Properties

Label 425.2.k.c.86.10
Level $425$
Weight $2$
Character 425.86
Analytic conductor $3.394$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{5})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 86.10
Character \(\chi\) \(=\) 425.86
Dual form 425.2.k.c.341.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0822620 + 0.0597668i) q^{2} +(-0.947924 + 2.91741i) q^{3} +(-0.614839 + 1.89228i) q^{4} +(1.94015 - 1.11167i) q^{5} +(-0.0963862 - 0.296646i) q^{6} -3.50410 q^{7} +(-0.125360 - 0.385819i) q^{8} +(-5.18567 - 3.76761i) q^{9} +(-0.0931599 + 0.207405i) q^{10} +(-2.78840 + 2.02589i) q^{11} +(-4.93773 - 3.58747i) q^{12} +(5.10738 + 3.71073i) q^{13} +(0.288254 - 0.209429i) q^{14} +(1.40408 + 6.71400i) q^{15} +(-3.18597 - 2.31474i) q^{16} +(-0.309017 - 0.951057i) q^{17} +0.651761 q^{18} +(-1.07692 - 3.31441i) q^{19} +(0.910707 + 4.35481i) q^{20} +(3.32162 - 10.2229i) q^{21} +(0.108298 - 0.333308i) q^{22} +(-1.72797 + 1.25544i) q^{23} +1.24442 q^{24} +(2.52838 - 4.31361i) q^{25} -0.641922 q^{26} +(8.46218 - 6.14813i) q^{27} +(2.15446 - 6.63073i) q^{28} +(-1.77238 + 5.45482i) q^{29} +(-0.516776 - 0.468389i) q^{30} +(-0.432855 - 1.33219i) q^{31} +1.21178 q^{32} +(-3.26716 - 10.0553i) q^{33} +(0.0822620 + 0.0597668i) q^{34} +(-6.79849 + 3.89540i) q^{35} +(10.3177 - 7.49626i) q^{36} +(6.09623 + 4.42917i) q^{37} +(0.286681 + 0.208286i) q^{38} +(-15.6671 + 11.3828i) q^{39} +(-0.672121 - 0.609189i) q^{40} +(-6.41466 - 4.66052i) q^{41} +(0.337747 + 1.03948i) q^{42} +1.10370 q^{43} +(-2.11914 - 6.52203i) q^{44} +(-14.2493 - 1.54499i) q^{45} +(0.0671123 - 0.206550i) q^{46} +(-1.23200 + 3.79171i) q^{47} +(9.77310 - 7.10057i) q^{48} +5.27870 q^{49} +(0.0498211 + 0.505960i) q^{50} +3.06755 q^{51} +(-10.1620 + 7.38310i) q^{52} +(-3.24860 + 9.99815i) q^{53} +(-0.328661 + 1.01151i) q^{54} +(-3.15780 + 7.03032i) q^{55} +(0.439275 + 1.35195i) q^{56} +10.6903 q^{57} +(-0.180218 - 0.554654i) q^{58} +(-4.30237 - 3.12586i) q^{59} +(-13.5680 - 1.47112i) q^{60} +(0.335913 - 0.244055i) q^{61} +(0.115228 + 0.0837183i) q^{62} +(18.1711 + 13.2021i) q^{63} +(6.27225 - 4.55706i) q^{64} +(14.0342 + 1.52167i) q^{65} +(0.869737 + 0.631901i) q^{66} +(1.55629 + 4.78976i) q^{67} +1.98966 q^{68} +(-2.02466 - 6.23126i) q^{69} +(0.326441 - 0.726767i) q^{70} +(-0.272326 + 0.838134i) q^{71} +(-0.803538 + 2.47304i) q^{72} +(-8.95860 + 6.50880i) q^{73} -0.766205 q^{74} +(10.1879 + 11.4653i) q^{75} +6.93393 q^{76} +(9.77083 - 7.09892i) q^{77} +(0.608493 - 1.87275i) q^{78} +(-4.72915 + 14.5548i) q^{79} +(-8.75449 - 0.949210i) q^{80} +(3.97287 + 12.2272i) q^{81} +0.806227 q^{82} +(2.14543 + 6.60294i) q^{83} +(17.3023 + 12.5709i) q^{84} +(-1.65680 - 1.50167i) q^{85} +(-0.0907928 + 0.0659649i) q^{86} +(-14.2339 - 10.3415i) q^{87} +(1.13118 + 0.821852i) q^{88} +(-4.72607 + 3.43369i) q^{89} +(1.26452 - 0.724542i) q^{90} +(-17.8968 - 13.0028i) q^{91} +(-1.31323 - 4.04170i) q^{92} +4.29686 q^{93} +(-0.125272 - 0.385547i) q^{94} +(-5.77392 - 5.23329i) q^{95} +(-1.14867 + 3.53525i) q^{96} +(-2.27449 + 7.00015i) q^{97} +(-0.434237 + 0.315491i) q^{98} +22.0925 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 2 q^{2} + 2 q^{3} - 20 q^{4} - 17 q^{6} - 44 q^{7} + 15 q^{8} - 22 q^{9} - 2 q^{10} + 4 q^{11} + 14 q^{12} + 6 q^{13} - 10 q^{14} + 14 q^{15} - 32 q^{16} + 20 q^{17} - 62 q^{18} - 3 q^{19} + 16 q^{21}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0822620 + 0.0597668i −0.0581680 + 0.0422615i −0.616489 0.787363i \(-0.711446\pi\)
0.558321 + 0.829625i \(0.311446\pi\)
\(3\) −0.947924 + 2.91741i −0.547284 + 1.68437i 0.168213 + 0.985751i \(0.446200\pi\)
−0.715497 + 0.698616i \(0.753800\pi\)
\(4\) −0.614839 + 1.89228i −0.307420 + 0.946140i
\(5\) 1.94015 1.11167i 0.867663 0.497153i
\(6\) −0.0963862 0.296646i −0.0393495 0.121105i
\(7\) −3.50410 −1.32442 −0.662212 0.749316i \(-0.730382\pi\)
−0.662212 + 0.749316i \(0.730382\pi\)
\(8\) −0.125360 0.385819i −0.0443215 0.136408i
\(9\) −5.18567 3.76761i −1.72856 1.25587i
\(10\) −0.0931599 + 0.207405i −0.0294597 + 0.0655872i
\(11\) −2.78840 + 2.02589i −0.840735 + 0.610829i −0.922576 0.385816i \(-0.873920\pi\)
0.0818412 + 0.996645i \(0.473920\pi\)
\(12\) −4.93773 3.58747i −1.42540 1.03561i
\(13\) 5.10738 + 3.71073i 1.41653 + 1.02917i 0.992332 + 0.123604i \(0.0394452\pi\)
0.424202 + 0.905568i \(0.360555\pi\)
\(14\) 0.288254 0.209429i 0.0770391 0.0559722i
\(15\) 1.40408 + 6.71400i 0.362531 + 1.73355i
\(16\) −3.18597 2.31474i −0.796492 0.578685i
\(17\) −0.309017 0.951057i −0.0749476 0.230665i
\(18\) 0.651761 0.153622
\(19\) −1.07692 3.31441i −0.247062 0.760379i −0.995290 0.0969375i \(-0.969095\pi\)
0.748229 0.663441i \(-0.230905\pi\)
\(20\) 0.910707 + 4.35481i 0.203640 + 0.973765i
\(21\) 3.32162 10.2229i 0.724836 2.23082i
\(22\) 0.108298 0.333308i 0.0230893 0.0710614i
\(23\) −1.72797 + 1.25544i −0.360307 + 0.261778i −0.753180 0.657815i \(-0.771481\pi\)
0.392873 + 0.919593i \(0.371481\pi\)
\(24\) 1.24442 0.254017
\(25\) 2.52838 4.31361i 0.505677 0.862723i
\(26\) −0.641922 −0.125891
\(27\) 8.46218 6.14813i 1.62855 1.18321i
\(28\) 2.15446 6.63073i 0.407154 1.25309i
\(29\) −1.77238 + 5.45482i −0.329123 + 1.01293i 0.640423 + 0.768023i \(0.278759\pi\)
−0.969545 + 0.244912i \(0.921241\pi\)
\(30\) −0.516776 0.468389i −0.0943500 0.0855158i
\(31\) −0.432855 1.33219i −0.0777431 0.239269i 0.904630 0.426197i \(-0.140147\pi\)
−0.982374 + 0.186928i \(0.940147\pi\)
\(32\) 1.21178 0.214214
\(33\) −3.26716 10.0553i −0.568740 1.75040i
\(34\) 0.0822620 + 0.0597668i 0.0141078 + 0.0102499i
\(35\) −6.79849 + 3.89540i −1.14915 + 0.658442i
\(36\) 10.3177 7.49626i 1.71962 1.24938i
\(37\) 6.09623 + 4.42917i 1.00221 + 0.728151i 0.962562 0.271063i \(-0.0873751\pi\)
0.0396518 + 0.999214i \(0.487375\pi\)
\(38\) 0.286681 + 0.208286i 0.0465059 + 0.0337885i
\(39\) −15.6671 + 11.3828i −2.50875 + 1.82271i
\(40\) −0.672121 0.609189i −0.106272 0.0963212i
\(41\) −6.41466 4.66052i −1.00180 0.727851i −0.0393279 0.999226i \(-0.512522\pi\)
−0.962474 + 0.271375i \(0.912522\pi\)
\(42\) 0.337747 + 1.03948i 0.0521154 + 0.160395i
\(43\) 1.10370 0.168313 0.0841566 0.996453i \(-0.473180\pi\)
0.0841566 + 0.996453i \(0.473180\pi\)
\(44\) −2.11914 6.52203i −0.319472 0.983233i
\(45\) −14.2493 1.54499i −2.12416 0.230313i
\(46\) 0.0671123 0.206550i 0.00989517 0.0304542i
\(47\) −1.23200 + 3.79171i −0.179706 + 0.553078i −0.999817 0.0191260i \(-0.993912\pi\)
0.820111 + 0.572204i \(0.193912\pi\)
\(48\) 9.77310 7.10057i 1.41063 1.02488i
\(49\) 5.27870 0.754100
\(50\) 0.0498211 + 0.505960i 0.00704577 + 0.0715535i
\(51\) 3.06755 0.429542
\(52\) −10.1620 + 7.38310i −1.40921 + 1.02385i
\(53\) −3.24860 + 9.99815i −0.446229 + 1.37335i 0.434901 + 0.900478i \(0.356783\pi\)
−0.881130 + 0.472873i \(0.843217\pi\)
\(54\) −0.328661 + 1.01151i −0.0447251 + 0.137650i
\(55\) −3.15780 + 7.03032i −0.425798 + 0.947968i
\(56\) 0.439275 + 1.35195i 0.0587005 + 0.180662i
\(57\) 10.6903 1.41597
\(58\) −0.180218 0.554654i −0.0236638 0.0728296i
\(59\) −4.30237 3.12586i −0.560121 0.406952i 0.271382 0.962472i \(-0.412519\pi\)
−0.831503 + 0.555520i \(0.812519\pi\)
\(60\) −13.5680 1.47112i −1.75163 0.189921i
\(61\) 0.335913 0.244055i 0.0430092 0.0312480i −0.566073 0.824355i \(-0.691538\pi\)
0.609082 + 0.793107i \(0.291538\pi\)
\(62\) 0.115228 + 0.0837183i 0.0146340 + 0.0106322i
\(63\) 18.1711 + 13.2021i 2.28934 + 1.66330i
\(64\) 6.27225 4.55706i 0.784031 0.569632i
\(65\) 14.0342 + 1.52167i 1.74073 + 0.188739i
\(66\) 0.869737 + 0.631901i 0.107057 + 0.0777816i
\(67\) 1.55629 + 4.78976i 0.190131 + 0.585163i 0.999999 0.00144935i \(-0.000461342\pi\)
−0.809868 + 0.586612i \(0.800461\pi\)
\(68\) 1.98966 0.241282
\(69\) −2.02466 6.23126i −0.243740 0.750155i
\(70\) 0.326441 0.726767i 0.0390172 0.0868653i
\(71\) −0.272326 + 0.838134i −0.0323192 + 0.0994682i −0.965915 0.258860i \(-0.916653\pi\)
0.933596 + 0.358328i \(0.116653\pi\)
\(72\) −0.803538 + 2.47304i −0.0946979 + 0.291450i
\(73\) −8.95860 + 6.50880i −1.04852 + 0.761798i −0.971931 0.235265i \(-0.924404\pi\)
−0.0765933 + 0.997062i \(0.524404\pi\)
\(74\) −0.766205 −0.0890695
\(75\) 10.1879 + 11.4653i 1.17639 + 1.32390i
\(76\) 6.93393 0.795376
\(77\) 9.77083 7.09892i 1.11349 0.808998i
\(78\) 0.608493 1.87275i 0.0688983 0.212047i
\(79\) −4.72915 + 14.5548i −0.532070 + 1.63754i 0.217825 + 0.975988i \(0.430104\pi\)
−0.749895 + 0.661556i \(0.769896\pi\)
\(80\) −8.75449 0.949210i −0.978782 0.106125i
\(81\) 3.97287 + 12.2272i 0.441430 + 1.35858i
\(82\) 0.806227 0.0890329
\(83\) 2.14543 + 6.60294i 0.235491 + 0.724767i 0.997056 + 0.0766784i \(0.0244315\pi\)
−0.761565 + 0.648089i \(0.775569\pi\)
\(84\) 17.3023 + 12.5709i 1.88784 + 1.37159i
\(85\) −1.65680 1.50167i −0.179705 0.162879i
\(86\) −0.0907928 + 0.0659649i −0.00979044 + 0.00711317i
\(87\) −14.2339 10.3415i −1.52603 1.10873i
\(88\) 1.13118 + 0.821852i 0.120584 + 0.0876097i
\(89\) −4.72607 + 3.43369i −0.500962 + 0.363970i −0.809384 0.587279i \(-0.800199\pi\)
0.308422 + 0.951250i \(0.400199\pi\)
\(90\) 1.26452 0.724542i 0.133292 0.0763735i
\(91\) −17.8968 13.0028i −1.87609 1.36306i
\(92\) −1.31323 4.04170i −0.136913 0.421376i
\(93\) 4.29686 0.445564
\(94\) −0.125272 0.385547i −0.0129208 0.0397661i
\(95\) −5.77392 5.23329i −0.592391 0.536924i
\(96\) −1.14867 + 3.53525i −0.117236 + 0.360815i
\(97\) −2.27449 + 7.00015i −0.230939 + 0.710757i 0.766695 + 0.642011i \(0.221900\pi\)
−0.997634 + 0.0687461i \(0.978100\pi\)
\(98\) −0.434237 + 0.315491i −0.0438645 + 0.0318694i
\(99\) 22.0925 2.22038
\(100\) 6.60802 + 7.43659i 0.660802 + 0.743659i
\(101\) 15.1685 1.50933 0.754663 0.656112i \(-0.227800\pi\)
0.754663 + 0.656112i \(0.227800\pi\)
\(102\) −0.252342 + 0.183337i −0.0249856 + 0.0181531i
\(103\) 2.73910 8.43009i 0.269892 0.830642i −0.720634 0.693316i \(-0.756149\pi\)
0.990526 0.137326i \(-0.0438509\pi\)
\(104\) 0.791408 2.43570i 0.0776040 0.238840i
\(105\) −4.92002 23.5265i −0.480145 2.29595i
\(106\) −0.330322 1.01663i −0.0320837 0.0987434i
\(107\) 12.7136 1.22907 0.614536 0.788889i \(-0.289343\pi\)
0.614536 + 0.788889i \(0.289343\pi\)
\(108\) 6.43111 + 19.7929i 0.618834 + 1.90457i
\(109\) 3.05778 + 2.22161i 0.292882 + 0.212791i 0.724517 0.689257i \(-0.242063\pi\)
−0.431635 + 0.902049i \(0.642063\pi\)
\(110\) −0.160413 0.767060i −0.0152947 0.0731363i
\(111\) −18.7005 + 13.5867i −1.77497 + 1.28959i
\(112\) 11.1639 + 8.11108i 1.05489 + 0.766425i
\(113\) −13.5495 9.84428i −1.27463 0.926072i −0.275251 0.961372i \(-0.588761\pi\)
−0.999377 + 0.0353008i \(0.988761\pi\)
\(114\) −0.879408 + 0.638927i −0.0823641 + 0.0598410i
\(115\) −1.95689 + 4.35668i −0.182481 + 0.406263i
\(116\) −9.23232 6.70767i −0.857200 0.622792i
\(117\) −12.5046 38.4852i −1.15605 3.55796i
\(118\) 0.540744 0.0497795
\(119\) 1.08283 + 3.33260i 0.0992625 + 0.305499i
\(120\) 2.41437 1.38339i 0.220401 0.126285i
\(121\) 0.271756 0.836378i 0.0247051 0.0760343i
\(122\) −0.0130465 + 0.0401529i −0.00118117 + 0.00363527i
\(123\) 19.6773 14.2964i 1.77424 1.28906i
\(124\) 2.78702 0.250281
\(125\) 0.110142 11.1798i 0.00985137 0.999951i
\(126\) −2.28383 −0.203460
\(127\) −3.46271 + 2.51581i −0.307266 + 0.223242i −0.730723 0.682675i \(-0.760817\pi\)
0.423456 + 0.905916i \(0.360817\pi\)
\(128\) −0.992526 + 3.05468i −0.0877278 + 0.269998i
\(129\) −1.04623 + 3.21996i −0.0921151 + 0.283501i
\(130\) −1.24543 + 0.713605i −0.109231 + 0.0625873i
\(131\) 1.07038 + 3.29430i 0.0935198 + 0.287824i 0.986865 0.161546i \(-0.0516482\pi\)
−0.893345 + 0.449371i \(0.851648\pi\)
\(132\) 21.0362 1.83097
\(133\) 3.77363 + 11.6140i 0.327215 + 1.00706i
\(134\) −0.414292 0.301001i −0.0357894 0.0260025i
\(135\) 9.58323 21.3354i 0.824793 1.83626i
\(136\) −0.328197 + 0.238449i −0.0281427 + 0.0204469i
\(137\) −2.62270 1.90550i −0.224072 0.162798i 0.470086 0.882621i \(-0.344223\pi\)
−0.694158 + 0.719823i \(0.744223\pi\)
\(138\) 0.538975 + 0.391588i 0.0458806 + 0.0333342i
\(139\) 8.66193 6.29326i 0.734696 0.533788i −0.156350 0.987702i \(-0.549973\pi\)
0.891045 + 0.453914i \(0.149973\pi\)
\(140\) −3.19121 15.2597i −0.269706 1.28968i
\(141\) −9.89414 7.18851i −0.833237 0.605382i
\(142\) −0.0276905 0.0852227i −0.00232374 0.00715173i
\(143\) −21.7590 −1.81958
\(144\) 7.80033 + 24.0069i 0.650027 + 2.00058i
\(145\) 2.62527 + 12.5535i 0.218017 + 1.04251i
\(146\) 0.347942 1.07085i 0.0287958 0.0886245i
\(147\) −5.00381 + 15.4001i −0.412707 + 1.27018i
\(148\) −12.1294 + 8.81254i −0.997032 + 0.724386i
\(149\) −4.24652 −0.347889 −0.173944 0.984755i \(-0.555651\pi\)
−0.173944 + 0.984755i \(0.555651\pi\)
\(150\) −1.52332 0.334263i −0.124378 0.0272924i
\(151\) −5.87104 −0.477779 −0.238889 0.971047i \(-0.576783\pi\)
−0.238889 + 0.971047i \(0.576783\pi\)
\(152\) −1.14376 + 0.830991i −0.0927713 + 0.0674023i
\(153\) −1.98075 + 6.09612i −0.160134 + 0.492842i
\(154\) −0.379488 + 1.16794i −0.0305800 + 0.0941155i
\(155\) −2.32076 2.10346i −0.186408 0.168954i
\(156\) −11.9068 36.6452i −0.953303 2.93396i
\(157\) 25.0260 1.99729 0.998647 0.0520047i \(-0.0165611\pi\)
0.998647 + 0.0520047i \(0.0165611\pi\)
\(158\) −0.480866 1.47995i −0.0382556 0.117739i
\(159\) −26.0893 18.9550i −2.06901 1.50323i
\(160\) 2.35103 1.34709i 0.185865 0.106497i
\(161\) 6.05497 4.39920i 0.477199 0.346705i
\(162\) −1.05760 0.768391i −0.0830929 0.0603705i
\(163\) 13.0716 + 9.49706i 1.02384 + 0.743867i 0.967068 0.254520i \(-0.0819175\pi\)
0.0567775 + 0.998387i \(0.481917\pi\)
\(164\) 12.7630 9.27286i 0.996623 0.724089i
\(165\) −17.5170 15.8768i −1.36369 1.23601i
\(166\) −0.571124 0.414946i −0.0443278 0.0322060i
\(167\) 0.359577 + 1.10666i 0.0278249 + 0.0856362i 0.964005 0.265886i \(-0.0856643\pi\)
−0.936180 + 0.351522i \(0.885664\pi\)
\(168\) −4.36058 −0.336426
\(169\) 8.29862 + 25.5405i 0.638355 + 1.96466i
\(170\) 0.226042 + 0.0245087i 0.0173366 + 0.00187973i
\(171\) −6.90287 + 21.2448i −0.527876 + 1.62463i
\(172\) −0.678600 + 2.08852i −0.0517428 + 0.159248i
\(173\) −20.9877 + 15.2485i −1.59567 + 1.15932i −0.700434 + 0.713717i \(0.747010\pi\)
−0.895231 + 0.445601i \(0.852990\pi\)
\(174\) 1.78898 0.135623
\(175\) −8.85971 + 15.1153i −0.669731 + 1.14261i
\(176\) 13.5732 1.02312
\(177\) 13.1977 9.58871i 0.992002 0.720732i
\(178\) 0.183555 0.564924i 0.0137580 0.0423429i
\(179\) 1.13623 3.49696i 0.0849258 0.261375i −0.899572 0.436773i \(-0.856121\pi\)
0.984498 + 0.175398i \(0.0561213\pi\)
\(180\) 11.6846 26.0138i 0.870918 1.93895i
\(181\) 3.30862 + 10.1829i 0.245927 + 0.756887i 0.995483 + 0.0949449i \(0.0302675\pi\)
−0.749555 + 0.661942i \(0.769732\pi\)
\(182\) 2.24936 0.166733
\(183\) 0.393589 + 1.21134i 0.0290949 + 0.0895449i
\(184\) 0.700993 + 0.509301i 0.0516779 + 0.0375462i
\(185\) 16.7514 + 1.81628i 1.23159 + 0.133535i
\(186\) −0.353468 + 0.256810i −0.0259176 + 0.0188302i
\(187\) 2.78840 + 2.02589i 0.203908 + 0.148148i
\(188\) −6.41750 4.66259i −0.468044 0.340054i
\(189\) −29.6523 + 21.5437i −2.15689 + 1.56707i
\(190\) 0.787751 + 0.0854123i 0.0571495 + 0.00619646i
\(191\) 14.2279 + 10.3372i 1.02949 + 0.747971i 0.968207 0.250149i \(-0.0804795\pi\)
0.0612869 + 0.998120i \(0.480480\pi\)
\(192\) 7.34919 + 22.6185i 0.530382 + 1.63235i
\(193\) 5.18040 0.372893 0.186447 0.982465i \(-0.440303\pi\)
0.186447 + 0.982465i \(0.440303\pi\)
\(194\) −0.231273 0.711785i −0.0166044 0.0511032i
\(195\) −17.7427 + 39.5011i −1.27058 + 2.82873i
\(196\) −3.24555 + 9.98878i −0.231825 + 0.713485i
\(197\) 6.52675 20.0873i 0.465012 1.43116i −0.393956 0.919129i \(-0.628894\pi\)
0.858968 0.512029i \(-0.171106\pi\)
\(198\) −1.81737 + 1.32040i −0.129155 + 0.0938365i
\(199\) 3.70626 0.262730 0.131365 0.991334i \(-0.458064\pi\)
0.131365 + 0.991334i \(0.458064\pi\)
\(200\) −1.98123 0.434744i −0.140094 0.0307410i
\(201\) −15.4489 −1.08968
\(202\) −1.24779 + 0.906576i −0.0877945 + 0.0637864i
\(203\) 6.21059 19.1142i 0.435898 1.34156i
\(204\) −1.88605 + 5.80465i −0.132050 + 0.406407i
\(205\) −17.6264 1.91115i −1.23108 0.133480i
\(206\) 0.278516 + 0.857184i 0.0194051 + 0.0597228i
\(207\) 13.6907 0.951569
\(208\) −7.68258 23.6445i −0.532691 1.63945i
\(209\) 9.71752 + 7.06019i 0.672175 + 0.488364i
\(210\) 1.81083 + 1.64128i 0.124959 + 0.113259i
\(211\) −20.5354 + 14.9198i −1.41372 + 1.02712i −0.420946 + 0.907086i \(0.638302\pi\)
−0.992769 + 0.120038i \(0.961698\pi\)
\(212\) −16.9219 12.2945i −1.16220 0.844390i
\(213\) −2.18704 1.58897i −0.149853 0.108875i
\(214\) −1.04585 + 0.759852i −0.0714926 + 0.0519424i
\(215\) 2.14135 1.22695i 0.146039 0.0836775i
\(216\) −3.43289 2.49414i −0.233578 0.169705i
\(217\) 1.51677 + 4.66813i 0.102965 + 0.316893i
\(218\) −0.384317 −0.0260292
\(219\) −10.4968 32.3057i −0.709306 2.18302i
\(220\) −11.3618 10.2980i −0.766012 0.694288i
\(221\) 1.95085 6.00409i 0.131228 0.403879i
\(222\) 0.726304 2.23533i 0.0487463 0.150026i
\(223\) 10.5998 7.70120i 0.709814 0.515710i −0.173300 0.984869i \(-0.555443\pi\)
0.883114 + 0.469159i \(0.155443\pi\)
\(224\) −4.24619 −0.283710
\(225\) −29.3634 + 12.8430i −1.95756 + 0.856200i
\(226\) 1.70297 0.113280
\(227\) 1.61938 1.17655i 0.107482 0.0780902i −0.532746 0.846275i \(-0.678840\pi\)
0.640228 + 0.768185i \(0.278840\pi\)
\(228\) −6.57284 + 20.2291i −0.435297 + 1.33971i
\(229\) 7.05507 21.7133i 0.466212 1.43485i −0.391240 0.920289i \(-0.627954\pi\)
0.857452 0.514564i \(-0.172046\pi\)
\(230\) −0.0994076 0.475346i −0.00655474 0.0313434i
\(231\) 11.4485 + 35.2348i 0.753254 + 2.31828i
\(232\) 2.32676 0.152759
\(233\) −5.85541 18.0211i −0.383601 1.18060i −0.937490 0.348012i \(-0.886857\pi\)
0.553889 0.832590i \(-0.313143\pi\)
\(234\) 3.32879 + 2.41851i 0.217610 + 0.158103i
\(235\) 1.82486 + 8.72608i 0.119041 + 0.569227i
\(236\) 8.56026 6.21940i 0.557226 0.404848i
\(237\) −37.9795 27.5937i −2.46703 1.79240i
\(238\) −0.288254 0.209429i −0.0186847 0.0135753i
\(239\) 13.6489 9.91648i 0.882872 0.641444i −0.0511377 0.998692i \(-0.516285\pi\)
0.934010 + 0.357248i \(0.116285\pi\)
\(240\) 11.0678 24.6406i 0.714425 1.59055i
\(241\) 13.4680 + 9.78509i 0.867552 + 0.630313i 0.929929 0.367739i \(-0.119868\pi\)
−0.0623772 + 0.998053i \(0.519868\pi\)
\(242\) 0.0276325 + 0.0850440i 0.00177628 + 0.00546684i
\(243\) −8.05837 −0.516945
\(244\) 0.255288 + 0.785696i 0.0163431 + 0.0502990i
\(245\) 10.2415 5.86817i 0.654305 0.374904i
\(246\) −0.764242 + 2.35209i −0.0487263 + 0.149964i
\(247\) 6.79866 20.9241i 0.432589 1.33137i
\(248\) −0.459722 + 0.334008i −0.0291924 + 0.0212095i
\(249\) −21.2972 −1.34965
\(250\) 0.659120 + 0.926255i 0.0416864 + 0.0585815i
\(251\) 5.98008 0.377460 0.188730 0.982029i \(-0.439563\pi\)
0.188730 + 0.982029i \(0.439563\pi\)
\(252\) −36.1543 + 26.2676i −2.27751 + 1.65471i
\(253\) 2.27488 7.00136i 0.143020 0.440172i
\(254\) 0.134488 0.413911i 0.00843851 0.0259711i
\(255\) 5.95151 3.41009i 0.372698 0.213548i
\(256\) 4.69065 + 14.4363i 0.293166 + 0.902271i
\(257\) −1.41662 −0.0883662 −0.0441831 0.999023i \(-0.514069\pi\)
−0.0441831 + 0.999023i \(0.514069\pi\)
\(258\) −0.106382 0.327410i −0.00662304 0.0203836i
\(259\) −21.3618 15.5202i −1.32736 0.964381i
\(260\) −11.5082 + 25.6211i −0.713708 + 1.58895i
\(261\) 29.7426 21.6093i 1.84102 1.33758i
\(262\) −0.284942 0.207022i −0.0176038 0.0127899i
\(263\) −8.13930 5.91354i −0.501890 0.364645i 0.307848 0.951435i \(-0.400391\pi\)
−0.809739 + 0.586791i \(0.800391\pi\)
\(264\) −3.46995 + 2.52107i −0.213561 + 0.155161i
\(265\) 4.81186 + 23.0093i 0.295590 + 1.41345i
\(266\) −1.00456 0.729855i −0.0615935 0.0447503i
\(267\) −5.53753 17.0428i −0.338891 1.04300i
\(268\) −10.0204 −0.612096
\(269\) 2.45136 + 7.54452i 0.149462 + 0.459997i 0.997558 0.0698459i \(-0.0222508\pi\)
−0.848096 + 0.529843i \(0.822251\pi\)
\(270\) 0.486817 + 2.32786i 0.0296267 + 0.141669i
\(271\) 9.35822 28.8016i 0.568472 1.74958i −0.0889328 0.996038i \(-0.528346\pi\)
0.657404 0.753538i \(-0.271654\pi\)
\(272\) −1.21693 + 3.74533i −0.0737873 + 0.227094i
\(273\) 54.8992 39.8866i 3.32265 2.41405i
\(274\) 0.329634 0.0199139
\(275\) 1.68877 + 17.1503i 0.101836 + 1.03420i
\(276\) 13.0361 0.784682
\(277\) −0.696894 + 0.506323i −0.0418723 + 0.0304220i −0.608525 0.793535i \(-0.708238\pi\)
0.566652 + 0.823957i \(0.308238\pi\)
\(278\) −0.336419 + 1.03539i −0.0201771 + 0.0620987i
\(279\) −2.77453 + 8.53913i −0.166107 + 0.511224i
\(280\) 2.35518 + 2.13466i 0.140749 + 0.127570i
\(281\) −6.23872 19.2008i −0.372171 1.14542i −0.945368 0.326006i \(-0.894297\pi\)
0.573197 0.819418i \(-0.305703\pi\)
\(282\) 1.24355 0.0740521
\(283\) 0.394815 + 1.21511i 0.0234693 + 0.0722311i 0.962105 0.272679i \(-0.0879096\pi\)
−0.938636 + 0.344910i \(0.887910\pi\)
\(284\) −1.41855 1.03064i −0.0841753 0.0611570i
\(285\) 20.7409 11.8841i 1.22858 0.703954i
\(286\) 1.78994 1.30046i 0.105841 0.0768981i
\(287\) 22.4776 + 16.3309i 1.32681 + 0.963984i
\(288\) −6.28387 4.56550i −0.370281 0.269025i
\(289\) −0.809017 + 0.587785i −0.0475892 + 0.0345756i
\(290\) −0.966242 0.875770i −0.0567397 0.0514270i
\(291\) −18.2663 13.2712i −1.07079 0.777972i
\(292\) −6.80838 20.9540i −0.398430 1.22624i
\(293\) −12.6880 −0.741239 −0.370619 0.928785i \(-0.620855\pi\)
−0.370619 + 0.928785i \(0.620855\pi\)
\(294\) −0.508794 1.56591i −0.0296735 0.0913256i
\(295\) −11.8222 1.28183i −0.688314 0.0746308i
\(296\) 0.944633 2.90728i 0.0549057 0.168982i
\(297\) −11.1405 + 34.2869i −0.646437 + 1.98953i
\(298\) 0.349327 0.253801i 0.0202360 0.0147023i
\(299\) −13.4840 −0.779801
\(300\) −27.9595 + 12.2290i −1.61424 + 0.706040i
\(301\) −3.86749 −0.222918
\(302\) 0.482964 0.350894i 0.0277914 0.0201917i
\(303\) −14.3786 + 44.2529i −0.826030 + 2.54226i
\(304\) −4.24098 + 13.0524i −0.243237 + 0.748606i
\(305\) 0.380414 0.846928i 0.0217824 0.0484950i
\(306\) −0.201405 0.619861i −0.0115136 0.0354351i
\(307\) 6.50877 0.371475 0.185737 0.982599i \(-0.440533\pi\)
0.185737 + 0.982599i \(0.440533\pi\)
\(308\) 7.42566 + 22.8538i 0.423116 + 1.30222i
\(309\) 21.9976 + 15.9822i 1.25140 + 0.909194i
\(310\) 0.316628 + 0.0343305i 0.0179832 + 0.00194984i
\(311\) 22.1093 16.0633i 1.25370 0.910869i 0.255273 0.966869i \(-0.417835\pi\)
0.998431 + 0.0560003i \(0.0178348\pi\)
\(312\) 6.35575 + 4.61772i 0.359824 + 0.261427i
\(313\) 6.96580 + 5.06095i 0.393730 + 0.286062i 0.766982 0.641668i \(-0.221757\pi\)
−0.373252 + 0.927730i \(0.621757\pi\)
\(314\) −2.05869 + 1.49573i −0.116179 + 0.0844087i
\(315\) 49.9310 + 5.41379i 2.81329 + 0.305033i
\(316\) −24.6341 17.8977i −1.38578 1.00683i
\(317\) 7.06516 + 21.7443i 0.396819 + 1.22128i 0.927536 + 0.373734i \(0.121923\pi\)
−0.530717 + 0.847549i \(0.678077\pi\)
\(318\) 3.27903 0.183879
\(319\) −6.10878 18.8009i −0.342026 1.05265i
\(320\) 7.10319 15.8141i 0.397080 0.884032i
\(321\) −12.0515 + 37.0908i −0.672651 + 2.07021i
\(322\) −0.235168 + 0.723773i −0.0131054 + 0.0403343i
\(323\) −2.81941 + 2.04842i −0.156876 + 0.113977i
\(324\) −25.5800 −1.42111
\(325\) 28.9201 12.6491i 1.60420 0.701647i
\(326\) −1.64290 −0.0909920
\(327\) −9.37987 + 6.81488i −0.518708 + 0.376864i
\(328\) −0.993976 + 3.05914i −0.0548831 + 0.168913i
\(329\) 4.31706 13.2865i 0.238007 0.732511i
\(330\) 2.38989 + 0.259125i 0.131559 + 0.0142643i
\(331\) −0.391859 1.20602i −0.0215385 0.0662887i 0.939710 0.341974i \(-0.111095\pi\)
−0.961248 + 0.275685i \(0.911095\pi\)
\(332\) −13.8137 −0.758126
\(333\) −14.9256 45.9364i −0.817919 2.51730i
\(334\) −0.0957212 0.0695455i −0.00523763 0.00380536i
\(335\) 8.34407 + 7.56279i 0.455885 + 0.413200i
\(336\) −34.2459 + 24.8811i −1.86827 + 1.35738i
\(337\) −11.0832 8.05244i −0.603742 0.438644i 0.243463 0.969910i \(-0.421717\pi\)
−0.847205 + 0.531266i \(0.821717\pi\)
\(338\) −2.20914 1.60503i −0.120161 0.0873022i
\(339\) 41.5637 30.1978i 2.25743 1.64012i
\(340\) 3.86025 2.21184i 0.209351 0.119954i
\(341\) 3.90585 + 2.83777i 0.211514 + 0.153674i
\(342\) −0.701893 2.16021i −0.0379540 0.116811i
\(343\) 6.03159 0.325675
\(344\) −0.138361 0.425830i −0.00745990 0.0229592i
\(345\) −10.8552 9.83884i −0.584427 0.529705i
\(346\) 0.815138 2.50874i 0.0438221 0.134870i
\(347\) −2.72201 + 8.37747i −0.146125 + 0.449726i −0.997154 0.0753923i \(-0.975979\pi\)
0.851029 + 0.525119i \(0.175979\pi\)
\(348\) 28.3206 20.5761i 1.51814 1.10299i
\(349\) 4.45931 0.238701 0.119351 0.992852i \(-0.461919\pi\)
0.119351 + 0.992852i \(0.461919\pi\)
\(350\) −0.174578 1.77293i −0.00933159 0.0947673i
\(351\) 66.0336 3.52461
\(352\) −3.37892 + 2.45493i −0.180097 + 0.130848i
\(353\) −5.74969 + 17.6957i −0.306025 + 0.941848i 0.673268 + 0.739399i \(0.264890\pi\)
−0.979293 + 0.202449i \(0.935110\pi\)
\(354\) −0.512584 + 1.57757i −0.0272435 + 0.0838470i
\(355\) 0.403373 + 1.92885i 0.0214088 + 0.102372i
\(356\) −3.59173 11.0542i −0.190361 0.585872i
\(357\) −10.7490 −0.568896
\(358\) 0.115533 + 0.355575i 0.00610613 + 0.0187927i
\(359\) 20.6888 + 15.0313i 1.09191 + 0.793321i 0.979721 0.200365i \(-0.0642129\pi\)
0.112192 + 0.993687i \(0.464213\pi\)
\(360\) 1.19021 + 5.69134i 0.0627296 + 0.299960i
\(361\) 5.54574 4.02922i 0.291881 0.212064i
\(362\) −0.880771 0.639918i −0.0462923 0.0336333i
\(363\) 2.18245 + 1.58564i 0.114549 + 0.0832248i
\(364\) 35.6085 25.8711i 1.86639 1.35601i
\(365\) −10.1454 + 22.5871i −0.531035 + 1.18226i
\(366\) −0.104775 0.0761238i −0.00547670 0.00397905i
\(367\) 0.490243 + 1.50881i 0.0255905 + 0.0787594i 0.963036 0.269372i \(-0.0868162\pi\)
−0.937446 + 0.348132i \(0.886816\pi\)
\(368\) 8.41128 0.438468
\(369\) 15.7053 + 48.3358i 0.817583 + 2.51626i
\(370\) −1.48655 + 0.851766i −0.0772823 + 0.0442812i
\(371\) 11.3834 35.0345i 0.590997 1.81890i
\(372\) −2.64188 + 8.13087i −0.136975 + 0.421566i
\(373\) −19.2024 + 13.9513i −0.994261 + 0.722373i −0.960850 0.277069i \(-0.910637\pi\)
−0.0334108 + 0.999442i \(0.510637\pi\)
\(374\) −0.350460 −0.0181219
\(375\) 32.5116 + 10.9189i 1.67889 + 0.563851i
\(376\) 1.61736 0.0834090
\(377\) −29.2936 + 21.2830i −1.50870 + 1.09613i
\(378\) 1.15166 3.54445i 0.0592350 0.182307i
\(379\) 1.43308 4.41057i 0.0736124 0.226556i −0.907480 0.420095i \(-0.861997\pi\)
0.981093 + 0.193539i \(0.0619967\pi\)
\(380\) 13.4529 7.70823i 0.690118 0.395424i
\(381\) −4.05725 12.4869i −0.207859 0.639726i
\(382\) −1.78823 −0.0914940
\(383\) −9.30640 28.6421i −0.475535 1.46355i −0.845235 0.534394i \(-0.820540\pi\)
0.369701 0.929151i \(-0.379460\pi\)
\(384\) −7.97092 5.79121i −0.406764 0.295532i
\(385\) 11.0653 24.6349i 0.563937 1.25551i
\(386\) −0.426150 + 0.309616i −0.0216905 + 0.0157590i
\(387\) −5.72344 4.15832i −0.290939 0.211379i
\(388\) −11.8478 8.60793i −0.601481 0.437001i
\(389\) −6.95352 + 5.05203i −0.352558 + 0.256148i −0.749941 0.661504i \(-0.769918\pi\)
0.397384 + 0.917653i \(0.369918\pi\)
\(390\) −0.901307 4.30986i −0.0456395 0.218238i
\(391\) 1.72797 + 1.25544i 0.0873872 + 0.0634905i
\(392\) −0.661740 2.03662i −0.0334229 0.102865i
\(393\) −10.6255 −0.535984
\(394\) 0.663649 + 2.04250i 0.0334341 + 0.102900i
\(395\) 7.00487 + 33.4958i 0.352453 + 1.68536i
\(396\) −13.5833 + 41.8052i −0.682587 + 2.10079i
\(397\) −6.99873 + 21.5399i −0.351256 + 1.08105i 0.606893 + 0.794784i \(0.292416\pi\)
−0.958149 + 0.286271i \(0.907584\pi\)
\(398\) −0.304884 + 0.221511i −0.0152825 + 0.0111034i
\(399\) −37.4600 −1.87534
\(400\) −18.0403 + 7.89048i −0.902013 + 0.394524i
\(401\) 1.77578 0.0886782 0.0443391 0.999017i \(-0.485882\pi\)
0.0443391 + 0.999017i \(0.485882\pi\)
\(402\) 1.27086 0.923334i 0.0633848 0.0460517i
\(403\) 2.73265 8.41022i 0.136123 0.418943i
\(404\) −9.32621 + 28.7031i −0.463996 + 1.42803i
\(405\) 21.3006 + 19.3062i 1.05844 + 0.959333i
\(406\) 0.631501 + 1.94356i 0.0313409 + 0.0964573i
\(407\) −25.9717 −1.28737
\(408\) −0.384548 1.18352i −0.0190380 0.0585929i
\(409\) −14.4324 10.4858i −0.713637 0.518488i 0.170708 0.985322i \(-0.445395\pi\)
−0.884345 + 0.466834i \(0.845395\pi\)
\(410\) 1.56420 0.896258i 0.0772505 0.0442630i
\(411\) 8.04524 5.84521i 0.396843 0.288323i
\(412\) 14.2680 + 10.3663i 0.702933 + 0.510711i
\(413\) 15.0759 + 10.9533i 0.741838 + 0.538977i
\(414\) −1.12622 + 0.818249i −0.0553508 + 0.0402147i
\(415\) 11.5027 + 10.4257i 0.564647 + 0.511778i
\(416\) 6.18901 + 4.49658i 0.303441 + 0.220463i
\(417\) 10.1492 + 31.2359i 0.497007 + 1.52963i
\(418\) −1.22135 −0.0597381
\(419\) −0.732042 2.25299i −0.0357626 0.110066i 0.931582 0.363532i \(-0.118429\pi\)
−0.967344 + 0.253466i \(0.918429\pi\)
\(420\) 47.5437 + 5.15496i 2.31990 + 0.251536i
\(421\) 1.53448 4.72265i 0.0747860 0.230168i −0.906675 0.421830i \(-0.861388\pi\)
0.981461 + 0.191662i \(0.0613879\pi\)
\(422\) 0.797571 2.45467i 0.0388251 0.119492i
\(423\) 20.6744 15.0209i 1.00523 0.730339i
\(424\) 4.26472 0.207113
\(425\) −4.88381 1.07166i −0.236899 0.0519830i
\(426\) 0.274878 0.0133179
\(427\) −1.17707 + 0.855193i −0.0569625 + 0.0413857i
\(428\) −7.81683 + 24.0577i −0.377841 + 1.16287i
\(429\) 20.6258 63.4798i 0.995825 3.06484i
\(430\) −0.102821 + 0.228913i −0.00495846 + 0.0110392i
\(431\) −3.94608 12.1448i −0.190076 0.584993i 0.809923 0.586536i \(-0.199509\pi\)
−0.999999 + 0.00154300i \(0.999509\pi\)
\(432\) −41.1915 −1.98183
\(433\) 10.5628 + 32.5090i 0.507617 + 1.56229i 0.796326 + 0.604868i \(0.206774\pi\)
−0.288708 + 0.957417i \(0.593226\pi\)
\(434\) −0.403772 0.293357i −0.0193817 0.0140816i
\(435\) −39.1122 4.24076i −1.87529 0.203329i
\(436\) −6.08394 + 4.42024i −0.291368 + 0.211691i
\(437\) 6.02194 + 4.37520i 0.288068 + 0.209294i
\(438\) 2.79430 + 2.03018i 0.133517 + 0.0970055i
\(439\) −7.55033 + 5.48563i −0.360357 + 0.261815i −0.753201 0.657790i \(-0.771491\pi\)
0.392844 + 0.919605i \(0.371491\pi\)
\(440\) 3.10829 + 0.337018i 0.148182 + 0.0160667i
\(441\) −27.3736 19.8881i −1.30350 0.947051i
\(442\) 0.198365 + 0.610504i 0.00943525 + 0.0290387i
\(443\) −28.4781 −1.35304 −0.676518 0.736426i \(-0.736512\pi\)
−0.676518 + 0.736426i \(0.736512\pi\)
\(444\) −14.2120 43.7401i −0.674473 2.07581i
\(445\) −5.35217 + 11.9157i −0.253717 + 0.564859i
\(446\) −0.411683 + 1.26703i −0.0194938 + 0.0599957i
\(447\) 4.02538 12.3888i 0.190394 0.585972i
\(448\) −21.9786 + 15.9684i −1.03839 + 0.754435i
\(449\) −12.8444 −0.606164 −0.303082 0.952964i \(-0.598016\pi\)
−0.303082 + 0.952964i \(0.598016\pi\)
\(450\) 1.64790 2.81145i 0.0776829 0.132533i
\(451\) 27.3284 1.28684
\(452\) 26.9589 19.5868i 1.26804 0.921284i
\(453\) 5.56530 17.1282i 0.261481 0.804755i
\(454\) −0.0628948 + 0.193570i −0.00295180 + 0.00908470i
\(455\) −49.1772 5.33207i −2.30546 0.249971i
\(456\) −1.34014 4.12454i −0.0627579 0.193149i
\(457\) 23.4349 1.09624 0.548119 0.836401i \(-0.315344\pi\)
0.548119 + 0.836401i \(0.315344\pi\)
\(458\) 0.717369 + 2.20784i 0.0335205 + 0.103165i
\(459\) −8.46218 6.14813i −0.394981 0.286970i
\(460\) −7.04089 6.38164i −0.328283 0.297545i
\(461\) −7.95922 + 5.78271i −0.370698 + 0.269328i −0.757500 0.652835i \(-0.773580\pi\)
0.386802 + 0.922163i \(0.373580\pi\)
\(462\) −3.04764 2.21424i −0.141789 0.103016i
\(463\) 26.8169 + 19.4836i 1.24629 + 0.905482i 0.998001 0.0632042i \(-0.0201319\pi\)
0.248288 + 0.968686i \(0.420132\pi\)
\(464\) 18.2732 13.2763i 0.848314 0.616336i
\(465\) 8.33657 4.77669i 0.386599 0.221514i
\(466\) 1.55874 + 1.13249i 0.0722073 + 0.0524617i
\(467\) 2.98822 + 9.19681i 0.138279 + 0.425577i 0.996086 0.0883944i \(-0.0281736\pi\)
−0.857807 + 0.513972i \(0.828174\pi\)
\(468\) 80.5131 3.72172
\(469\) −5.45339 16.7838i −0.251814 0.775004i
\(470\) −0.671647 0.608759i −0.0309807 0.0280800i
\(471\) −23.7228 + 73.0111i −1.09309 + 3.36418i
\(472\) −0.666669 + 2.05180i −0.0306859 + 0.0944416i
\(473\) −3.07757 + 2.23598i −0.141507 + 0.102811i
\(474\) 4.77345 0.219252
\(475\) −17.0200 3.73470i −0.780930 0.171360i
\(476\) −6.97197 −0.319560
\(477\) 54.5152 39.6076i 2.49608 1.81351i
\(478\) −0.530106 + 1.63150i −0.0242465 + 0.0746230i
\(479\) 6.30236 19.3967i 0.287962 0.886257i −0.697533 0.716553i \(-0.745719\pi\)
0.985495 0.169704i \(-0.0542812\pi\)
\(480\) 1.70143 + 8.13587i 0.0776592 + 0.371350i
\(481\) 14.7003 + 45.2429i 0.670277 + 2.06290i
\(482\) −1.69273 −0.0771017
\(483\) 7.09460 + 21.8349i 0.322816 + 0.993524i
\(484\) 1.41557 + 1.02848i 0.0643443 + 0.0467489i
\(485\) 3.36900 + 16.1098i 0.152978 + 0.731510i
\(486\) 0.662897 0.481623i 0.0300696 0.0218469i
\(487\) 22.3551 + 16.2419i 1.01301 + 0.735992i 0.964837 0.262847i \(-0.0846615\pi\)
0.0481687 + 0.998839i \(0.484662\pi\)
\(488\) −0.136271 0.0990068i −0.00616871 0.00448183i
\(489\) −40.0977 + 29.1327i −1.81328 + 1.31742i
\(490\) −0.491763 + 1.09483i −0.0222156 + 0.0494593i
\(491\) 1.17111 + 0.850858i 0.0528513 + 0.0383987i 0.613897 0.789386i \(-0.289601\pi\)
−0.561046 + 0.827785i \(0.689601\pi\)
\(492\) 14.9544 + 46.0249i 0.674196 + 2.07496i
\(493\) 5.73554 0.258316
\(494\) 0.691297 + 2.12759i 0.0311029 + 0.0957250i
\(495\) 42.8628 24.5595i 1.92654 1.10387i
\(496\) −1.70462 + 5.24627i −0.0765395 + 0.235564i
\(497\) 0.954258 2.93690i 0.0428043 0.131738i
\(498\) 1.75195 1.27287i 0.0785067 0.0570385i
\(499\) 41.8534 1.87361 0.936807 0.349846i \(-0.113766\pi\)
0.936807 + 0.349846i \(0.113766\pi\)
\(500\) 21.0876 + 7.08219i 0.943066 + 0.316725i
\(501\) −3.56944 −0.159471
\(502\) −0.491933 + 0.357411i −0.0219561 + 0.0159520i
\(503\) −3.88515 + 11.9573i −0.173230 + 0.533148i −0.999548 0.0300560i \(-0.990431\pi\)
0.826318 + 0.563204i \(0.190431\pi\)
\(504\) 2.81568 8.66576i 0.125420 0.386004i
\(505\) 29.4293 16.8624i 1.30959 0.750367i
\(506\) 0.231313 + 0.711908i 0.0102831 + 0.0316482i
\(507\) −82.3786 −3.65856
\(508\) −2.63160 8.09924i −0.116758 0.359346i
\(509\) 16.8778 + 12.2625i 0.748096 + 0.543524i 0.895236 0.445592i \(-0.147007\pi\)
−0.147140 + 0.989116i \(0.547007\pi\)
\(510\) −0.285772 + 0.636224i −0.0126542 + 0.0281725i
\(511\) 31.3918 22.8075i 1.38869 1.00894i
\(512\) −6.44561 4.68301i −0.284859 0.206962i
\(513\) −29.4905 21.4261i −1.30204 0.945986i
\(514\) 0.116534 0.0846668i 0.00514009 0.00373449i
\(515\) −4.05719 19.4006i −0.178781 0.854895i
\(516\) −5.44980 3.95951i −0.239914 0.174308i
\(517\) −4.24629 13.0687i −0.186751 0.574762i
\(518\) 2.68486 0.117966
\(519\) −24.5912 75.6841i −1.07944 3.32216i
\(520\) −1.17224 5.60542i −0.0514063 0.245814i
\(521\) −5.06417 + 15.5859i −0.221865 + 0.682831i 0.776729 + 0.629835i \(0.216877\pi\)
−0.998595 + 0.0529968i \(0.983123\pi\)
\(522\) −1.15517 + 3.55524i −0.0505603 + 0.155609i
\(523\) −0.912008 + 0.662613i −0.0398793 + 0.0289740i −0.607546 0.794284i \(-0.707846\pi\)
0.567667 + 0.823258i \(0.307846\pi\)
\(524\) −6.89185 −0.301072
\(525\) −35.6993 40.1756i −1.55804 1.75341i
\(526\) 1.02299 0.0446044
\(527\) −1.13323 + 0.823340i −0.0493643 + 0.0358652i
\(528\) −12.8663 + 39.5985i −0.559935 + 1.72330i
\(529\) −5.69765 + 17.5356i −0.247724 + 0.762416i
\(530\) −1.77103 1.60520i −0.0769284 0.0697255i
\(531\) 10.5337 + 32.4193i 0.457122 + 1.40688i
\(532\) −24.2972 −1.05342
\(533\) −15.4682 47.6062i −0.670001 2.06205i
\(534\) 1.47412 + 1.07101i 0.0637914 + 0.0463471i
\(535\) 24.6663 14.1333i 1.06642 0.611037i
\(536\) 1.65289 1.20089i 0.0713938 0.0518706i
\(537\) 9.12499 + 6.62970i 0.393772 + 0.286092i
\(538\) −0.652566 0.474117i −0.0281341 0.0204406i
\(539\) −14.7191 + 10.6941i −0.633998 + 0.460627i
\(540\) 34.4805 + 31.2520i 1.48380 + 1.34487i
\(541\) −37.4583 27.2150i −1.61046 1.17007i −0.862042 0.506836i \(-0.830815\pi\)
−0.748416 0.663230i \(-0.769185\pi\)
\(542\) 0.951557 + 2.92859i 0.0408729 + 0.125794i
\(543\) −32.8439 −1.40947
\(544\) −0.374460 1.15247i −0.0160548 0.0494117i
\(545\) 8.40225 + 0.911018i 0.359913 + 0.0390237i
\(546\) −2.13222 + 6.56230i −0.0912506 + 0.280840i
\(547\) 1.39011 4.27832i 0.0594369 0.182928i −0.916930 0.399049i \(-0.869340\pi\)
0.976367 + 0.216121i \(0.0693405\pi\)
\(548\) 5.21828 3.79130i 0.222914 0.161956i
\(549\) −2.66144 −0.113587
\(550\) −1.16394 1.30989i −0.0496306 0.0558538i
\(551\) 19.9882 0.851528
\(552\) −2.15033 + 1.56230i −0.0915240 + 0.0664961i
\(553\) 16.5714 51.0015i 0.704687 2.16880i
\(554\) 0.0270665 0.0833023i 0.00114995 0.00353917i
\(555\) −21.1778 + 47.1489i −0.898950 + 2.00136i
\(556\) 6.58292 + 20.2601i 0.279178 + 0.859222i
\(557\) −7.05349 −0.298866 −0.149433 0.988772i \(-0.547745\pi\)
−0.149433 + 0.988772i \(0.547745\pi\)
\(558\) −0.282118 0.868271i −0.0119430 0.0367568i
\(559\) 5.63704 + 4.09555i 0.238421 + 0.173223i
\(560\) 30.6766 + 3.32612i 1.29632 + 0.140554i
\(561\) −8.55355 + 6.21452i −0.361131 + 0.262377i
\(562\) 1.66078 + 1.20663i 0.0700558 + 0.0508985i
\(563\) 25.0272 + 18.1833i 1.05477 + 0.766335i 0.973114 0.230326i \(-0.0739792\pi\)
0.0816557 + 0.996661i \(0.473979\pi\)
\(564\) 19.6860 14.3027i 0.828929 0.602252i
\(565\) −37.2316 4.03686i −1.56635 0.169832i
\(566\) −0.105102 0.0763609i −0.00441776 0.00320969i
\(567\) −13.9213 42.8455i −0.584641 1.79934i
\(568\) 0.357507 0.0150007
\(569\) −8.02751 24.7061i −0.336531 1.03573i −0.965963 0.258680i \(-0.916713\pi\)
0.629433 0.777055i \(-0.283287\pi\)
\(570\) −0.995910 + 2.21723i −0.0417141 + 0.0928694i
\(571\) −7.75790 + 23.8764i −0.324658 + 0.999195i 0.646937 + 0.762544i \(0.276050\pi\)
−0.971595 + 0.236651i \(0.923950\pi\)
\(572\) 13.3783 41.1741i 0.559373 1.72157i
\(573\) −43.6447 + 31.7097i −1.82328 + 1.32469i
\(574\) −2.82510 −0.117917
\(575\) 1.04653 + 10.6280i 0.0436432 + 0.443220i
\(576\) −49.6950 −2.07063
\(577\) 15.0281 10.9186i 0.625630 0.454547i −0.229254 0.973367i \(-0.573628\pi\)
0.854884 + 0.518820i \(0.173628\pi\)
\(578\) 0.0314213 0.0967047i 0.00130695 0.00402239i
\(579\) −4.91062 + 15.1133i −0.204079 + 0.628089i
\(580\) −25.3688 2.75063i −1.05338 0.114214i
\(581\) −7.51779 23.1374i −0.311890 0.959900i
\(582\) 2.29580 0.0951638
\(583\) −11.1968 34.4602i −0.463723 1.42719i
\(584\) 3.63427 + 2.64045i 0.150387 + 0.109263i
\(585\) −67.0437 60.7662i −2.77191 2.51237i
\(586\) 1.04374 0.758319i 0.0431164 0.0313259i
\(587\) 10.0507 + 7.30223i 0.414835 + 0.301395i 0.775556 0.631278i \(-0.217469\pi\)
−0.360721 + 0.932674i \(0.617469\pi\)
\(588\) −26.0648 18.9372i −1.07490 0.780957i
\(589\) −3.94928 + 2.86932i −0.162727 + 0.118228i
\(590\) 1.04913 0.601129i 0.0431919 0.0247481i
\(591\) 52.4159 + 38.0824i 2.15610 + 1.56650i
\(592\) −9.17000 28.2224i −0.376885 1.15993i
\(593\) −11.3916 −0.467798 −0.233899 0.972261i \(-0.575149\pi\)
−0.233899 + 0.972261i \(0.575149\pi\)
\(594\) −1.13278 3.48634i −0.0464786 0.143046i
\(595\) 5.80559 + 5.26200i 0.238006 + 0.215721i
\(596\) 2.61093 8.03561i 0.106948 0.329151i
\(597\) −3.51325 + 10.8127i −0.143788 + 0.442534i
\(598\) 1.10922 0.805897i 0.0453594 0.0329556i
\(599\) −9.85014 −0.402466 −0.201233 0.979543i \(-0.564495\pi\)
−0.201233 + 0.979543i \(0.564495\pi\)
\(600\) 3.14638 5.36797i 0.128451 0.219146i
\(601\) −4.57552 −0.186640 −0.0933198 0.995636i \(-0.529748\pi\)
−0.0933198 + 0.995636i \(0.529748\pi\)
\(602\) 0.318147 0.231147i 0.0129667 0.00942086i
\(603\) 9.97555 30.7016i 0.406236 1.25027i
\(604\) 3.60975 11.1097i 0.146879 0.452046i
\(605\) −0.402528 1.92480i −0.0163651 0.0782544i
\(606\) −1.46204 4.49969i −0.0593912 0.182787i
\(607\) −28.2904 −1.14827 −0.574136 0.818760i \(-0.694662\pi\)
−0.574136 + 0.818760i \(0.694662\pi\)
\(608\) −1.30498 4.01633i −0.0529241 0.162884i
\(609\) 49.8769 + 36.2377i 2.02111 + 1.46842i
\(610\) 0.0193246 + 0.0924061i 0.000782430 + 0.00374141i
\(611\) −20.3623 + 14.7941i −0.823772 + 0.598506i
\(612\) −10.3177 7.49626i −0.417069 0.303018i
\(613\) −9.10967 6.61856i −0.367936 0.267321i 0.388418 0.921483i \(-0.373022\pi\)
−0.756355 + 0.654162i \(0.773022\pi\)
\(614\) −0.535424 + 0.389008i −0.0216079 + 0.0156991i
\(615\) 22.2841 49.6117i 0.898580 2.00054i
\(616\) −3.96377 2.87985i −0.159705 0.116032i
\(617\) 12.0516 + 37.0910i 0.485179 + 1.49323i 0.831721 + 0.555194i \(0.187356\pi\)
−0.346542 + 0.938035i \(0.612644\pi\)
\(618\) −2.76477 −0.111215
\(619\) 10.8378 + 33.3552i 0.435607 + 1.34066i 0.892463 + 0.451120i \(0.148975\pi\)
−0.456857 + 0.889540i \(0.651025\pi\)
\(620\) 5.40724 3.09824i 0.217160 0.124428i
\(621\) −6.90375 + 21.2476i −0.277038 + 0.852635i
\(622\) −0.858699 + 2.64281i −0.0344307 + 0.105967i
\(623\) 16.5606 12.0320i 0.663487 0.482051i
\(624\) 76.2633 3.05297
\(625\) −12.2145 21.8130i −0.488582 0.872518i
\(626\) −0.875497 −0.0349919
\(627\) −29.8089 + 21.6575i −1.19045 + 0.864916i
\(628\) −15.3870 + 47.3562i −0.614007 + 1.88972i
\(629\) 2.32855 7.16654i 0.0928454 0.285749i
\(630\) −4.43099 + 2.53887i −0.176535 + 0.101151i
\(631\) −10.0023 30.7838i −0.398184 1.22548i −0.926454 0.376407i \(-0.877159\pi\)
0.528271 0.849076i \(-0.322841\pi\)
\(632\) 6.20837 0.246956
\(633\) −24.0613 74.0530i −0.956350 2.94334i
\(634\) −1.88078 1.36647i −0.0746954 0.0542694i
\(635\) −3.92145 + 8.73044i −0.155618 + 0.346457i
\(636\) 51.9088 37.7140i 2.05832 1.49546i
\(637\) 26.9604 + 19.5878i 1.06821 + 0.776099i
\(638\) 1.62619 + 1.18150i 0.0643814 + 0.0467758i
\(639\) 4.56995 3.32027i 0.180785 0.131348i
\(640\) 1.47014 + 7.02991i 0.0581125 + 0.277882i
\(641\) −18.2799 13.2811i −0.722012 0.524573i 0.165014 0.986291i \(-0.447233\pi\)
−0.887026 + 0.461719i \(0.847233\pi\)
\(642\) −1.22542 3.77144i −0.0483633 0.148847i
\(643\) −40.4702 −1.59599 −0.797995 0.602664i \(-0.794106\pi\)
−0.797995 + 0.602664i \(0.794106\pi\)
\(644\) 4.60168 + 14.1625i 0.181331 + 0.558081i
\(645\) 1.54968 + 7.41026i 0.0610188 + 0.291779i
\(646\) 0.109503 0.337014i 0.00430832 0.0132596i
\(647\) −6.98023 + 21.4829i −0.274421 + 0.844582i 0.714951 + 0.699175i \(0.246449\pi\)
−0.989372 + 0.145407i \(0.953551\pi\)
\(648\) 4.21946 3.06562i 0.165756 0.120429i
\(649\) 18.3294 0.719492
\(650\) −1.62303 + 2.76900i −0.0636603 + 0.108609i
\(651\) −15.0566 −0.590116
\(652\) −26.0080 + 18.8959i −1.01855 + 0.740021i
\(653\) 1.38336 4.25754i 0.0541350 0.166610i −0.920334 0.391134i \(-0.872083\pi\)
0.974469 + 0.224524i \(0.0720827\pi\)
\(654\) 0.364303 1.12121i 0.0142454 0.0438428i
\(655\) 5.73888 + 5.20153i 0.224237 + 0.203241i
\(656\) 9.64899 + 29.6966i 0.376730 + 1.15946i
\(657\) 70.9789 2.76915
\(658\) 0.438964 + 1.35099i 0.0171126 + 0.0526672i
\(659\) 8.34203 + 6.06084i 0.324959 + 0.236097i 0.738289 0.674485i \(-0.235634\pi\)
−0.413329 + 0.910582i \(0.635634\pi\)
\(660\) 40.8135 23.3853i 1.58866 0.910272i
\(661\) −8.70879 + 6.32731i −0.338733 + 0.246104i −0.744127 0.668038i \(-0.767134\pi\)
0.405394 + 0.914142i \(0.367134\pi\)
\(662\) 0.104315 + 0.0757892i 0.00405431 + 0.00294563i
\(663\) 15.6671 + 11.3828i 0.608461 + 0.442073i
\(664\) 2.27859 1.65549i 0.0884265 0.0642456i
\(665\) 20.2324 + 18.3380i 0.784578 + 0.711116i
\(666\) 3.97328 + 2.88676i 0.153962 + 0.111860i
\(667\) −3.78560 11.6509i −0.146579 0.451124i
\(668\) −2.31520 −0.0895777
\(669\) 12.4197 + 38.2241i 0.480175 + 1.47783i
\(670\) −1.13840 0.123432i −0.0439804 0.00476859i
\(671\) −0.442231 + 1.36105i −0.0170721 + 0.0525426i
\(672\) 4.02506 12.3879i 0.155270 0.477872i
\(673\) 6.99014 5.07864i 0.269450 0.195767i −0.444853 0.895604i \(-0.646744\pi\)
0.714303 + 0.699837i \(0.246744\pi\)
\(674\) 1.39300 0.0536563
\(675\) −5.12503 52.0474i −0.197262 2.00331i
\(676\) −53.4321 −2.05508
\(677\) −6.90715 + 5.01834i −0.265464 + 0.192871i −0.712552 0.701619i \(-0.752461\pi\)
0.447089 + 0.894490i \(0.352461\pi\)
\(678\) −1.61428 + 4.96825i −0.0619962 + 0.190805i
\(679\) 7.97002 24.5292i 0.305861 0.941345i
\(680\) −0.371676 + 0.827475i −0.0142531 + 0.0317322i
\(681\) 1.89742 + 5.83967i 0.0727094 + 0.223777i
\(682\) −0.490907 −0.0187978
\(683\) −1.15887 3.56664i −0.0443430 0.136474i 0.926434 0.376458i \(-0.122858\pi\)
−0.970777 + 0.239984i \(0.922858\pi\)
\(684\) −35.9570 26.1243i −1.37485 0.998888i
\(685\) −7.20672 0.781392i −0.275355 0.0298555i
\(686\) −0.496171 + 0.360489i −0.0189439 + 0.0137635i
\(687\) 56.6588 + 41.1650i 2.16167 + 1.57054i
\(688\) −3.51636 2.55479i −0.134060 0.0974004i
\(689\) −53.6923 + 39.0097i −2.04551 + 1.48615i
\(690\) 1.48101 + 0.160579i 0.0563811 + 0.00611315i
\(691\) −24.3153 17.6661i −0.924996 0.672049i 0.0197667 0.999805i \(-0.493708\pi\)
−0.944762 + 0.327756i \(0.893708\pi\)
\(692\) −15.9503 49.0900i −0.606339 1.86612i
\(693\) −77.4142 −2.94072
\(694\) −0.276777 0.851833i −0.0105063 0.0323351i
\(695\) 9.80945 21.8391i 0.372094 0.828404i
\(696\) −2.20559 + 6.78811i −0.0836027 + 0.257303i
\(697\) −2.45018 + 7.54088i −0.0928073 + 0.285631i
\(698\) −0.366832 + 0.266519i −0.0138848 + 0.0100879i
\(699\) 58.1254 2.19851
\(700\) −23.1551 26.0585i −0.875182 0.984920i
\(701\) −48.3478 −1.82607 −0.913036 0.407878i \(-0.866269\pi\)
−0.913036 + 0.407878i \(0.866269\pi\)
\(702\) −5.43206 + 3.94662i −0.205020 + 0.148956i
\(703\) 8.11496 24.9753i 0.306061 0.941960i
\(704\) −8.25745 + 25.4138i −0.311214 + 0.957819i
\(705\) −27.1874 2.94781i −1.02394 0.111021i
\(706\) −0.584636 1.79933i −0.0220031 0.0677185i
\(707\) −53.1521 −1.99899
\(708\) 10.0300 + 30.8693i 0.376952 + 1.16014i
\(709\) −20.6521 15.0046i −0.775605 0.563510i 0.128052 0.991768i \(-0.459128\pi\)
−0.903657 + 0.428257i \(0.859128\pi\)
\(710\) −0.148463 0.134562i −0.00557172 0.00505003i
\(711\) 79.3606 57.6588i 2.97625 2.16238i
\(712\) 1.91724 + 1.39296i 0.0718518 + 0.0522034i
\(713\) 2.42045 + 1.75856i 0.0906466 + 0.0658586i
\(714\) 0.884232 0.642432i 0.0330916 0.0240424i
\(715\) −42.2157 + 24.1888i −1.57878 + 0.904609i
\(716\) 5.91862 + 4.30013i 0.221189 + 0.160703i
\(717\) 15.9924 + 49.2194i 0.597245 + 1.83813i
\(718\) −2.60027 −0.0970414
\(719\) 10.0406 + 30.9019i 0.374452 + 1.15245i 0.943847 + 0.330382i \(0.107178\pi\)
−0.569395 + 0.822064i \(0.692822\pi\)
\(720\) 41.8216 + 37.9058i 1.55860 + 1.41266i
\(721\) −9.59809 + 29.5399i −0.357451 + 1.10012i
\(722\) −0.215390 + 0.662902i −0.00801599 + 0.0246707i
\(723\) −41.3138 + 30.0162i −1.53648 + 1.11632i
\(724\) −21.3031 −0.791724
\(725\) 19.0487 + 21.4372i 0.707453 + 0.796159i
\(726\) −0.274302 −0.0101803
\(727\) 8.08668 5.87531i 0.299918 0.217903i −0.427640 0.903949i \(-0.640655\pi\)
0.727558 + 0.686046i \(0.240655\pi\)
\(728\) −2.77317 + 8.53495i −0.102781 + 0.316326i
\(729\) −4.27989 + 13.1722i −0.158515 + 0.487858i
\(730\) −0.515375 2.46442i −0.0190749 0.0912121i
\(731\) −0.341063 1.04968i −0.0126147 0.0388240i
\(732\) −2.53419 −0.0936664
\(733\) 5.39987 + 16.6191i 0.199449 + 0.613841i 0.999896 + 0.0144369i \(0.00459556\pi\)
−0.800447 + 0.599404i \(0.795404\pi\)
\(734\) −0.130505 0.0948176i −0.00481704 0.00349978i
\(735\) 7.41170 + 35.4412i 0.273385 + 1.30727i
\(736\) −2.09391 + 1.52132i −0.0771827 + 0.0560765i
\(737\) −14.0431 10.2029i −0.517284 0.375829i
\(738\) −4.18082 3.03755i −0.153898 0.111814i
\(739\) 17.0472 12.3855i 0.627092 0.455609i −0.228300 0.973591i \(-0.573317\pi\)
0.855391 + 0.517982i \(0.173317\pi\)
\(740\) −13.7363 + 30.5816i −0.504957 + 1.12420i
\(741\) 54.5996 + 39.6690i 2.00577 + 1.45728i
\(742\) 1.15748 + 3.56236i 0.0424924 + 0.130778i
\(743\) −34.1552 −1.25303 −0.626517 0.779408i \(-0.715520\pi\)
−0.626517 + 0.779408i \(0.715520\pi\)
\(744\) −0.538656 1.65781i −0.0197481 0.0607783i
\(745\) −8.23890 + 4.72073i −0.301850 + 0.172954i
\(746\) 0.745797 2.29533i 0.0273056 0.0840380i
\(747\) 13.7518 42.3238i 0.503153 1.54855i
\(748\) −5.54797 + 4.03084i −0.202854 + 0.147382i
\(749\) −44.5497 −1.62781
\(750\) −3.32706 + 1.04490i −0.121487 + 0.0381545i
\(751\) 14.7168 0.537025 0.268512 0.963276i \(-0.413468\pi\)
0.268512 + 0.963276i \(0.413468\pi\)
\(752\) 12.7020 9.22851i 0.463193 0.336529i
\(753\) −5.66866 + 17.4463i −0.206578 + 0.635780i
\(754\) 1.13773 3.50157i 0.0414337 0.127520i
\(755\) −11.3907 + 6.52666i −0.414551 + 0.237529i
\(756\) −22.5352 69.3563i −0.819599 2.52247i
\(757\) −36.4500 −1.32480 −0.662400 0.749151i \(-0.730462\pi\)
−0.662400 + 0.749151i \(0.730462\pi\)
\(758\) 0.145718 + 0.448473i 0.00529270 + 0.0162893i
\(759\) 18.2694 + 13.2735i 0.663138 + 0.481798i
\(760\) −1.29528 + 2.88373i −0.0469849 + 0.104604i
\(761\) 25.1638 18.2826i 0.912187 0.662743i −0.0293800 0.999568i \(-0.509353\pi\)
0.941567 + 0.336826i \(0.109353\pi\)
\(762\) 1.08006 + 0.784712i 0.0391265 + 0.0284271i
\(763\) −10.7148 7.78472i −0.387900 0.281826i
\(764\) −28.3087 + 20.5675i −1.02417 + 0.744105i
\(765\) 2.93391 + 14.0293i 0.106076 + 0.507232i
\(766\) 2.47741 + 1.79995i 0.0895126 + 0.0650347i
\(767\) −10.3747 31.9299i −0.374607 1.15292i
\(768\) −46.5631 −1.68020
\(769\) 10.1720 + 31.3062i 0.366812 + 1.12893i 0.948839 + 0.315761i \(0.102260\pi\)
−0.582027 + 0.813169i \(0.697740\pi\)
\(770\) 0.562102 + 2.68785i 0.0202567 + 0.0968635i
\(771\) 1.34285 4.13286i 0.0483614 0.148841i