + 0.0513144i
\(392\) −2.33141 7.17533i −0.117754 0.362409i
\(393\) −3.46496 −0.174784
\(394\) 1.47024 + 4.52493i 0.0740696 + 0.227963i
\(395\) −15.6593 + 21.9273i −0.787905 + 1.10328i
\(396\) 3.90845 12.0290i 0.196407 0.604478i
\(397\) −10.1209 + 31.1491i −0.507956 + 1.56333i 0.287788 + 0.957694i \(0.407080\pi\)
−0.795744 + 0.605633i \(0.792920\pi\)
\(398\) 40.2658 29.2548i 2.01834 1.46641i
\(399\) −1.29013 −0.0645872
\(400\) 4.29189 + 12.5105i 0.214595 + 0.625524i
\(401\) 19.0704 0.952332 0.476166 0.879355i \(-0.342026\pi\)
0.476166 + 0.879355i \(0.342026\pi\)
\(402\) 5.33726 3.87775i 0.266198 0.193404i
\(403\) 0.157873 0.485883i 0.00786421 0.0242036i
\(404\) −2.55910 + 7.87609i −0.127320 + 0.391850i
\(405\) −0.152078 18.6333i −0.00755682 0.925896i
\(406\) −1.04113 3.20426i −0.0516702 0.159025i
\(407\) 18.1551 0.899913
\(408\) 0.0961292 + 0.295855i 0.00475911 + 0.0146470i
\(409\) −10.7633 7.82003i −0.532213 0.386675i 0.288972 0.957338i \(-0.406687\pi\)
−0.821185 + 0.570662i \(0.806687\pi\)
\(410\) −4.26468 1.34730i −0.210617 0.0665383i
\(411\) −2.02501 + 1.47126i −0.0998866 + 0.0725719i
\(412\) −26.8354 19.4970i −1.32208 0.960550i
\(413\) 3.35360 + 2.43653i 0.165020 + 0.119894i
\(414\) 8.69969 6.32069i 0.427566 0.310645i
\(415\) −0.0344079 4.21581i −0.00168902 0.206946i
\(416\) 12.2551 + 8.90389i 0.600858 + 0.436549i
\(417\) 1.10005 + 3.38562i 0.0538699 + 0.165794i
\(418\) −28.1275 −1.37576
\(419\) 1.05673 + 3.25228i 0.0516246 + 0.158884i 0.973545 0.228495i \(-0.0733804\pi\)
−0.921920 + 0.387379i \(0.873380\pi\)
\(420\) −0.561254 0.759389i −0.0273864 0.0370544i
\(421\) −3.48563 + 10.7277i −0.169879 + 0.522835i −0.999363 0.0356968i \(-0.988635\pi\)
0.829483 + 0.558531i \(0.188635\pi\)
\(422\) 11.7680 36.2182i 0.572858 1.76308i
\(423\) −11.6086 + 8.43416i −0.564431 + 0.410083i
\(424\) −7.60878 −0.369515
\(425\) 1.46726 4.77987i 0.0711727 0.231858i
\(426\) 1.26126 0.0611083
\(427\) 1.44521 1.05001i 0.0699386 0.0508134i
\(428\) 15.4160 47.4455i 0.745159 2.29336i
\(429\) 0.275929 0.849223i 0.0133220 0.0410009i
\(430\) −13.8344 + 4.62023i −0.667154 + 0.222808i
\(431\) −6.79245 20.9050i −0.327181 1.00696i −0.970447 0.241316i \(-0.922421\pi\)
0.643266 0.765643i \(-0.277579\pi\)
\(432\) −4.28368 −0.206099
\(433\) −0.658362 2.02623i −0.0316388 0.0973743i 0.933990 0.357299i \(-0.116302\pi\)
−0.965629 + 0.259925i \(0.916302\pi\)
\(434\) −0.280163 0.203550i −0.0134482 0.00977072i
\(435\) 0.942661 + 1.27544i 0.0451971 + 0.0611527i
\(436\) 24.6269 17.8925i 1.17942 0.856896i
\(437\) −10.8138 7.85666i −0.517292 0.375835i
\(438\) −2.47036 1.79482i −0.118038 0.0857598i
\(439\) 6.93163 5.03612i 0.330829 0.240361i −0.409954 0.912106i \(-0.634455\pi\)
0.740782 + 0.671745i \(0.234455\pi\)
\(440\) −2.58064 3.49166i −0.123027 0.166458i
\(441\) −15.6867 11.3971i −0.746988 0.542718i
\(442\) −1.26028 3.87875i −0.0599455 0.184493i
\(443\) 24.2529 1.15229 0.576145 0.817347i \(-0.304556\pi\)
0.576145 + 0.817347i \(0.304556\pi\)
\(444\) 2.27805 + 7.01111i 0.108111 + 0.332733i
\(445\) −26.7162 + 8.92233i −1.26647 + 0.422959i
\(446\) −18.6820 + 57.4973i −0.884619 + 2.72258i
\(447\) 1.04156 3.20558i 0.0492639 0.151619i
\(448\) 5.69767 4.13960i 0.269190 0.195578i
\(449\) 40.0462 1.88990 0.944948 0.327220i \(-0.106112\pi\)
0.944948 + 0.327220i \(0.106112\pi\)
\(450\) −25.4934 17.8936i −1.20177 0.843514i
\(451\) −1.60231 −0.0754501
\(452\) −21.4630 + 15.5938i −1.00954 + 0.733470i
\(453\) 0.547019 1.68355i 0.0257012 0.0791002i
\(454\) −17.9713 + 55.3099i −0.843434 + 2.59582i
\(455\) 1.55182 + 2.09965i 0.0727506 + 0.0984330i
\(456\) −0.744330 2.29081i −0.0348565 0.107277i
\(457\) −1.43925 −0.0673254 −0.0336627 0.999433i \(-0.510717\pi\)
−0.0336627 + 0.999433i \(0.510717\pi\)
\(458\) −4.95663 15.2549i −0.231608 0.712817i
\(459\) 1.31012 + 0.951855i 0.0611510 + 0.0444288i
\(460\) −0.0798459 9.78308i −0.00372283 0.456138i
\(461\) −20.9604 + 15.2287i −0.976225 + 0.709269i −0.956862 0.290543i \(-0.906164\pi\)
−0.0193634 + 0.999813i \(0.506164\pi\)
\(462\) −0.489667 0.355764i −0.0227814 0.0165516i
\(463\) −10.0449 7.29805i −0.466826 0.339169i 0.329377 0.944199i \(-0.393161\pi\)
−0.796203 + 0.605029i \(0.793161\pi\)
\(464\) −5.55388 + 4.03513i −0.257832 + 0.187326i
\(465\) 0.155444 + 0.0491079i 0.00720854 + 0.00227732i
\(466\) −1.48289 1.07738i −0.0686935 0.0499088i
\(467\) 7.00568 + 21.5613i 0.324184 + 0.997737i 0.971807 + 0.235776i \(0.0757632\pi\)
−0.647623 + 0.761961i \(0.724237\pi\)
\(468\) −14.2000 −0.656394
\(469\) 2.13559 + 6.57267i 0.0986123 + 0.303498i
\(470\) 0.190619 + 23.3554i 0.00879258 + 1.07731i
\(471\) 1.22749 3.77782i 0.0565596 0.174073i
\(472\) −2.39159 + 7.36055i −0.110082 + 0.338797i
\(473\) −4.22750 + 3.07146i −0.194381 + 0.141226i
\(474\) −7.01288 −0.322112
\(475\) −11.3610 + 37.0106i −0.521280 + 1.69816i
\(476\) −1.54517 −0.0708230
\(477\) −15.8202 + 11.4941i −0.724357 + 0.526276i
\(478\) 2.29752 7.07105i 0.105086 0.323423i
\(479\) 3.57389 10.9993i 0.163295 0.502571i −0.835611 0.549321i \(-0.814886\pi\)
0.998907 + 0.0467498i \(0.0148864\pi\)
\(480\) −2.80909 + 3.93349i −0.128217 + 0.179538i
\(481\) −6.29862 19.3852i −0.287192 0.883887i
\(482\) 41.9189 1.90935
\(483\) −0.0888820 0.273551i −0.00404427 0.0124470i
\(484\) 16.5881 + 12.0520i 0.754004 + 0.547816i
\(485\) 12.5411 17.5610i 0.569464 0.797406i
\(486\) 12.2930 8.93141i 0.557623 0.405137i
\(487\) 28.4263 + 20.6529i 1.28812 + 0.935873i 0.999766 0.0216518i \(-0.00689252\pi\)
0.288352 + 0.957524i \(0.406893\pi\)
\(488\) 2.69824 + 1.96039i 0.122144 + 0.0887426i
\(489\) −1.56845 + 1.13955i −0.0709279 + 0.0515321i
\(490\) −29.9360 + 9.99762i −1.35237 + 0.451647i
\(491\) −14.9296 10.8470i −0.673762 0.489517i 0.197520 0.980299i \(-0.436711\pi\)
−0.871283 + 0.490782i \(0.836711\pi\)
\(492\) −0.201054 0.618781i −0.00906422 0.0278968i
\(493\) 2.59522 0.116883
\(494\) 9.75839 + 30.0332i 0.439051 + 1.35126i
\(495\) −10.6403 3.36148i −0.478245 0.151087i
\(496\) −0.218048 + 0.671084i −0.00979066 + 0.0301326i
\(497\) −0.408284 + 1.25657i −0.0183140 + 0.0563648i
\(498\) 0.887718 0.644965i 0.0397796 0.0289016i
\(499\) −17.5459 −0.785461 −0.392731 0.919654i \(-0.628470\pi\)
−0.392731 + 0.919654i \(0.628470\pi\)
\(500\) −26.7275 + 9.41372i −1.19529 + 0.420994i
\(501\) 1.06161 0.0474291
\(502\) −16.0147 + 11.6353i −0.714769 + 0.519310i
\(503\) 9.44423 29.0664i 0.421097 1.29600i −0.485584 0.874190i \(-0.661393\pi\)
0.906682 0.421815i \(-0.138607\pi\)
\(504\) −0.627288 + 1.93059i −0.0279416 + 0.0859955i
\(505\) 6.96683 + 2.20096i 0.310020 + 0.0979415i
\(506\) −1.93781 5.96397i −0.0861462 0.265131i
\(507\) 2.55042 0.113268
\(508\) −4.31604 13.2834i −0.191493 0.589356i
\(509\) −26.6649 19.3732i −1.18190 0.858702i −0.189517 0.981877i \(-0.560692\pi\)
−0.992385 + 0.123175i \(0.960692\pi\)
\(510\) 1.23433 0.412225i 0.0546570 0.0182536i
\(511\) 2.58782 1.88016i 0.114478 0.0831735i
\(512\) −21.7981 15.8373i −0.963350 0.699915i
\(513\) −10.1443 7.37023i −0.447880 0.325404i
\(514\) 52.9194 38.4482i 2.33417 1.69588i
\(515\) −17.0074 + 23.8150i −0.749434 + 1.04941i
\(516\) −1.71659 1.24717i −0.0755686 0.0549038i
\(517\) 2.58576 + 7.95816i 0.113722 + 0.349999i
\(518\) −13.8163 −0.607052
\(519\) −0.813876 2.50485i −0.0357252 0.109951i
\(520\) −2.83292 + 3.96687i −0.124232 + 0.173959i
\(521\) −3.91399 + 12.0460i −0.171475 + 0.527745i −0.999455 0.0330121i \(-0.989490\pi\)
0.827980 + 0.560758i \(0.189490\pi\)
\(522\) 4.99566 15.3751i 0.218654 0.672948i
\(523\) 12.7811 9.28599i 0.558877 0.406048i −0.272171 0.962249i \(-0.587742\pi\)
0.831048 + 0.556201i \(0.187742\pi\)
\(524\) 32.1331 1.40374
\(525\) −0.665903 + 0.500615i −0.0290624 + 0.0218486i
\(526\) −21.5361 −0.939019
\(527\) 0.215806 0.156792i 0.00940065 0.00682997i
\(528\) −0.381104 + 1.17292i −0.0165854 + 0.0510447i
\(529\) −6.18652 + 19.0401i −0.268979 + 0.827832i
\(530\) 0.259775 + 31.8287i 0.0112839 + 1.38255i
\(531\) 6.14647 + 18.9169i 0.266734 + 0.820924i
\(532\) 11.9643 0.518719
\(533\) 0.555899 + 1.71088i 0.0240786 + 0.0741064i
\(534\) −5.93083 4.30900i −0.256652 0.186469i
\(535\) −41.9681 13.2586i −1.81444 0.573218i
\(536\) −10.4386 + 7.58410i −0.450880 + 0.327583i
\(537\) −1.63188 1.18563i −0.0704209 0.0511638i
\(538\) 29.0575 + 21.1115i 1.25276 + 0.910182i
\(539\) −9.14779 + 6.64626i −0.394023 + 0.286275i
\(540\) −0.0749024 9.17738i −0.00322329 0.394932i
\(541\) −2.03024 1.47506i −0.0872870 0.0634177i 0.543286 0.839548i \(-0.317180\pi\)
−0.630573 + 0.776130i \(0.717180\pi\)
\(542\) 13.3947 + 41.2245i 0.575350 + 1.77075i
\(543\) 5.26235 0.225829
\(544\) 2.44413 + 7.52224i 0.104791 + 0.322514i
\(545\) −15.9624 21.5974i −0.683753 0.925132i
\(546\) −0.209986 + 0.646271i −0.00898658 + 0.0276578i
\(547\) −3.65241 + 11.2410i −0.156166 + 0.480629i −0.998277 0.0586749i \(-0.981312\pi\)
0.842111 + 0.539304i \(0.181312\pi\)
\(548\) 18.7795 13.6441i 0.802219 0.582846i
\(549\) 8.57162 0.365828
\(550\) −14.5181 + 10.9144i −0.619052 + 0.465393i
\(551\) −20.0948 −0.856068
\(552\) 0.434450 0.315646i 0.0184914 0.0134348i
\(553\) 2.27014 6.98678i 0.0965363 0.297108i
\(554\) −5.06329 + 15.5832i −0.215119 + 0.662067i
\(555\) 6.16891 2.06021i 0.261856 0.0874511i
\(556\) −10.2016 31.3974i −0.432645 1.33154i
\(557\) −35.2654 −1.49424 −0.747122 0.664687i \(-0.768565\pi\)
−0.747122 + 0.664687i \(0.768565\pi\)
\(558\) −0.513482 1.58033i −0.0217374 0.0669009i
\(559\) 4.74623 + 3.44834i 0.200744 + 0.145849i
\(560\) −2.14332 2.89996i −0.0905719 0.122546i
\(561\) 0.377184 0.274040i 0.0159247 0.0115700i
\(562\) −37.4221 27.1888i −1.57856 1.14689i
\(563\) 19.4254 + 14.1134i 0.818681 + 0.594807i 0.916335 0.400414i \(-0.131134\pi\)
−0.0976530 + 0.995221i \(0.531134\pi\)
\(564\) −2.74882 + 1.99714i −0.115746 + 0.0840946i
\(565\) 13.9116 + 18.8227i 0.585266 + 0.791877i
\(566\) −3.61194 2.62423i −0.151821 0.110304i
\(567\) 1.56994 + 4.83178i 0.0659313 + 0.202916i
\(568\) −2.46678 −0.103504
\(569\) −13.5996 41.8553i −0.570126 1.75467i −0.652208 0.758040i \(-0.726157\pi\)
0.0820821 0.996626i \(-0.473843\pi\)
\(570\) −9.55743 + 3.19187i −0.400317 + 0.133693i
\(571\) 9.86449 30.3598i 0.412816 1.27052i −0.501374 0.865231i \(-0.667172\pi\)
0.914190 0.405286i \(-0.132828\pi\)
\(572\) −2.55890 + 7.87548i −0.106993 + 0.329290i
\(573\) 3.32495 2.41572i 0.138902 0.100918i
\(574\) 1.21938 0.0508961
\(575\) −8.63020 + 0.140883i −0.359904 + 0.00587521i
\(576\) 33.7932 1.40805
\(577\) −6.19320 + 4.49962i −0.257826 + 0.187322i −0.709188 0.705019i \(-0.750938\pi\)
0.451362 + 0.892341i \(0.350938\pi\)
\(578\) 0.658034 2.02522i 0.0273706 0.0842380i
\(579\) 1.25645 3.86696i 0.0522164 0.160705i
\(580\) −8.74199 11.8281i −0.362991 0.491135i
\(581\) 0.355201 + 1.09320i 0.0147362 + 0.0453534i
\(582\) 5.61644 0.232809
\(583\) 3.52387 + 10.8454i 0.145944 + 0.449169i
\(584\) 4.83153 + 3.51031i 0.199930 + 0.145258i
\(585\) 0.102244 + 12.5274i 0.00422728 + 0.517945i
\(586\) 2.61470 1.89969i 0.108012 0.0784756i
\(587\) −7.40325 5.37878i −0.305565 0.222006i 0.424426 0.905462i \(-0.360476\pi\)
−0.729991 + 0.683457i \(0.760476\pi\)
\(588\) −3.71449 2.69873i −0.153183 0.111294i
\(589\) −1.67099 + 1.21404i −0.0688519 + 0.0500238i
\(590\) 30.8720 + 9.75310i 1.27098 + 0.401529i
\(591\) 0.494014 + 0.358922i 0.0203210 + 0.0147641i
\(592\) 8.69943 + 26.7741i 0.357544 + 1.10041i
\(593\) 24.2602 0.996247 0.498123 0.867106i \(-0.334023\pi\)
0.498123 + 0.867106i \(0.334023\pi\)
\(594\) −1.81784 5.59472i −0.0745867 0.229554i
\(595\) 0.0111257 + 1.36318i 0.000456111 + 0.0558848i
\(596\) −9.65912 + 29.7277i −0.395653 + 1.21769i
\(597\) 1.97395 6.07520i 0.0807885 0.248641i
\(598\) −5.69576 + 4.13821i −0.232917 + 0.169224i
\(599\) 31.4876 1.28655 0.643274 0.765636i \(-0.277576\pi\)
0.643274 + 0.765636i \(0.277576\pi\)
\(600\) −1.27310 0.893582i −0.0519742 0.0364803i
\(601\) 35.0320 1.42899 0.714493 0.699642i \(-0.246657\pi\)
0.714493 + 0.699642i \(0.246657\pi\)
\(602\) 3.21718 2.33742i 0.131123 0.0952662i
\(603\) −10.2473 + 31.5378i −0.417301 + 1.28432i
\(604\) −5.07292 + 15.6128i −0.206414 + 0.635277i
\(605\) 10.5130 14.7210i 0.427413 0.598495i
\(606\) 0.587621 + 1.80851i 0.0238705 + 0.0734658i
\(607\) −4.91243 −0.199390 −0.0996948 0.995018i \(-0.531787\pi\)
−0.0996948 + 0.995018i \(0.531787\pi\)
\(608\) −18.9249 58.2449i −0.767506 2.36214i
\(609\) −0.349827 0.254164i −0.0141757 0.0102993i
\(610\) 8.10850 11.3541i 0.328304 0.459715i
\(611\) 7.60027 5.52192i 0.307474 0.223393i
\(612\) −5.99826 4.35799i −0.242465 0.176161i
\(613\) 1.37021 + 0.995515i 0.0553422 + 0.0402085i 0.615112 0.788439i \(-0.289111\pi\)
−0.559770 + 0.828648i \(0.689111\pi\)
\(614\) 16.2223 11.7862i 0.654678 0.475651i
\(615\) −0.544450 + 0.181828i −0.0219544 + 0.00733203i
\(616\) 0.957691 + 0.695803i 0.0385865 + 0.0280347i
\(617\) 8.48639 + 26.1184i 0.341649 + 1.05149i 0.963353 + 0.268236i \(0.0864408\pi\)
−0.621704 + 0.783252i \(0.713559\pi\)
\(618\) −7.61660 −0.306384
\(619\) 9.08175 + 27.9508i 0.365026 + 1.12344i 0.949965 + 0.312358i \(0.101119\pi\)
−0.584938 + 0.811078i \(0.698881\pi\)
\(620\) −1.44155 0.455414i −0.0578939 0.0182899i
\(621\) 0.863860 2.65869i 0.0346655 0.106689i
\(622\) −10.5026 + 32.3238i −0.421117 + 1.29607i
\(623\) 6.21284 4.51389i 0.248912 0.180845i
\(624\) 1.38461 0.0554286
\(625\) 8.49737 + 23.5116i 0.339895 + 0.940463i
\(626\) 33.3401 1.33254
\(627\) −2.92054 + 2.12190i −0.116635 + 0.0847405i
\(628\) −11.3834 + 35.0345i −0.454247 + 1.39803i
\(629\) 3.28871 10.1216i 0.131130 0.403575i
\(630\) 8.09740 + 2.55813i 0.322608 + 0.101918i
\(631\) 1.19845 + 3.68846i 0.0477097 + 0.146835i 0.972073 0.234677i \(-0.0754033\pi\)
−0.924364 + 0.381513i \(0.875403\pi\)
\(632\) 13.7158 0.545586
\(633\) −1.51035 4.64839i −0.0600312 0.184757i
\(634\) −33.1722 24.1010i −1.31744 0.957173i
\(635\) −11.6877 + 3.90332i −0.463814 + 0.154899i
\(636\) −3.74609 + 2.72169i −0.148542 + 0.107922i
\(637\) 10.2703 + 7.46178i 0.406922 + 0.295646i
\(638\) −7.62696 5.54131i −0.301954 0.219383i
\(639\) −5.12894 + 3.72639i −0.202898 + 0.147414i
\(640\) 11.4107 15.9780i 0.451046 0.631587i
\(641\) 7.55433 + 5.48854i 0.298378 + 0.216784i 0.726894 0.686750i \(-0.240963\pi\)
−0.428516 + 0.903534i \(0.640963\pi\)
\(642\) −3.53983 10.8945i −0.139706 0.429970i
\(643\) 4.62477 0.182383 0.0911916 0.995833i \(-0.470932\pi\)
0.0911916 + 0.995833i \(0.470932\pi\)
\(644\) 0.824269 + 2.53684i 0.0324807 + 0.0999654i
\(645\) −1.08792 + 1.52338i −0.0428366 + 0.0599830i
\(646\) −5.09517 + 15.6813i −0.200467 + 0.616973i
\(647\) 8.26495 25.4369i 0.324929 1.00003i −0.646544 0.762877i \(-0.723786\pi\)
0.971473 0.237151i \(-0.0762137\pi\)
\(648\) −7.67376 + 5.57532i −0.301454 + 0.219019i
\(649\) 11.5992 0.455307
\(650\) 16.6908 + 11.7151i 0.654665 + 0.459505i
\(651\) −0.0444455 −0.00174196
\(652\) 14.5454 10.5679i 0.569643 0.413870i
\(653\) 5.52768 17.0124i 0.216315 0.665749i −0.782743 0.622345i \(-0.786180\pi\)
0.999058 0.0434033i \(-0.0138200\pi\)
\(654\) 2.15996 6.64768i 0.0844612 0.259945i
\(655\) −0.231369 28.3483i −0.00904032 1.10766i
\(656\) −0.767787 2.36301i −0.0299771 0.0922599i
\(657\) 15.3485 0.598803
\(658\) −1.96780 6.05627i −0.0767129 0.236098i
\(659\) 28.4403 + 20.6631i 1.10788 + 0.804920i 0.982328 0.187167i \(-0.0599306\pi\)
0.125550 + 0.992087i \(0.459931\pi\)
\(660\) −2.51953 0.795970i −0.0980724 0.0309831i
\(661\) 32.4759 23.5951i 1.26316 0.917743i 0.264256 0.964453i \(-0.414874\pi\)
0.998909 + 0.0467098i \(0.0148736\pi\)
\(662\) 16.3999 + 11.9153i 0.637402 + 0.463100i
\(663\) −0.423466 0.307666i −0.0164461 0.0119488i
\(664\) −1.73620 + 1.26142i −0.0673777 + 0.0489527i
\(665\) −0.0861469 10.5551i −0.00334063 0.409309i
\(666\) −53.6338 38.9672i −2.07827 1.50995i
\(667\) −1.38441 4.26077i −0.0536046 0.164978i
\(668\) −9.84507 −0.380917
\(669\) 2.39772 + 7.37943i 0.0927014 + 0.285305i
\(670\) 32.0819 + 43.4075i 1.23943 + 1.67698i
\(671\) 1.54464 4.75393i 0.0596303 0.183523i
\(672\) 0.407236 1.25334i 0.0157095 0.0483488i
\(673\) 31.5645 22.9330i 1.21672 0.884001i 0.220899 0.975297i \(-0.429101\pi\)
0.995824 + 0.0912961i \(0.0291010\pi\)
\(674\) −5.92206 −0.228109
\(675\) −8.09588 + 0.132160i −0.311611 + 0.00508684i
\(676\) −23.6519 −0.909690
\(677\) 7.69182 5.58843i 0.295620 0.214781i −0.430081 0.902790i \(-0.641515\pi\)
0.725702 + 0.688009i \(0.241515\pi\)
\(678\) −1.88246 + 5.79362i −0.0722955 + 0.222503i
\(679\) −1.81810 + 5.59554i −0.0697724 + 0.214737i
\(680\) −2.41410 + 0.806230i −0.0925765 + 0.0309175i
\(681\) 2.30650 + 7.09869i 0.0883854 + 0.272022i
\(682\) −0.969005 −0.0371051
\(683\) −12.6811 39.0284i −0.485228 1.49338i −0.831650 0.555300i \(-0.812603\pi\)
0.346422 0.938079i \(-0.387397\pi\)
\(684\) 46.4446 + 33.7440i 1.77586 + 1.29023i
\(685\) −12.1722 16.4693i −0.465077 0.629259i
\(686\) 14.3136 10.3994i 0.546494 0.397051i
\(687\) −1.66547 1.21004i −0.0635417 0.0461658i
\(688\) −6.55532 4.76272i −0.249919 0.181577i
\(689\) 10.3576 7.52526i 0.394594 0.286690i
\(690\) −1.33523 1.80660i −0.0508314 0.0687759i
\(691\) −2.71580 1.97315i −0.103314 0.0750620i 0.534929 0.844897i \(-0.320338\pi\)
−0.638243 + 0.769835i \(0.720338\pi\)
\(692\) 7.54767 + 23.2294i 0.286919 + 0.883047i
\(693\) 3.04234 0.115569
\(694\) 15.7345 + 48.4258i 0.597273 + 1.83822i
\(695\) −27.6258 + 9.22609i −1.04790 + 0.349966i
\(696\) 0.249476 0.767808i 0.00945637 0.0291037i
\(697\) −0.290252 + 0.893305i −0.0109941 + 0.0338363i
\(698\) −38.5204 + 27.9867i −1.45802 + 1.05931i
\(699\) −0.235248 −0.00889791
\(700\) 6.17541 4.64257i 0.233409 0.175473i
\(701\) −5.79510 −0.218878 −0.109439 0.993994i \(-0.534905\pi\)
−0.109439 + 0.993994i \(0.534905\pi\)
\(702\) −5.34312 + 3.88201i −0.201663 + 0.146517i
\(703\) −25.4646 + 78.3718i −0.960414 + 2.95585i
\(704\) 6.08969 18.7421i 0.229514 0.706371i
\(705\) 1.78170 + 2.41067i 0.0671026 + 0.0907912i
\(706\) −7.39879 22.7711i −0.278457 0.857003i
\(707\) −1.99200 −0.0749169
\(708\) 1.45543 + 4.47936i 0.0546985 + 0.168345i
\(709\) 7.76838 + 5.64406i 0.291748 + 0.211967i 0.724025 0.689774i \(-0.242290\pi\)
−0.432278 + 0.901741i \(0.642290\pi\)
\(710\) 0.0842193 + 10.3189i 0.00316070 + 0.387262i
\(711\) 28.5180 20.7195i 1.06951 0.777043i
\(712\) 11.5995 + 8.42756i 0.434711 + 0.315836i
\(713\) −0.372539 0.270665i −0.0139517 0.0101365i
\(714\) −0.287042 + 0.208549i −0.0107423 + 0.00780473i
\(715\) 6.96629 + 2.20079i 0.260524 + 0.0823049i
\(716\) 15.1336 + 10.9952i 0.565571 + 0.410911i
\(717\) −0.294873 0.907527i −0.0110123 0.0338922i
\(718\) −32.6428 −1.21822
\(719\) 5.24924 + 16.1555i 0.195764 + 0.602498i 0.999967 + 0.00814401i \(0.00259235\pi\)
−0.804203 + 0.594354i \(0.797408\pi\)
\(720\) −0.141216 17.3024i −0.00526281 0.644823i
\(721\) 2.46557 7.58825i 0.0918227 0.282601i
\(722\) 26.9493 82.9416i 1.00295 3.08677i
\(723\) 4.35254 3.16231i 0.161873 0.117607i
\(724\) −48.8016 −1.81370
\(725\) −10.3720 + 7.79748i −0.385206 + 0.289591i
\(726\) 4.70814 0.174736
\(727\) −31.5645 + 22.9329i −1.17066 + 0.850536i −0.991088 0.133209i \(-0.957472\pi\)
−0.179574 + 0.983745i \(0.557472\pi\)
\(728\) 0.410691 1.26398i 0.0152212 0.0468461i
\(729\) −7.12279 + 21.9217i −0.263807 + 0.811914i
\(730\) 14.5192 20.3309i 0.537381 0.752481i
\(731\) 0.946572 + 2.91325i 0.0350102 + 0.107750i
\(732\) 2.02969 0.0750194
\(733\) −16.0248 49.3192i −0.591889 1.82165i −0.569639 0.821895i \(-0.692917\pi\)
−0.0222495 0.999752i \(-0.507083\pi\)
\(734\) −1.68164 1.22178i −0.0620703 0.0450967i
\(735\) −2.35412 + 3.29641i −0.0868329 + 0.121590i
\(736\) 11.0461 8.02543i 0.407163 0.295821i
\(737\) 15.6447 + 11.3665i 0.576278 + 0.418691i
\(738\) 4.73356 + 3.43913i 0.174245 + 0.126596i
\(739\) −34.9163 + 25.3682i −1.28442 + 0.933184i −0.999677 0.0254205i \(-0.991908\pi\)
−0.284741 + 0.958605i \(0.591908\pi\)
\(740\) −57.2088 + 19.1059i −2.10304 + 0.702346i
\(741\) 3.27891 + 2.38227i 0.120454 + 0.0875147i
\(742\) −2.68172 8.25347i −0.0984489 0.302994i
\(743\) 43.6298 1.60062 0.800311 0.599585i \(-0.204668\pi\)
0.800311 + 0.599585i \(0.204668\pi\)
\(744\) −0.0256425 0.0789196i −0.000940101 0.00289333i
\(745\) 26.2958 + 8.30737i 0.963403 + 0.304358i
\(746\) −8.83747 + 27.1989i −0.323563 + 0.995824i
\(747\) −1.70437 + 5.24552i −0.0623597 + 0.191923i
\(748\) −3.49791 + 2.54138i −0.127896 + 0.0929220i
\(749\) 11.9998 0.438463
\(750\) −3.69453 + 5.35610i −0.134905 + 0.195577i
\(751\) −4.78198 −0.174497 −0.0872484 0.996187i \(-0.527807\pi\)
−0.0872484 + 0.996187i \(0.527807\pi\)
\(752\) −10.4972 + 7.62668i −0.382794 + 0.278116i
\(753\) −0.785087 + 2.41625i −0.0286102 + 0.0880530i
\(754\) −3.27071 + 10.0662i −0.119112 + 0.366589i
\(755\) 13.8104 + 4.36298i 0.502612 + 0.158785i
\(756\) 0.773236 + 2.37978i 0.0281223 + 0.0865516i
\(757\) −33.5265 −1.21854 −0.609271 0.792962i \(-0.708538\pi\)
−0.609271 + 0.792962i \(0.708538\pi\)
\(758\) 14.9367 + 45.9706i 0.542527 + 1.66973i
\(759\) −0.651122 0.473068i −0.0236342 0.0171713i
\(760\) 18.6924 6.24266i 0.678046 0.226445i
\(761\) −34.8707 + 25.3350i −1.26406 + 0.918394i −0.998950 0.0458237i \(-0.985409\pi\)
−0.265112 + 0.964218i \(0.585409\pi\)
\(762\) −2.59461 1.88509i −0.0939927 0.0682897i
\(763\) 5.92374 + 4.30385i 0.214454 + 0.155810i
\(764\) −30.8347 + 22.4027i −1.11556 + 0.810502i
\(765\) −3.80149 + 5.32313i −0.137443 + 0.192458i
\(766\) −25.6253 18.6178i −0.925879 0.672690i
\(767\) −4.02415 12.3851i −0.145304 0.447199i
\(768\) −1.20420 −0.0434529
\(769\) −10.0756 31.0094i −0.363334 1.11823i −0.951018 0.309136i \(-0.899960\pi\)
0.587684 0.809091i \(-0.300040\pi\)
\(770\) 2.87796 4.02993i 0.103714 0.145229i
\(771\) 2.59427 7.98433i 0.0934303 0.287549i