gp: [N,k,chi] = [425,2,Mod(86,425)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("425.86");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([8, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [76]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{76} + 6 T_{2}^{75} + 50 T_{2}^{74} + 226 T_{2}^{73} + 1177 T_{2}^{72} + 4356 T_{2}^{71} + \cdots + 5958450481 \)
T2^76 + 6*T2^75 + 50*T2^74 + 226*T2^73 + 1177*T2^72 + 4356*T2^71 + 17819*T2^70 + 56699*T2^69 + 199970*T2^68 + 570617*T2^67 + 1820266*T2^66 + 4784657*T2^65 + 14181066*T2^64 + 34774718*T2^63 + 96938281*T2^62 + 222614929*T2^61 + 587969086*T2^60 + 1270005239*T2^59 + 3199830966*T2^58 + 6523958461*T2^57 + 15780377703*T2^56 + 30408067909*T2^55 + 70820975350*T2^54 + 128819909888*T2^53 + 289527186749*T2^52 + 496955577777*T2^51 + 1081602951823*T2^50 + 1748866892506*T2^49 + 3701156509317*T2^48 + 5620937278795*T2^47 + 11583831203771*T2^46 + 16434297312917*T2^45 + 33105857641520*T2^44 + 43604165526894*T2^43 + 86438422239100*T2^42 + 104791321452461*T2^41 + 206050263938135*T2^40 + 227006344999988*T2^39 + 446268875683327*T2^38 + 436897878578383*T2^37 + 874798261810290*T2^36 + 737401271365914*T2^35 + 1550331124483394*T2^34 + 1070336481692217*T2^33 + 2477460469076985*T2^32 + 1269225063636204*T2^31 + 3539892118226681*T2^30 + 1043188910733895*T2^29 + 4525500096107299*T2^28 + 217063205832137*T2^27 + 5291721246415370*T2^26 - 1036135342766345*T2^25 + 5806872927340723*T2^24 - 2308293726046059*T2^23 + 5899022648386689*T2^22 - 3246575686349457*T2^21 + 5302060436011223*T2^20 - 3319487097290172*T2^19 + 4036593809639098*T2^18 - 2500194805589315*T2^17 + 2459892075073908*T2^16 - 1412076319340079*T2^15 + 1214615604445591*T2^14 - 673761436574594*T2^13 + 517066313636467*T2^12 - 280743039741923*T2^11 + 196744367919377*T2^10 - 92017512037405*T2^9 + 48440397962148*T2^8 - 16931912452078*T2^7 + 8235154487066*T2^6 - 3513116269854*T2^5 + 1861227119431*T2^4 - 660045018165*T2^3 + 214174900427*T2^2 - 37523857347*T2 + 5958450481
acting on \(S_{2}^{\mathrm{new}}(425, [\chi])\).