Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [425,2,Mod(86,425)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([8, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("425.86");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.k (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.39364208590\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
86.1 | −2.14699 | + | 1.55988i | −0.173809 | + | 0.534928i | 1.55831 | − | 4.79598i | 0.731696 | − | 2.11297i | −0.461258 | − | 1.41961i | −2.73519 | 2.49532 | + | 7.67982i | 2.17111 | + | 1.57741i | 1.72503 | + | 5.67787i | ||
86.2 | −1.99102 | + | 1.44656i | −0.829805 | + | 2.55388i | 1.25360 | − | 3.85817i | 2.22585 | + | 0.213537i | −2.04218 | − | 6.28519i | 1.62088 | 1.56414 | + | 4.81394i | −3.40666 | − | 2.47508i | −4.74061 | + | 2.79467i | ||
86.3 | −1.72275 | + | 1.25165i | −0.0844546 | + | 0.259925i | 0.783211 | − | 2.41047i | −2.13220 | − | 0.673604i | −0.179841 | − | 0.553494i | 0.609651 | 0.351734 | + | 1.08253i | 2.36662 | + | 1.71945i | 4.51637 | − | 1.50832i | ||
86.4 | −1.57449 | + | 1.14393i | 0.469321 | − | 1.44442i | 0.552396 | − | 1.70010i | 1.75698 | + | 1.38313i | 0.913380 | + | 2.81109i | −0.139793 | −0.127742 | − | 0.393149i | 0.560961 | + | 0.407562i | −4.34854 | − | 0.167852i | ||
86.5 | −1.52182 | + | 1.10567i | 0.721199 | − | 2.21962i | 0.475405 | − | 1.46315i | −0.865877 | + | 2.06162i | 1.35663 | + | 4.17527i | −1.25766 | −0.268296 | − | 0.825730i | −1.97954 | − | 1.43822i | −0.961753 | − | 4.09478i | ||
86.6 | −0.993656 | + | 0.721933i | −0.866619 | + | 2.66718i | −0.151870 | + | 0.467407i | −0.180116 | − | 2.22880i | −1.06440 | − | 3.27590i | 1.50469 | −0.945616 | − | 2.91031i | −3.93577 | − | 2.85950i | 1.78802 | + | 2.08463i | ||
86.7 | −0.762747 | + | 0.554168i | −0.324602 | + | 0.999022i | −0.343353 | + | 1.05673i | −1.44286 | + | 1.70826i | −0.306037 | − | 0.941886i | −2.98759 | −0.906403 | − | 2.78962i | 1.53437 | + | 1.11479i | 0.153870 | − | 2.10256i | ||
86.8 | −0.422163 | + | 0.306719i | 0.519515 | − | 1.59890i | −0.533889 | + | 1.64314i | 0.360883 | − | 2.20675i | 0.271094 | + | 0.834342i | 3.01247 | −0.601098 | − | 1.84999i | 0.140459 | + | 0.102050i | 0.524502 | + | 1.04230i | ||
86.9 | −0.135768 | + | 0.0986414i | −0.267848 | + | 0.824353i | −0.609331 | + | 1.87533i | 1.96067 | + | 1.07508i | −0.0449500 | − | 0.138342i | 2.33732 | −0.205975 | − | 0.633926i | 1.81924 | + | 1.32175i | −0.372243 | + | 0.0474416i | ||
86.10 | −0.0822620 | + | 0.0597668i | −0.947924 | + | 2.91741i | −0.614839 | + | 1.89228i | 1.94015 | − | 1.11167i | −0.0963862 | − | 0.296646i | −3.50410 | −0.125360 | − | 0.385819i | −5.18567 | − | 3.76761i | −0.0931599 | + | 0.207405i | ||
86.11 | 0.364820 | − | 0.265058i | −0.632459 | + | 1.94651i | −0.555196 | + | 1.70872i | −2.23395 | + | 0.0971993i | 0.285203 | + | 0.877764i | 4.23898 | 0.529060 | + | 1.62828i | −0.961836 | − | 0.698814i | −0.789229 | + | 0.627587i | ||
86.12 | 0.419644 | − | 0.304889i | 1.00213 | − | 3.08423i | −0.534891 | + | 1.64622i | −2.22841 | + | 0.184895i | −0.519812 | − | 1.59982i | −3.33055 | 0.598031 | + | 1.84055i | −6.08119 | − | 4.41824i | −0.878766 | + | 0.757007i | ||
86.13 | 0.545657 | − | 0.396443i | 0.335346 | − | 1.03209i | −0.477459 | + | 1.46947i | 1.35235 | + | 1.78077i | −0.226180 | − | 0.696112i | −5.02070 | 0.738877 | + | 2.27403i | 1.47430 | + | 1.07114i | 1.44389 | + | 0.435563i | ||
86.14 | 1.02591 | − | 0.745371i | 0.735912 | − | 2.26490i | −0.121110 | + | 0.372740i | 1.39980 | − | 1.74372i | −0.933210 | − | 2.87212i | −0.795166 | 0.937309 | + | 2.88474i | −2.16117 | − | 1.57018i | 0.136361 | − | 2.83228i | ||
86.15 | 1.15223 | − | 0.837145i | −0.390637 | + | 1.20226i | 0.00879129 | − | 0.0270568i | −0.580418 | − | 2.15942i | 0.556359 | + | 1.71230i | 0.714392 | 0.867706 | + | 2.67052i | 1.13423 | + | 0.824064i | −2.47653 | − | 2.00226i | ||
86.16 | 1.58361 | − | 1.15056i | 0.0586727 | − | 0.180576i | 0.565999 | − | 1.74196i | 0.00528892 | + | 2.23606i | −0.114849 | − | 0.353468i | 2.20909 | 0.101857 | + | 0.313482i | 2.39789 | + | 1.74217i | 2.58110 | + | 3.53497i | ||
86.17 | 1.64574 | − | 1.19570i | −0.929019 | + | 2.85923i | 0.660733 | − | 2.03353i | −2.22620 | − | 0.209856i | 1.88986 | + | 5.81638i | −4.33298 | −0.0868601 | − | 0.267328i | −4.88505 | − | 3.54920i | −3.91468 | + | 2.31650i | ||
86.18 | 2.03533 | − | 1.47876i | 0.0964356 | − | 0.296798i | 1.33783 | − | 4.11742i | 1.48564 | − | 1.67119i | −0.242614 | − | 0.746689i | −1.80284 | −1.81087 | − | 5.57328i | 2.34826 | + | 1.70611i | 0.552492 | − | 5.59833i | ||
86.19 | 2.08118 | − | 1.51206i | 0.601438 | − | 1.85103i | 1.42693 | − | 4.39163i | −1.88021 | + | 1.21030i | −1.54718 | − | 4.76174i | −1.15333 | −2.08086 | − | 6.40424i | −0.637551 | − | 0.463208i | −2.08299 | + | 5.36184i | ||
86.20 | 2.11757 | − | 1.53851i | −0.828858 | + | 2.55096i | 1.49908 | − | 4.61370i | 0.550931 | + | 2.16714i | 2.16951 | + | 6.67705i | 2.04850 | −2.30611 | − | 7.09748i | −3.39335 | − | 2.46541i | 4.50079 | + | 3.74146i | ||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 425.2.k.c | ✓ | 80 |
25.d | even | 5 | 1 | inner | 425.2.k.c | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
425.2.k.c | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
425.2.k.c | ✓ | 80 | 25.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{80} - 2 T_{2}^{79} + 32 T_{2}^{78} - 69 T_{2}^{77} + 604 T_{2}^{76} - 1244 T_{2}^{75} + \cdots + 121 \) acting on \(S_{2}^{\mathrm{new}}(425, [\chi])\).