Properties

Label 425.2.k.a.86.1
Level $425$
Weight $2$
Character 425.86
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 86.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 425.86
Dual form 425.2.k.a.341.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.11803 - 1.53884i) q^{2} +(-0.309017 + 0.951057i) q^{3} +(1.50000 - 4.61653i) q^{4} +(-1.80902 - 1.31433i) q^{5} +(0.809017 + 2.48990i) q^{6} +2.38197 q^{7} +(-2.30902 - 7.10642i) q^{8} +(1.61803 + 1.17557i) q^{9} -5.85410 q^{10} +(1.00000 - 0.726543i) q^{11} +(3.92705 + 2.85317i) q^{12} +(-3.92705 - 2.85317i) q^{13} +(5.04508 - 3.66547i) q^{14} +(1.80902 - 1.31433i) q^{15} +(-7.97214 - 5.79210i) q^{16} +(0.309017 + 0.951057i) q^{17} +5.23607 q^{18} +(-0.572949 - 1.76336i) q^{19} +(-8.78115 + 6.37988i) q^{20} +(-0.736068 + 2.26538i) q^{21} +(1.00000 - 3.07768i) q^{22} +(1.80902 - 1.31433i) q^{23} +7.47214 q^{24} +(1.54508 + 4.75528i) q^{25} -12.7082 q^{26} +(-4.04508 + 2.93893i) q^{27} +(3.57295 - 10.9964i) q^{28} +(-2.66312 + 8.19624i) q^{29} +(1.80902 - 5.56758i) q^{30} +(1.78115 + 5.48183i) q^{31} -10.8541 q^{32} +(0.381966 + 1.17557i) q^{33} +(2.11803 + 1.53884i) q^{34} +(-4.30902 - 3.13068i) q^{35} +(7.85410 - 5.70634i) q^{36} +(6.42705 + 4.66953i) q^{37} +(-3.92705 - 2.85317i) q^{38} +(3.92705 - 2.85317i) q^{39} +(-5.16312 + 15.8904i) q^{40} +(5.23607 + 3.80423i) q^{41} +(1.92705 + 5.93085i) q^{42} -0.145898 q^{43} +(-1.85410 - 5.70634i) q^{44} +(-1.38197 - 4.25325i) q^{45} +(1.80902 - 5.56758i) q^{46} +(0.118034 - 0.363271i) q^{47} +(7.97214 - 5.79210i) q^{48} -1.32624 q^{49} +(10.5902 + 7.69421i) q^{50} -1.00000 q^{51} +(-19.0623 + 13.8496i) q^{52} +(2.54508 - 7.83297i) q^{53} +(-4.04508 + 12.4495i) q^{54} -2.76393 q^{55} +(-5.50000 - 16.9273i) q^{56} +1.85410 q^{57} +(6.97214 + 21.4580i) q^{58} +(-7.59017 - 5.51458i) q^{59} +(-3.35410 - 10.3229i) q^{60} +(4.04508 - 2.93893i) q^{61} +(12.2082 + 8.86978i) q^{62} +(3.85410 + 2.80017i) q^{63} +(-7.04508 + 5.11855i) q^{64} +(3.35410 + 10.3229i) q^{65} +(2.61803 + 1.90211i) q^{66} +(3.52786 + 10.8576i) q^{67} +4.85410 q^{68} +(0.690983 + 2.12663i) q^{69} -13.9443 q^{70} +(0.354102 - 1.08981i) q^{71} +(4.61803 - 14.2128i) q^{72} +(-7.28115 + 5.29007i) q^{73} +20.7984 q^{74} -5.00000 q^{75} -9.00000 q^{76} +(2.38197 - 1.73060i) q^{77} +(3.92705 - 12.0862i) q^{78} +(-2.80902 + 8.64527i) q^{79} +(6.80902 + 20.9560i) q^{80} +(0.309017 + 0.951057i) q^{81} +16.9443 q^{82} +(-3.69098 - 11.3597i) q^{83} +(9.35410 + 6.79615i) q^{84} +(0.690983 - 2.12663i) q^{85} +(-0.309017 + 0.224514i) q^{86} +(-6.97214 - 5.06555i) q^{87} +(-7.47214 - 5.42882i) q^{88} +(2.61803 - 1.90211i) q^{89} +(-9.47214 - 6.88191i) q^{90} +(-9.35410 - 6.79615i) q^{91} +(-3.35410 - 10.3229i) q^{92} -5.76393 q^{93} +(-0.309017 - 0.951057i) q^{94} +(-1.28115 + 3.94298i) q^{95} +(3.35410 - 10.3229i) q^{96} +(4.59017 - 14.1271i) q^{97} +(-2.80902 + 2.04087i) q^{98} +2.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + q^{3} + 6 q^{4} - 5 q^{5} + q^{6} + 14 q^{7} - 7 q^{8} + 2 q^{9} - 10 q^{10} + 4 q^{11} + 9 q^{12} - 9 q^{13} + 9 q^{14} + 5 q^{15} - 14 q^{16} - q^{17} + 12 q^{18} - 9 q^{19} - 15 q^{20}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11803 1.53884i 1.49768 1.08813i 0.526381 0.850249i \(-0.323549\pi\)
0.971295 0.237877i \(-0.0764514\pi\)
\(3\) −0.309017 + 0.951057i −0.178411 + 0.549093i −0.999773 0.0213149i \(-0.993215\pi\)
0.821362 + 0.570408i \(0.193215\pi\)
\(4\) 1.50000 4.61653i 0.750000 2.30826i
\(5\) −1.80902 1.31433i −0.809017 0.587785i
\(6\) 0.809017 + 2.48990i 0.330280 + 1.01650i
\(7\) 2.38197 0.900299 0.450149 0.892953i \(-0.351371\pi\)
0.450149 + 0.892953i \(0.351371\pi\)
\(8\) −2.30902 7.10642i −0.816361 2.51250i
\(9\) 1.61803 + 1.17557i 0.539345 + 0.391857i
\(10\) −5.85410 −1.85123
\(11\) 1.00000 0.726543i 0.301511 0.219061i −0.426734 0.904377i \(-0.640336\pi\)
0.728246 + 0.685316i \(0.240336\pi\)
\(12\) 3.92705 + 2.85317i 1.13364 + 0.823639i
\(13\) −3.92705 2.85317i −1.08917 0.791327i −0.109909 0.993942i \(-0.535056\pi\)
−0.979259 + 0.202615i \(0.935056\pi\)
\(14\) 5.04508 3.66547i 1.34836 0.979638i
\(15\) 1.80902 1.31433i 0.467086 0.339358i
\(16\) −7.97214 5.79210i −1.99303 1.44802i
\(17\) 0.309017 + 0.951057i 0.0749476 + 0.230665i
\(18\) 5.23607 1.23415
\(19\) −0.572949 1.76336i −0.131444 0.404542i 0.863576 0.504218i \(-0.168219\pi\)
−0.995020 + 0.0996765i \(0.968219\pi\)
\(20\) −8.78115 + 6.37988i −1.96353 + 1.42658i
\(21\) −0.736068 + 2.26538i −0.160623 + 0.494347i
\(22\) 1.00000 3.07768i 0.213201 0.656164i
\(23\) 1.80902 1.31433i 0.377206 0.274056i −0.382987 0.923754i \(-0.625104\pi\)
0.760193 + 0.649698i \(0.225104\pi\)
\(24\) 7.47214 1.52524
\(25\) 1.54508 + 4.75528i 0.309017 + 0.951057i
\(26\) −12.7082 −2.49228
\(27\) −4.04508 + 2.93893i −0.778477 + 0.565597i
\(28\) 3.57295 10.9964i 0.675224 2.07813i
\(29\) −2.66312 + 8.19624i −0.494529 + 1.52200i 0.323161 + 0.946344i \(0.395254\pi\)
−0.817690 + 0.575659i \(0.804746\pi\)
\(30\) 1.80902 5.56758i 0.330280 1.01650i
\(31\) 1.78115 + 5.48183i 0.319905 + 0.984565i 0.973688 + 0.227884i \(0.0731805\pi\)
−0.653784 + 0.756681i \(0.726819\pi\)
\(32\) −10.8541 −1.91875
\(33\) 0.381966 + 1.17557i 0.0664917 + 0.204641i
\(34\) 2.11803 + 1.53884i 0.363240 + 0.263909i
\(35\) −4.30902 3.13068i −0.728357 0.529182i
\(36\) 7.85410 5.70634i 1.30902 0.951057i
\(37\) 6.42705 + 4.66953i 1.05660 + 0.767665i 0.973456 0.228872i \(-0.0735038\pi\)
0.0831442 + 0.996538i \(0.473504\pi\)
\(38\) −3.92705 2.85317i −0.637052 0.462845i
\(39\) 3.92705 2.85317i 0.628831 0.456873i
\(40\) −5.16312 + 15.8904i −0.816361 + 2.51250i
\(41\) 5.23607 + 3.80423i 0.817736 + 0.594120i 0.916063 0.401034i \(-0.131349\pi\)
−0.0983268 + 0.995154i \(0.531349\pi\)
\(42\) 1.92705 + 5.93085i 0.297350 + 0.915150i
\(43\) −0.145898 −0.0222492 −0.0111246 0.999938i \(-0.503541\pi\)
−0.0111246 + 0.999938i \(0.503541\pi\)
\(44\) −1.85410 5.70634i −0.279516 0.860263i
\(45\) −1.38197 4.25325i −0.206011 0.634038i
\(46\) 1.80902 5.56758i 0.266725 0.820895i
\(47\) 0.118034 0.363271i 0.0172170 0.0529886i −0.942079 0.335391i \(-0.891131\pi\)
0.959296 + 0.282403i \(0.0911315\pi\)
\(48\) 7.97214 5.79210i 1.15068 0.836017i
\(49\) −1.32624 −0.189463
\(50\) 10.5902 + 7.69421i 1.49768 + 1.08813i
\(51\) −1.00000 −0.140028
\(52\) −19.0623 + 13.8496i −2.64347 + 1.92059i
\(53\) 2.54508 7.83297i 0.349594 1.07594i −0.609484 0.792799i \(-0.708623\pi\)
0.959078 0.283142i \(-0.0913768\pi\)
\(54\) −4.04508 + 12.4495i −0.550466 + 1.69416i
\(55\) −2.76393 −0.372689
\(56\) −5.50000 16.9273i −0.734968 2.26200i
\(57\) 1.85410 0.245582
\(58\) 6.97214 + 21.4580i 0.915486 + 2.81758i
\(59\) −7.59017 5.51458i −0.988156 0.717937i −0.0286395 0.999590i \(-0.509117\pi\)
−0.959516 + 0.281652i \(0.909117\pi\)
\(60\) −3.35410 10.3229i −0.433013 1.33268i
\(61\) 4.04508 2.93893i 0.517920 0.376291i −0.297900 0.954597i \(-0.596286\pi\)
0.815820 + 0.578306i \(0.196286\pi\)
\(62\) 12.2082 + 8.86978i 1.55044 + 1.12646i
\(63\) 3.85410 + 2.80017i 0.485571 + 0.352788i
\(64\) −7.04508 + 5.11855i −0.880636 + 0.639819i
\(65\) 3.35410 + 10.3229i 0.416025 + 1.28039i
\(66\) 2.61803 + 1.90211i 0.322258 + 0.234134i
\(67\) 3.52786 + 10.8576i 0.430997 + 1.32647i 0.897133 + 0.441760i \(0.145646\pi\)
−0.466136 + 0.884713i \(0.654354\pi\)
\(68\) 4.85410 0.588646
\(69\) 0.690983 + 2.12663i 0.0831846 + 0.256016i
\(70\) −13.9443 −1.66666
\(71\) 0.354102 1.08981i 0.0420242 0.129337i −0.927843 0.372970i \(-0.878339\pi\)
0.969867 + 0.243633i \(0.0783393\pi\)
\(72\) 4.61803 14.2128i 0.544241 1.67500i
\(73\) −7.28115 + 5.29007i −0.852194 + 0.619156i −0.925750 0.378136i \(-0.876565\pi\)
0.0735557 + 0.997291i \(0.476565\pi\)
\(74\) 20.7984 2.41776
\(75\) −5.00000 −0.577350
\(76\) −9.00000 −1.03237
\(77\) 2.38197 1.73060i 0.271450 0.197220i
\(78\) 3.92705 12.0862i 0.444651 1.36849i
\(79\) −2.80902 + 8.64527i −0.316039 + 0.972668i 0.659286 + 0.751893i \(0.270859\pi\)
−0.975325 + 0.220776i \(0.929141\pi\)
\(80\) 6.80902 + 20.9560i 0.761271 + 2.34295i
\(81\) 0.309017 + 0.951057i 0.0343352 + 0.105673i
\(82\) 16.9443 1.87118
\(83\) −3.69098 11.3597i −0.405138 1.24689i −0.920780 0.390082i \(-0.872447\pi\)
0.515642 0.856804i \(-0.327553\pi\)
\(84\) 9.35410 + 6.79615i 1.02062 + 0.741521i
\(85\) 0.690983 2.12663i 0.0749476 0.230665i
\(86\) −0.309017 + 0.224514i −0.0333222 + 0.0242100i
\(87\) −6.97214 5.06555i −0.747491 0.543084i
\(88\) −7.47214 5.42882i −0.796532 0.578715i
\(89\) 2.61803 1.90211i 0.277511 0.201624i −0.440320 0.897841i \(-0.645135\pi\)
0.717831 + 0.696217i \(0.245135\pi\)
\(90\) −9.47214 6.88191i −0.998451 0.725417i
\(91\) −9.35410 6.79615i −0.980576 0.712430i
\(92\) −3.35410 10.3229i −0.349689 1.07623i
\(93\) −5.76393 −0.597692
\(94\) −0.309017 0.951057i −0.0318727 0.0980940i
\(95\) −1.28115 + 3.94298i −0.131444 + 0.404542i
\(96\) 3.35410 10.3229i 0.342327 1.05357i
\(97\) 4.59017 14.1271i 0.466061 1.43439i −0.391582 0.920143i \(-0.628072\pi\)
0.857643 0.514245i \(-0.171928\pi\)
\(98\) −2.80902 + 2.04087i −0.283754 + 0.206159i
\(99\) 2.47214 0.248459
\(100\) 24.2705 2.42705
\(101\) −12.2361 −1.21753 −0.608767 0.793349i \(-0.708336\pi\)
−0.608767 + 0.793349i \(0.708336\pi\)
\(102\) −2.11803 + 1.53884i −0.209717 + 0.152368i
\(103\) −4.42705 + 13.6251i −0.436210 + 1.34252i 0.455631 + 0.890169i \(0.349414\pi\)
−0.891841 + 0.452348i \(0.850586\pi\)
\(104\) −11.2082 + 34.4953i −1.09905 + 3.38254i
\(105\) 4.30902 3.13068i 0.420517 0.305523i
\(106\) −6.66312 20.5070i −0.647179 1.99181i
\(107\) −17.9443 −1.73474 −0.867369 0.497665i \(-0.834191\pi\)
−0.867369 + 0.497665i \(0.834191\pi\)
\(108\) 7.50000 + 23.0826i 0.721688 + 2.22113i
\(109\) −6.23607 4.53077i −0.597307 0.433969i 0.247615 0.968859i \(-0.420353\pi\)
−0.844922 + 0.534890i \(0.820353\pi\)
\(110\) −5.85410 + 4.25325i −0.558167 + 0.405532i
\(111\) −6.42705 + 4.66953i −0.610029 + 0.443212i
\(112\) −18.9894 13.7966i −1.79433 1.30365i
\(113\) −6.73607 4.89404i −0.633676 0.460393i 0.223996 0.974590i \(-0.428090\pi\)
−0.857672 + 0.514198i \(0.828090\pi\)
\(114\) 3.92705 2.85317i 0.367802 0.267224i
\(115\) −5.00000 −0.466252
\(116\) 33.8435 + 24.5887i 3.14229 + 2.28300i
\(117\) −3.00000 9.23305i −0.277350 0.853596i
\(118\) −24.5623 −2.26114
\(119\) 0.736068 + 2.26538i 0.0674752 + 0.207667i
\(120\) −13.5172 9.82084i −1.23395 0.896516i
\(121\) −2.92705 + 9.00854i −0.266096 + 0.818958i
\(122\) 4.04508 12.4495i 0.366225 1.12712i
\(123\) −5.23607 + 3.80423i −0.472120 + 0.343016i
\(124\) 27.9787 2.51256
\(125\) 3.45492 10.6331i 0.309017 0.951057i
\(126\) 12.4721 1.11111
\(127\) 15.7082 11.4127i 1.39388 1.01271i 0.398450 0.917190i \(-0.369548\pi\)
0.995427 0.0955215i \(-0.0304519\pi\)
\(128\) −0.336881 + 1.03681i −0.0297764 + 0.0916422i
\(129\) 0.0450850 0.138757i 0.00396951 0.0122169i
\(130\) 22.9894 + 16.7027i 2.01630 + 1.46493i
\(131\) 1.44427 + 4.44501i 0.126187 + 0.388362i 0.994115 0.108326i \(-0.0345491\pi\)
−0.867929 + 0.496689i \(0.834549\pi\)
\(132\) 6.00000 0.522233
\(133\) −1.36475 4.20025i −0.118338 0.364208i
\(134\) 24.1803 + 17.5680i 2.08886 + 1.51765i
\(135\) 11.1803 0.962250
\(136\) 6.04508 4.39201i 0.518362 0.376612i
\(137\) −18.1353 13.1760i −1.54940 1.12570i −0.944077 0.329724i \(-0.893044\pi\)
−0.605322 0.795981i \(-0.706956\pi\)
\(138\) 4.73607 + 3.44095i 0.403161 + 0.292914i
\(139\) 0.190983 0.138757i 0.0161990 0.0117692i −0.579656 0.814861i \(-0.696813\pi\)
0.595855 + 0.803092i \(0.296813\pi\)
\(140\) −20.9164 + 15.1967i −1.76776 + 1.28435i
\(141\) 0.309017 + 0.224514i 0.0260239 + 0.0189075i
\(142\) −0.927051 2.85317i −0.0777964 0.239433i
\(143\) −6.00000 −0.501745
\(144\) −6.09017 18.7436i −0.507514 1.56197i
\(145\) 15.5902 11.3269i 1.29469 0.940650i
\(146\) −7.28115 + 22.4091i −0.602593 + 1.85459i
\(147\) 0.409830 1.26133i 0.0338022 0.104033i
\(148\) 31.1976 22.6664i 2.56442 1.86316i
\(149\) 7.18034 0.588236 0.294118 0.955769i \(-0.404974\pi\)
0.294118 + 0.955769i \(0.404974\pi\)
\(150\) −10.5902 + 7.69421i −0.864684 + 0.628230i
\(151\) 17.8541 1.45295 0.726473 0.687195i \(-0.241158\pi\)
0.726473 + 0.687195i \(0.241158\pi\)
\(152\) −11.2082 + 8.14324i −0.909105 + 0.660504i
\(153\) −0.618034 + 1.90211i −0.0499651 + 0.153777i
\(154\) 2.38197 7.33094i 0.191944 0.590744i
\(155\) 3.98278 12.2577i 0.319905 0.984565i
\(156\) −7.28115 22.4091i −0.582959 1.79416i
\(157\) 21.0000 1.67598 0.837991 0.545684i \(-0.183730\pi\)
0.837991 + 0.545684i \(0.183730\pi\)
\(158\) 7.35410 + 22.6336i 0.585061 + 1.80063i
\(159\) 6.66312 + 4.84104i 0.528420 + 0.383919i
\(160\) 19.6353 + 14.2658i 1.55230 + 1.12781i
\(161\) 4.30902 3.13068i 0.339598 0.246732i
\(162\) 2.11803 + 1.53884i 0.166408 + 0.120903i
\(163\) −15.8992 11.5514i −1.24532 0.904778i −0.247380 0.968919i \(-0.579569\pi\)
−0.997941 + 0.0641404i \(0.979569\pi\)
\(164\) 25.4164 18.4661i 1.98469 1.44196i
\(165\) 0.854102 2.62866i 0.0664917 0.204641i
\(166\) −25.2984 18.3803i −1.96353 1.42659i
\(167\) −2.75329 8.47375i −0.213056 0.655719i −0.999286 0.0377847i \(-0.987970\pi\)
0.786230 0.617934i \(-0.212030\pi\)
\(168\) 17.7984 1.37317
\(169\) 3.26393 + 10.0453i 0.251072 + 0.772719i
\(170\) −1.80902 5.56758i −0.138745 0.427014i
\(171\) 1.14590 3.52671i 0.0876290 0.269694i
\(172\) −0.218847 + 0.673542i −0.0166869 + 0.0513571i
\(173\) 1.42705 1.03681i 0.108497 0.0788275i −0.532214 0.846610i \(-0.678640\pi\)
0.640711 + 0.767782i \(0.278640\pi\)
\(174\) −22.5623 −1.71044
\(175\) 3.68034 + 11.3269i 0.278208 + 0.856235i
\(176\) −12.1803 −0.918128
\(177\) 7.59017 5.51458i 0.570512 0.414501i
\(178\) 2.61803 8.05748i 0.196230 0.603934i
\(179\) −6.72542 + 20.6987i −0.502682 + 1.54710i 0.301951 + 0.953323i \(0.402362\pi\)
−0.804633 + 0.593772i \(0.797638\pi\)
\(180\) −21.7082 −1.61803
\(181\) 6.61803 + 20.3682i 0.491915 + 1.51396i 0.821710 + 0.569905i \(0.193020\pi\)
−0.329796 + 0.944052i \(0.606980\pi\)
\(182\) −30.2705 −2.24380
\(183\) 1.54508 + 4.75528i 0.114216 + 0.351521i
\(184\) −13.5172 9.82084i −0.996503 0.724002i
\(185\) −5.48936 16.8945i −0.403586 1.24211i
\(186\) −12.2082 + 8.86978i −0.895149 + 0.650364i
\(187\) 1.00000 + 0.726543i 0.0731272 + 0.0531301i
\(188\) −1.50000 1.08981i −0.109399 0.0794828i
\(189\) −9.63525 + 7.00042i −0.700862 + 0.509206i
\(190\) 3.35410 + 10.3229i 0.243332 + 0.748899i
\(191\) −8.61803 6.26137i −0.623579 0.453057i 0.230591 0.973051i \(-0.425934\pi\)
−0.854170 + 0.519994i \(0.825934\pi\)
\(192\) −2.69098 8.28199i −0.194205 0.597701i
\(193\) 5.05573 0.363919 0.181960 0.983306i \(-0.441756\pi\)
0.181960 + 0.983306i \(0.441756\pi\)
\(194\) −12.0172 36.9852i −0.862786 2.65538i
\(195\) −10.8541 −0.777278
\(196\) −1.98936 + 6.12261i −0.142097 + 0.437329i
\(197\) 6.23607 19.1926i 0.444301 1.36742i −0.438947 0.898513i \(-0.644648\pi\)
0.883248 0.468906i \(-0.155352\pi\)
\(198\) 5.23607 3.80423i 0.372111 0.270355i
\(199\) −5.32624 −0.377567 −0.188783 0.982019i \(-0.560454\pi\)
−0.188783 + 0.982019i \(0.560454\pi\)
\(200\) 30.2254 21.9601i 2.13726 1.55281i
\(201\) −11.4164 −0.805251
\(202\) −25.9164 + 18.8294i −1.82347 + 1.32483i
\(203\) −6.34346 + 19.5232i −0.445224 + 1.37026i
\(204\) −1.50000 + 4.61653i −0.105021 + 0.323221i
\(205\) −4.47214 13.7638i −0.312348 0.961307i
\(206\) 11.5902 + 35.6709i 0.807525 + 2.48531i
\(207\) 4.47214 0.310835
\(208\) 14.7812 + 45.4917i 1.02489 + 3.15428i
\(209\) −1.85410 1.34708i −0.128251 0.0931797i
\(210\) 4.30902 13.2618i 0.297350 0.915150i
\(211\) −0.954915 + 0.693786i −0.0657391 + 0.0477622i −0.620169 0.784468i \(-0.712936\pi\)
0.554430 + 0.832230i \(0.312936\pi\)
\(212\) −32.3435 23.4989i −2.22136 1.61391i
\(213\) 0.927051 + 0.673542i 0.0635205 + 0.0461503i
\(214\) −38.0066 + 27.6134i −2.59808 + 1.88761i
\(215\) 0.263932 + 0.191758i 0.0180000 + 0.0130778i
\(216\) 30.2254 + 21.9601i 2.05658 + 1.49419i
\(217\) 4.24265 + 13.0575i 0.288010 + 0.886402i
\(218\) −20.1803 −1.36679
\(219\) −2.78115 8.55951i −0.187933 0.578398i
\(220\) −4.14590 + 12.7598i −0.279516 + 0.860263i
\(221\) 1.50000 4.61653i 0.100901 0.310541i
\(222\) −6.42705 + 19.7804i −0.431355 + 1.32758i
\(223\) 3.00000 2.17963i 0.200895 0.145959i −0.482790 0.875736i \(-0.660376\pi\)
0.683685 + 0.729778i \(0.260376\pi\)
\(224\) −25.8541 −1.72745
\(225\) −3.09017 + 9.51057i −0.206011 + 0.634038i
\(226\) −21.7984 −1.45001
\(227\) −10.8541 + 7.88597i −0.720412 + 0.523410i −0.886516 0.462698i \(-0.846881\pi\)
0.166104 + 0.986108i \(0.446881\pi\)
\(228\) 2.78115 8.55951i 0.184186 0.566867i
\(229\) 1.85410 5.70634i 0.122523 0.377086i −0.870919 0.491426i \(-0.836476\pi\)
0.993442 + 0.114341i \(0.0364756\pi\)
\(230\) −10.5902 + 7.69421i −0.698295 + 0.507341i
\(231\) 0.909830 + 2.80017i 0.0598624 + 0.184238i
\(232\) 64.3951 4.22775
\(233\) −4.38197 13.4863i −0.287072 0.883517i −0.985770 0.168100i \(-0.946237\pi\)
0.698698 0.715417i \(-0.253763\pi\)
\(234\) −20.5623 14.9394i −1.34420 0.976618i
\(235\) −0.690983 + 0.502029i −0.0450748 + 0.0327487i
\(236\) −36.8435 + 26.7683i −2.39830 + 1.74247i
\(237\) −7.35410 5.34307i −0.477700 0.347070i
\(238\) 5.04508 + 3.66547i 0.327024 + 0.237597i
\(239\) 6.04508 4.39201i 0.391024 0.284096i −0.374851 0.927085i \(-0.622306\pi\)
0.765875 + 0.642989i \(0.222306\pi\)
\(240\) −22.0344 −1.42232
\(241\) −7.42705 5.39607i −0.478418 0.347591i 0.322295 0.946639i \(-0.395546\pi\)
−0.800713 + 0.599048i \(0.795546\pi\)
\(242\) 7.66312 + 23.5847i 0.492604 + 1.51608i
\(243\) −16.0000 −1.02640
\(244\) −7.50000 23.0826i −0.480138 1.47771i
\(245\) 2.39919 + 1.74311i 0.153278 + 0.111363i
\(246\) −5.23607 + 16.1150i −0.333840 + 1.02745i
\(247\) −2.78115 + 8.55951i −0.176961 + 0.544628i
\(248\) 34.8435 25.3153i 2.21256 1.60752i
\(249\) 11.9443 0.756937
\(250\) −9.04508 27.8379i −0.572061 1.76062i
\(251\) 7.65248 0.483020 0.241510 0.970398i \(-0.422357\pi\)
0.241510 + 0.970398i \(0.422357\pi\)
\(252\) 18.7082 13.5923i 1.17851 0.856235i
\(253\) 0.854102 2.62866i 0.0536969 0.165262i
\(254\) 15.7082 48.3449i 0.985620 3.03343i
\(255\) 1.80902 + 1.31433i 0.113285 + 0.0823064i
\(256\) −4.50000 13.8496i −0.281250 0.865598i
\(257\) −1.85410 −0.115656 −0.0578279 0.998327i \(-0.518417\pi\)
−0.0578279 + 0.998327i \(0.518417\pi\)
\(258\) −0.118034 0.363271i −0.00734848 0.0226163i
\(259\) 15.3090 + 11.1227i 0.951256 + 0.691128i
\(260\) 52.6869 3.26750
\(261\) −13.9443 + 10.1311i −0.863129 + 0.627100i
\(262\) 9.89919 + 7.19218i 0.611574 + 0.444334i
\(263\) −7.78115 5.65334i −0.479806 0.348600i 0.321444 0.946928i \(-0.395832\pi\)
−0.801251 + 0.598329i \(0.795832\pi\)
\(264\) 7.47214 5.42882i 0.459878 0.334121i
\(265\) −14.8992 + 10.8249i −0.915250 + 0.664968i
\(266\) −9.35410 6.79615i −0.573537 0.416699i
\(267\) 1.00000 + 3.07768i 0.0611990 + 0.188351i
\(268\) 55.4164 3.38510
\(269\) 4.14590 + 12.7598i 0.252780 + 0.777976i 0.994259 + 0.107000i \(0.0341246\pi\)
−0.741479 + 0.670976i \(0.765875\pi\)
\(270\) 23.6803 17.2048i 1.44114 1.04705i
\(271\) 6.14590 18.9151i 0.373337 1.14901i −0.571257 0.820771i \(-0.693544\pi\)
0.944594 0.328241i \(-0.106456\pi\)
\(272\) 3.04508 9.37181i 0.184635 0.568249i
\(273\) 9.35410 6.79615i 0.566136 0.411322i
\(274\) −58.6869 −3.54541
\(275\) 5.00000 + 3.63271i 0.301511 + 0.219061i
\(276\) 10.8541 0.653340
\(277\) 17.9894 13.0700i 1.08088 0.785302i 0.103040 0.994677i \(-0.467143\pi\)
0.977835 + 0.209375i \(0.0671429\pi\)
\(278\) 0.190983 0.587785i 0.0114544 0.0352530i
\(279\) −3.56231 + 10.9637i −0.213270 + 0.656377i
\(280\) −12.2984 + 37.8505i −0.734968 + 2.26200i
\(281\) 3.57295 + 10.9964i 0.213144 + 0.655991i 0.999280 + 0.0379369i \(0.0120786\pi\)
−0.786136 + 0.618054i \(0.787921\pi\)
\(282\) 1.00000 0.0595491
\(283\) 4.35410 + 13.4005i 0.258824 + 0.796580i 0.993052 + 0.117676i \(0.0375445\pi\)
−0.734228 + 0.678904i \(0.762455\pi\)
\(284\) −4.50000 3.26944i −0.267026 0.194006i
\(285\) −3.35410 2.43690i −0.198680 0.144349i
\(286\) −12.7082 + 9.23305i −0.751452 + 0.545962i
\(287\) 12.4721 + 9.06154i 0.736207 + 0.534886i
\(288\) −17.5623 12.7598i −1.03487 0.751876i
\(289\) −0.809017 + 0.587785i −0.0475892 + 0.0345756i
\(290\) 15.5902 47.9816i 0.915486 2.81758i
\(291\) 12.0172 + 8.73102i 0.704462 + 0.511822i
\(292\) 13.5000 + 41.5487i 0.790028 + 2.43146i
\(293\) 14.9443 0.873054 0.436527 0.899691i \(-0.356208\pi\)
0.436527 + 0.899691i \(0.356208\pi\)
\(294\) −1.07295 3.30220i −0.0625757 0.192588i
\(295\) 6.48278 + 19.9519i 0.377442 + 1.16165i
\(296\) 18.3435 56.4554i 1.06619 3.28140i
\(297\) −1.90983 + 5.87785i −0.110820 + 0.341068i
\(298\) 15.2082 11.0494i 0.880988 0.640075i
\(299\) −10.8541 −0.627709
\(300\) −7.50000 + 23.0826i −0.433013 + 1.33268i
\(301\) −0.347524 −0.0200310
\(302\) 37.8156 27.4746i 2.17604 1.58099i
\(303\) 3.78115 11.6372i 0.217222 0.668539i
\(304\) −5.64590 + 17.3763i −0.323814 + 0.996598i
\(305\) −11.1803 −0.640184
\(306\) 1.61803 + 4.97980i 0.0924968 + 0.284676i
\(307\) −18.9443 −1.08121 −0.540603 0.841278i \(-0.681804\pi\)
−0.540603 + 0.841278i \(0.681804\pi\)
\(308\) −4.41641 13.5923i −0.251648 0.774494i
\(309\) −11.5902 8.42075i −0.659342 0.479040i
\(310\) −10.4271 32.0912i −0.592217 1.82266i
\(311\) −28.3435 + 20.5927i −1.60721 + 1.16771i −0.735731 + 0.677274i \(0.763161\pi\)
−0.871479 + 0.490433i \(0.836839\pi\)
\(312\) −29.3435 21.3193i −1.66125 1.20697i
\(313\) 10.8541 + 7.88597i 0.613510 + 0.445741i 0.850649 0.525735i \(-0.176210\pi\)
−0.237138 + 0.971476i \(0.576210\pi\)
\(314\) 44.4787 32.3157i 2.51008 1.82368i
\(315\) −3.29180 10.1311i −0.185472 0.570823i
\(316\) 35.6976 + 25.9358i 2.00814 + 1.45900i
\(317\) −8.30902 25.5725i −0.466681 1.43630i −0.856856 0.515555i \(-0.827586\pi\)
0.390175 0.920741i \(-0.372414\pi\)
\(318\) 21.5623 1.20915
\(319\) 3.29180 + 10.1311i 0.184305 + 0.567233i
\(320\) 19.4721 1.08853
\(321\) 5.54508 17.0660i 0.309496 0.952532i
\(322\) 4.30902 13.2618i 0.240132 0.739051i
\(323\) 1.50000 1.08981i 0.0834622 0.0606389i
\(324\) 4.85410 0.269672
\(325\) 7.50000 23.0826i 0.416025 1.28039i
\(326\) −51.4508 −2.84960
\(327\) 6.23607 4.53077i 0.344855 0.250552i
\(328\) 14.9443 45.9937i 0.825159 2.53958i
\(329\) 0.281153 0.865300i 0.0155005 0.0477055i
\(330\) −2.23607 6.88191i −0.123091 0.378837i
\(331\) 2.90983 + 8.95554i 0.159939 + 0.492241i 0.998628 0.0523698i \(-0.0166775\pi\)
−0.838689 + 0.544611i \(0.816677\pi\)
\(332\) −57.9787 −3.18200
\(333\) 4.90983 + 15.1109i 0.269057 + 0.828072i
\(334\) −18.8713 13.7108i −1.03259 0.750223i
\(335\) 7.88854 24.2784i 0.430997 1.32647i
\(336\) 18.9894 13.7966i 1.03595 0.752665i
\(337\) −1.07295 0.779543i −0.0584473 0.0424644i 0.558178 0.829721i \(-0.311501\pi\)
−0.616625 + 0.787257i \(0.711501\pi\)
\(338\) 22.3713 + 16.2537i 1.21684 + 0.884086i
\(339\) 6.73607 4.89404i 0.365853 0.265808i
\(340\) −8.78115 6.37988i −0.476225 0.345998i
\(341\) 5.76393 + 4.18774i 0.312134 + 0.226779i
\(342\) −3.00000 9.23305i −0.162221 0.499266i
\(343\) −19.8328 −1.07087
\(344\) 0.336881 + 1.03681i 0.0181634 + 0.0559012i
\(345\) 1.54508 4.75528i 0.0831846 0.256016i
\(346\) 1.42705 4.39201i 0.0767187 0.236116i
\(347\) −6.19098 + 19.0539i −0.332349 + 1.02287i 0.635664 + 0.771966i \(0.280727\pi\)
−0.968013 + 0.250900i \(0.919273\pi\)
\(348\) −33.8435 + 24.5887i −1.81420 + 1.31809i
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 25.2254 + 18.3273i 1.34836 + 0.979638i
\(351\) 24.2705 1.29546
\(352\) −10.8541 + 7.88597i −0.578526 + 0.420323i
\(353\) −6.79180 + 20.9030i −0.361491 + 1.11255i 0.590659 + 0.806922i \(0.298868\pi\)
−0.952149 + 0.305633i \(0.901132\pi\)
\(354\) 7.59017 23.3601i 0.403413 1.24158i
\(355\) −2.07295 + 1.50609i −0.110021 + 0.0799347i
\(356\) −4.85410 14.9394i −0.257267 0.791786i
\(357\) −2.38197 −0.126067
\(358\) 17.6074 + 54.1900i 0.930580 + 2.86403i
\(359\) 8.25329 + 5.99637i 0.435592 + 0.316476i 0.783881 0.620911i \(-0.213237\pi\)
−0.348289 + 0.937387i \(0.613237\pi\)
\(360\) −27.0344 + 19.6417i −1.42484 + 1.03521i
\(361\) 12.5902 9.14729i 0.662641 0.481437i
\(362\) 45.3607 + 32.9565i 2.38410 + 1.73215i
\(363\) −7.66312 5.56758i −0.402209 0.292222i
\(364\) −45.4058 + 32.9892i −2.37991 + 1.72910i
\(365\) 20.1246 1.05337
\(366\) 10.5902 + 7.69421i 0.553557 + 0.402183i
\(367\) 8.38854 + 25.8173i 0.437878 + 1.34765i 0.890108 + 0.455750i \(0.150629\pi\)
−0.452230 + 0.891902i \(0.649371\pi\)
\(368\) −22.0344 −1.14862
\(369\) 4.00000 + 12.3107i 0.208232 + 0.640871i
\(370\) −37.6246 27.3359i −1.95601 1.42112i
\(371\) 6.06231 18.6579i 0.314739 0.968668i
\(372\) −8.64590 + 26.6093i −0.448269 + 1.37963i
\(373\) −16.0623 + 11.6699i −0.831675 + 0.604247i −0.920033 0.391842i \(-0.871838\pi\)
0.0883579 + 0.996089i \(0.471838\pi\)
\(374\) 3.23607 0.167333
\(375\) 9.04508 + 6.57164i 0.467086 + 0.339358i
\(376\) −2.85410 −0.147189
\(377\) 33.8435 24.5887i 1.74303 1.26638i
\(378\) −9.63525 + 29.6543i −0.495584 + 1.52525i
\(379\) −3.98278 + 12.2577i −0.204582 + 0.629637i 0.795149 + 0.606415i \(0.207393\pi\)
−0.999730 + 0.0232230i \(0.992607\pi\)
\(380\) 16.2812 + 11.8290i 0.835206 + 0.606812i
\(381\) 6.00000 + 18.4661i 0.307389 + 0.946047i
\(382\) −27.8885 −1.42690
\(383\) 7.87132 + 24.2254i 0.402206 + 1.23786i 0.923206 + 0.384306i \(0.125559\pi\)
−0.521000 + 0.853557i \(0.674441\pi\)
\(384\) −0.881966 0.640786i −0.0450076 0.0327000i
\(385\) −6.58359 −0.335531
\(386\) 10.7082 7.77997i 0.545033 0.395990i
\(387\) −0.236068 0.171513i −0.0120000 0.00871852i
\(388\) −58.3328 42.3813i −2.96140 2.15158i
\(389\) 17.2812 12.5555i 0.876189 0.636589i −0.0560513 0.998428i \(-0.517851\pi\)
0.932241 + 0.361839i \(0.117851\pi\)
\(390\) −22.9894 + 16.7027i −1.16411 + 0.845776i
\(391\) 1.80902 + 1.31433i 0.0914859 + 0.0664684i
\(392\) 3.06231 + 9.42481i 0.154670 + 0.476025i
\(393\) −4.67376 −0.235760
\(394\) −16.3262 50.2470i −0.822504 2.53141i
\(395\) 16.4443 11.9475i 0.827401 0.601142i
\(396\) 3.70820 11.4127i 0.186344 0.573509i
\(397\) 5.28115 16.2537i 0.265053 0.815751i −0.726628 0.687032i \(-0.758913\pi\)
0.991681 0.128719i \(-0.0410866\pi\)
\(398\) −11.2812 + 8.19624i −0.565473 + 0.410840i
\(399\) 4.41641 0.221097
\(400\) 15.2254 46.8590i 0.761271 2.34295i
\(401\) 8.23607 0.411290 0.205645 0.978627i \(-0.434071\pi\)
0.205645 + 0.978627i \(0.434071\pi\)
\(402\) −24.1803 + 17.5680i −1.20601 + 0.876214i
\(403\) 8.64590 26.6093i 0.430683 1.32551i
\(404\) −18.3541 + 56.4881i −0.913151 + 2.81039i
\(405\) 0.690983 2.12663i 0.0343352 0.105673i
\(406\) 16.6074 + 51.1123i 0.824211 + 2.53666i
\(407\) 9.81966 0.486742
\(408\) 2.30902 + 7.10642i 0.114313 + 0.351820i
\(409\) 21.1353 + 15.3557i 1.04507 + 0.759289i 0.971269 0.237984i \(-0.0764867\pi\)
0.0738021 + 0.997273i \(0.476487\pi\)
\(410\) −30.6525 22.2703i −1.51382 1.09985i
\(411\) 18.1353 13.1760i 0.894546 0.649926i
\(412\) 56.2599 + 40.8752i 2.77172 + 2.01378i
\(413\) −18.0795 13.1355i −0.889635 0.646358i
\(414\) 9.47214 6.88191i 0.465530 0.338227i
\(415\) −8.25329 + 25.4010i −0.405138 + 1.24689i
\(416\) 42.6246 + 30.9686i 2.08984 + 1.51836i
\(417\) 0.0729490 + 0.224514i 0.00357233 + 0.0109945i
\(418\) −6.00000 −0.293470
\(419\) 1.96149 + 6.03685i 0.0958252 + 0.294920i 0.987468 0.157820i \(-0.0504466\pi\)
−0.891643 + 0.452740i \(0.850447\pi\)
\(420\) −7.98936 24.5887i −0.389841 1.19981i
\(421\) 2.23607 6.88191i 0.108979 0.335404i −0.881664 0.471877i \(-0.843577\pi\)
0.990644 + 0.136473i \(0.0435767\pi\)
\(422\) −0.954915 + 2.93893i −0.0464845 + 0.143065i
\(423\) 0.618034 0.449028i 0.0300498 0.0218325i
\(424\) −61.5410 −2.98870
\(425\) −4.04508 + 2.93893i −0.196215 + 0.142559i
\(426\) 3.00000 0.145350
\(427\) 9.63525 7.00042i 0.466283 0.338774i
\(428\) −26.9164 + 82.8402i −1.30105 + 4.00423i
\(429\) 1.85410 5.70634i 0.0895169 0.275505i
\(430\) 0.854102 0.0411885
\(431\) 4.12868 + 12.7068i 0.198871 + 0.612063i 0.999910 + 0.0134499i \(0.00428136\pi\)
−0.801038 + 0.598613i \(0.795719\pi\)
\(432\) 49.2705 2.37053
\(433\) −3.57295 10.9964i −0.171705 0.528454i 0.827763 0.561078i \(-0.189613\pi\)
−0.999468 + 0.0326248i \(0.989613\pi\)
\(434\) 29.0795 + 21.1275i 1.39586 + 1.01415i
\(435\) 5.95492 + 18.3273i 0.285516 + 0.878729i
\(436\) −30.2705 + 21.9928i −1.44969 + 1.05326i
\(437\) −3.35410 2.43690i −0.160448 0.116573i
\(438\) −19.0623 13.8496i −0.910832 0.661758i
\(439\) −5.92705 + 4.30625i −0.282883 + 0.205526i −0.720174 0.693794i \(-0.755938\pi\)
0.437291 + 0.899320i \(0.355938\pi\)
\(440\) 6.38197 + 19.6417i 0.304248 + 0.936380i
\(441\) −2.14590 1.55909i −0.102186 0.0742422i
\(442\) −3.92705 12.0862i −0.186791 0.574883i
\(443\) −3.47214 −0.164966 −0.0824831 0.996592i \(-0.526285\pi\)
−0.0824831 + 0.996592i \(0.526285\pi\)
\(444\) 11.9164 + 36.6749i 0.565528 + 1.74052i
\(445\) −7.23607 −0.343023
\(446\) 3.00000 9.23305i 0.142054 0.437198i
\(447\) −2.21885 + 6.82891i −0.104948 + 0.322996i
\(448\) −16.7812 + 12.1922i −0.792835 + 0.576028i
\(449\) −10.9098 −0.514867 −0.257433 0.966296i \(-0.582877\pi\)
−0.257433 + 0.966296i \(0.582877\pi\)
\(450\) 8.09017 + 24.8990i 0.381374 + 1.17375i
\(451\) 8.00000 0.376705
\(452\) −32.6976 + 23.7562i −1.53796 + 1.11740i
\(453\) −5.51722 + 16.9803i −0.259222 + 0.797802i
\(454\) −10.8541 + 33.4055i −0.509408 + 1.56780i
\(455\) 7.98936 + 24.5887i 0.374547 + 1.15274i
\(456\) −4.28115 13.1760i −0.200483 0.617024i
\(457\) −28.8328 −1.34874 −0.674371 0.738393i \(-0.735585\pi\)
−0.674371 + 0.738393i \(0.735585\pi\)
\(458\) −4.85410 14.9394i −0.226817 0.698072i
\(459\) −4.04508 2.93893i −0.188808 0.137177i
\(460\) −7.50000 + 23.0826i −0.349689 + 1.07623i
\(461\) 10.8992 7.91872i 0.507626 0.368812i −0.304296 0.952577i \(-0.598421\pi\)
0.811922 + 0.583766i \(0.198421\pi\)
\(462\) 6.23607 + 4.53077i 0.290128 + 0.210790i
\(463\) −21.5172 15.6332i −0.999990 0.726535i −0.0379040 0.999281i \(-0.512068\pi\)
−0.962086 + 0.272746i \(0.912068\pi\)
\(464\) 68.7041 49.9165i 3.18951 2.31731i
\(465\) 10.4271 + 7.57570i 0.483543 + 0.351314i
\(466\) −30.0344 21.8213i −1.39132 1.01085i
\(467\) −1.88197 5.79210i −0.0870870 0.268026i 0.898024 0.439947i \(-0.145003\pi\)
−0.985111 + 0.171921i \(0.945003\pi\)
\(468\) −47.1246 −2.17834
\(469\) 8.40325 + 25.8626i 0.388026 + 1.19422i
\(470\) −0.690983 + 2.12663i −0.0318727 + 0.0980940i
\(471\) −6.48936 + 19.9722i −0.299014 + 0.920270i
\(472\) −21.6631 + 66.6722i −0.997126 + 3.06884i
\(473\) −0.145898 + 0.106001i −0.00670840 + 0.00487394i
\(474\) −23.7984 −1.09310
\(475\) 7.50000 5.44907i 0.344124 0.250020i
\(476\) 11.5623 0.529957
\(477\) 13.3262 9.68208i 0.610167 0.443312i
\(478\) 6.04508 18.6049i 0.276496 0.850966i
\(479\) 9.28115 28.5645i 0.424067 1.30514i −0.479818 0.877368i \(-0.659297\pi\)
0.903885 0.427775i \(-0.140703\pi\)
\(480\) −19.6353 + 14.2658i −0.896223 + 0.651144i
\(481\) −11.9164 36.6749i −0.543341 1.67223i
\(482\) −24.0344 −1.09474
\(483\) 1.64590 + 5.06555i 0.0748910 + 0.230491i
\(484\) 37.1976 + 27.0256i 1.69080 + 1.22844i
\(485\) −26.8713 + 19.5232i −1.22016 + 0.886501i
\(486\) −33.8885 + 24.6215i −1.53722 + 1.11685i
\(487\) 3.57295 + 2.59590i 0.161906 + 0.117631i 0.665788 0.746141i \(-0.268095\pi\)
−0.503882 + 0.863772i \(0.668095\pi\)
\(488\) −30.2254 21.9601i −1.36824 0.994085i
\(489\) 15.8992 11.5514i 0.718986 0.522374i
\(490\) 7.76393 0.350739
\(491\) 3.19098 + 2.31838i 0.144007 + 0.104627i 0.657456 0.753493i \(-0.271632\pi\)
−0.513449 + 0.858120i \(0.671632\pi\)
\(492\) 9.70820 + 29.8788i 0.437680 + 1.34704i
\(493\) −8.61803 −0.388137
\(494\) 7.28115 + 22.4091i 0.327595 + 1.00823i
\(495\) −4.47214 3.24920i −0.201008 0.146041i
\(496\) 17.5517 54.0185i 0.788093 2.42550i
\(497\) 0.843459 2.59590i 0.0378343 0.116442i
\(498\) 25.2984 18.3803i 1.13365 0.823643i
\(499\) −6.67376 −0.298759 −0.149379 0.988780i \(-0.547728\pi\)
−0.149379 + 0.988780i \(0.547728\pi\)
\(500\) −43.9058 31.8994i −1.96353 1.42658i
\(501\) 8.90983 0.398062
\(502\) 16.2082 11.7759i 0.723408 0.525586i
\(503\) 2.43769 7.50245i 0.108691 0.334518i −0.881888 0.471460i \(-0.843727\pi\)
0.990579 + 0.136942i \(0.0437273\pi\)
\(504\) 11.0000 33.8545i 0.489979 1.50800i
\(505\) 22.1353 + 16.0822i 0.985006 + 0.715649i
\(506\) −2.23607 6.88191i −0.0994053 0.305938i
\(507\) −10.5623 −0.469088
\(508\) −29.1246 89.6363i −1.29220 3.97697i
\(509\) 14.6353 + 10.6331i 0.648696 + 0.471305i 0.862827 0.505500i \(-0.168692\pi\)
−0.214131 + 0.976805i \(0.568692\pi\)
\(510\) 5.85410 0.259224
\(511\) −17.3435 + 12.6008i −0.767229 + 0.557425i
\(512\) −32.6074 23.6907i −1.44106 1.04699i
\(513\) 7.50000 + 5.44907i 0.331133 + 0.240582i
\(514\) −3.92705 + 2.85317i −0.173215 + 0.125848i
\(515\) 25.9164 18.8294i 1.14201 0.829721i
\(516\) −0.572949 0.416272i −0.0252227 0.0183253i
\(517\) −0.145898 0.449028i −0.00641659 0.0197482i
\(518\) 49.5410 2.17671
\(519\) 0.545085 + 1.67760i 0.0239266 + 0.0736384i
\(520\) 65.6140 47.6713i 2.87736 2.09053i
\(521\) 10.3992 32.0054i 0.455597 1.40218i −0.414837 0.909896i \(-0.636161\pi\)
0.870433 0.492286i \(-0.163839\pi\)
\(522\) −13.9443 + 42.9161i −0.610324 + 1.87838i
\(523\) 15.5902 11.3269i 0.681711 0.495292i −0.192214 0.981353i \(-0.561567\pi\)
0.873925 + 0.486061i \(0.161567\pi\)
\(524\) 22.6869 0.991083
\(525\) −11.9098 −0.519788
\(526\) −25.1803 −1.09791
\(527\) −4.66312 + 3.38795i −0.203129 + 0.147582i
\(528\) 3.76393 11.5842i 0.163804 0.504137i
\(529\) −5.56231 + 17.1190i −0.241839 + 0.744305i
\(530\) −14.8992 + 45.8550i −0.647179 + 1.99181i
\(531\) −5.79837 17.8456i −0.251628 0.774431i
\(532\) −21.4377 −0.929442
\(533\) −9.70820 29.8788i −0.420509 1.29419i
\(534\) 6.85410 + 4.97980i 0.296606 + 0.215497i
\(535\) 32.4615 + 23.5847i 1.40343 + 1.01965i
\(536\) 69.0132 50.1410i 2.98091 2.16576i
\(537\) −17.6074 12.7925i −0.759815 0.552038i
\(538\) 28.4164 + 20.6457i 1.22512 + 0.890101i
\(539\) −1.32624 + 0.963568i −0.0571251 + 0.0415038i
\(540\) 16.7705 51.6143i 0.721688 2.22113i
\(541\) −23.3262 16.9475i −1.00287 0.728630i −0.0401709 0.999193i \(-0.512790\pi\)
−0.962702 + 0.270563i \(0.912790\pi\)
\(542\) −16.0902 49.5205i −0.691132 2.12709i
\(543\) −21.4164 −0.919066
\(544\) −3.35410 10.3229i −0.143806 0.442589i
\(545\) 5.32624 + 16.3925i 0.228151 + 0.702176i
\(546\) 9.35410 28.7890i 0.400319 1.23205i
\(547\) 4.51064 13.8823i 0.192861 0.593566i −0.807134 0.590369i \(-0.798982\pi\)
0.999995 0.00319699i \(-0.00101764\pi\)
\(548\) −88.0304 + 63.9578i −3.76047 + 2.73214i
\(549\) 10.0000 0.426790
\(550\) 16.1803 0.689932
\(551\) 15.9787 0.680716
\(552\) 13.5172 9.82084i 0.575331 0.418003i
\(553\) −6.69098 + 20.5927i −0.284530 + 0.875692i
\(554\) 17.9894 55.3655i 0.764295 2.35226i
\(555\) 17.7639 0.754037
\(556\) −0.354102 1.08981i −0.0150173 0.0462184i
\(557\) −8.83282 −0.374258 −0.187129 0.982335i \(-0.559918\pi\)
−0.187129 + 0.982335i \(0.559918\pi\)
\(558\) 9.32624 + 28.7032i 0.394811 + 1.21510i
\(559\) 0.572949 + 0.416272i 0.0242332 + 0.0176064i
\(560\) 16.2188 + 49.9165i 0.685371 + 2.10936i
\(561\) −1.00000 + 0.726543i −0.0422200 + 0.0306746i
\(562\) 24.4894 + 17.7926i 1.03302 + 0.750534i
\(563\) 13.6353 + 9.90659i 0.574657 + 0.417513i 0.836794 0.547518i \(-0.184427\pi\)
−0.262137 + 0.965031i \(0.584427\pi\)
\(564\) 1.50000 1.08981i 0.0631614 0.0458894i
\(565\) 5.75329 + 17.7068i 0.242043 + 0.744931i
\(566\) 29.8435 + 21.6825i 1.25441 + 0.911385i
\(567\) 0.736068 + 2.26538i 0.0309119 + 0.0951372i
\(568\) −8.56231 −0.359266
\(569\) −6.27458 19.3112i −0.263044 0.809566i −0.992138 0.125152i \(-0.960058\pi\)
0.729094 0.684414i \(-0.239942\pi\)
\(570\) −10.8541 −0.454628
\(571\) −11.7812 + 36.2587i −0.493026 + 1.51738i 0.326985 + 0.945030i \(0.393967\pi\)
−0.820011 + 0.572348i \(0.806033\pi\)
\(572\) −9.00000 + 27.6992i −0.376309 + 1.15816i
\(573\) 8.61803 6.26137i 0.360024 0.261572i
\(574\) 40.3607 1.68462
\(575\) 9.04508 + 6.57164i 0.377206 + 0.274056i
\(576\) −17.4164 −0.725684
\(577\) −25.6525 + 18.6376i −1.06793 + 0.775894i −0.975538 0.219829i \(-0.929450\pi\)
−0.0923881 + 0.995723i \(0.529450\pi\)
\(578\) −0.809017 + 2.48990i −0.0336507 + 0.103566i
\(579\) −1.56231 + 4.80828i −0.0649272 + 0.199825i
\(580\) −28.9058 88.9628i −1.20025 3.69398i
\(581\) −8.79180 27.0584i −0.364745 1.12257i
\(582\) 38.8885 1.61198
\(583\) −3.14590 9.68208i −0.130290 0.400991i
\(584\) 54.4058 + 39.5281i 2.25133 + 1.63568i
\(585\) −6.70820 + 20.6457i −0.277350 + 0.853596i
\(586\) 31.6525 22.9969i 1.30755 0.949992i
\(587\) 18.5172 + 13.4535i 0.764288 + 0.555287i 0.900222 0.435430i \(-0.143404\pi\)
−0.135935 + 0.990718i \(0.543404\pi\)
\(588\) −5.20820 3.78398i −0.214783 0.156049i
\(589\) 8.64590 6.28161i 0.356248 0.258829i
\(590\) 44.4336 + 32.2829i 1.82930 + 1.32907i
\(591\) 16.3262 + 11.8617i 0.671572 + 0.487925i
\(592\) −24.1910 74.4522i −0.994243 3.05997i
\(593\) 25.9098 1.06399 0.531995 0.846748i \(-0.321443\pi\)
0.531995 + 0.846748i \(0.321443\pi\)
\(594\) 5.00000 + 15.3884i 0.205152 + 0.631394i
\(595\) 1.64590 5.06555i 0.0674752 0.207667i
\(596\) 10.7705 33.1482i 0.441177 1.35780i
\(597\) 1.64590 5.06555i 0.0673621 0.207319i
\(598\) −22.9894 + 16.7027i −0.940105 + 0.683026i
\(599\) −35.1803 −1.43743 −0.718715 0.695305i \(-0.755269\pi\)
−0.718715 + 0.695305i \(0.755269\pi\)
\(600\) 11.5451 + 35.5321i 0.471326 + 1.45059i
\(601\) 21.1459 0.862559 0.431280 0.902218i \(-0.358062\pi\)
0.431280 + 0.902218i \(0.358062\pi\)
\(602\) −0.736068 + 0.534785i −0.0299999 + 0.0217962i
\(603\) −7.05573 + 21.7153i −0.287331 + 0.884315i
\(604\) 26.7812 82.4239i 1.08971 3.35378i
\(605\) 17.1353 12.4495i 0.696647 0.506144i
\(606\) −9.89919 30.4666i −0.402127 1.23762i
\(607\) −28.3820 −1.15199 −0.575994 0.817454i \(-0.695385\pi\)
−0.575994 + 0.817454i \(0.695385\pi\)
\(608\) 6.21885 + 19.1396i 0.252208 + 0.776215i
\(609\) −16.6074 12.0660i −0.672965 0.488938i
\(610\) −23.6803 + 17.2048i −0.958789 + 0.696601i
\(611\) −1.50000 + 1.08981i −0.0606835 + 0.0440891i
\(612\) 7.85410 + 5.70634i 0.317483 + 0.230665i
\(613\) 17.1074 + 12.4292i 0.690961 + 0.502013i 0.876976 0.480534i \(-0.159557\pi\)
−0.186015 + 0.982547i \(0.559557\pi\)
\(614\) −40.1246 + 29.1522i −1.61930 + 1.17649i
\(615\) 14.4721 0.583573
\(616\) −17.7984 12.9313i −0.717117 0.521016i
\(617\) 13.6008 + 41.8590i 0.547548 + 1.68518i 0.714853 + 0.699275i \(0.246494\pi\)
−0.167305 + 0.985905i \(0.553506\pi\)
\(618\) −37.5066 −1.50874
\(619\) 5.34346 + 16.4455i 0.214772 + 0.660999i 0.999170 + 0.0407416i \(0.0129720\pi\)
−0.784398 + 0.620258i \(0.787028\pi\)
\(620\) −50.6140 36.7732i −2.03271 1.47685i
\(621\) −3.45492 + 10.6331i −0.138641 + 0.426693i
\(622\) −28.3435 + 87.2322i −1.13647 + 3.49769i
\(623\) 6.23607 4.53077i 0.249843 0.181521i
\(624\) −47.8328 −1.91485
\(625\) −20.2254 + 14.6946i −0.809017 + 0.587785i
\(626\) 35.1246 1.40386
\(627\) 1.85410 1.34708i 0.0740457 0.0537974i
\(628\) 31.5000 96.9470i 1.25699 3.86861i
\(629\) −2.45492 + 7.55545i −0.0978839 + 0.301256i
\(630\) −22.5623 16.3925i −0.898904 0.653092i
\(631\) −8.69098 26.7481i −0.345983 1.06482i −0.961056 0.276355i \(-0.910874\pi\)
0.615073 0.788470i \(-0.289126\pi\)
\(632\) 67.9230 2.70183
\(633\) −0.364745 1.12257i −0.0144973 0.0446181i
\(634\) −56.9508 41.3772i −2.26181 1.64330i
\(635\) −43.4164 −1.72293
\(636\) 32.3435 23.4989i 1.28250 0.931792i
\(637\) 5.20820 + 3.78398i 0.206357 + 0.149927i
\(638\) 22.5623 + 16.3925i 0.893250 + 0.648984i
\(639\) 1.85410 1.34708i 0.0733471 0.0532898i
\(640\) 1.97214 1.43284i 0.0779555 0.0566380i
\(641\) −0.781153 0.567541i −0.0308537 0.0224165i 0.572252 0.820078i \(-0.306070\pi\)
−0.603105 + 0.797662i \(0.706070\pi\)
\(642\) −14.5172 44.6794i −0.572949 1.76336i
\(643\) 7.70820 0.303982 0.151991 0.988382i \(-0.451432\pi\)
0.151991 + 0.988382i \(0.451432\pi\)
\(644\) −7.98936 24.5887i −0.314825 0.968931i
\(645\) −0.263932 + 0.191758i −0.0103923 + 0.00755046i
\(646\) 1.50000 4.61653i 0.0590167 0.181635i
\(647\) 13.4721 41.4630i 0.529644 1.63008i −0.225301 0.974289i \(-0.572336\pi\)
0.754945 0.655788i \(-0.227664\pi\)
\(648\) 6.04508 4.39201i 0.237473 0.172534i
\(649\) −11.5967 −0.455212
\(650\) −19.6353 60.4311i −0.770158 2.37030i
\(651\) −13.7295 −0.538101
\(652\) −77.1763 + 56.0718i −3.02246 + 2.19594i
\(653\) 10.1180 31.1401i 0.395949 1.21861i −0.532271 0.846574i \(-0.678661\pi\)
0.928220 0.372032i \(-0.121339\pi\)
\(654\) 6.23607 19.1926i 0.243850 0.750492i
\(655\) 3.22949 9.93935i 0.126187 0.388362i
\(656\) −19.7082 60.6556i −0.769476 2.36820i
\(657\) −18.0000 −0.702247
\(658\) −0.736068 2.26538i −0.0286949 0.0883139i
\(659\) −34.3607 24.9645i −1.33850 0.972479i −0.999498 0.0316939i \(-0.989910\pi\)
−0.339004 0.940785i \(-0.610090\pi\)
\(660\) −10.8541 7.88597i −0.422495 0.306961i
\(661\) 10.2639 7.45718i 0.399221 0.290051i −0.370003 0.929031i \(-0.620643\pi\)
0.769223 + 0.638980i \(0.220643\pi\)
\(662\) 19.9443 + 14.4904i 0.775156 + 0.563184i
\(663\) 3.92705 + 2.85317i 0.152514 + 0.110808i
\(664\) −72.2041 + 52.4594i −2.80206 + 2.03582i
\(665\) −3.05166 + 9.39205i −0.118338 + 0.364208i
\(666\) 33.6525 + 24.4500i 1.30401 + 0.947417i
\(667\) 5.95492 + 18.3273i 0.230575 + 0.709638i
\(668\) −43.2492 −1.67336
\(669\) 1.14590 + 3.52671i 0.0443030 + 0.136351i
\(670\) −20.6525 63.5618i −0.797875 2.45561i
\(671\) 1.90983 5.87785i 0.0737282 0.226912i
\(672\) 7.98936 24.5887i 0.308196 0.948530i
\(673\) 20.4164 14.8334i 0.786995 0.571785i −0.120075 0.992765i \(-0.538314\pi\)
0.907070 + 0.420980i \(0.138314\pi\)
\(674\) −3.47214 −0.133742
\(675\) −20.2254 14.6946i −0.778477 0.565597i
\(676\) 51.2705 1.97194
\(677\) −4.25329 + 3.09020i −0.163467 + 0.118766i −0.666511 0.745495i \(-0.732213\pi\)
0.503044 + 0.864261i \(0.332213\pi\)
\(678\) 6.73607 20.7315i 0.258697 0.796188i
\(679\) 10.9336 33.6502i 0.419594 1.29138i
\(680\) −16.7082 −0.640730
\(681\) −4.14590 12.7598i −0.158871 0.488955i
\(682\) 18.6525 0.714240
\(683\) −11.2877 34.7401i −0.431913 1.32929i −0.896217 0.443616i \(-0.853696\pi\)
0.464304 0.885676i \(-0.346304\pi\)
\(684\) −14.5623 10.5801i −0.556804 0.404542i
\(685\) 15.4894 + 47.6713i 0.591818 + 1.82143i
\(686\) −42.0066 + 30.5196i −1.60382 + 1.16524i
\(687\) 4.85410 + 3.52671i 0.185196 + 0.134552i
\(688\) 1.16312 + 0.845055i 0.0443435 + 0.0322174i
\(689\) −32.3435 + 23.4989i −1.23219 + 0.895237i
\(690\) −4.04508 12.4495i −0.153994 0.473944i
\(691\) −31.7705 23.0826i −1.20861 0.878104i −0.213504 0.976942i \(-0.568488\pi\)
−0.995104 + 0.0988378i \(0.968488\pi\)
\(692\) −2.64590 8.14324i −0.100582 0.309559i
\(693\) 5.88854 0.223687
\(694\) 16.2082 + 49.8837i 0.615255 + 1.89356i
\(695\) −0.527864 −0.0200230
\(696\) −19.8992 + 61.2434i −0.754277 + 2.32143i
\(697\) −2.00000 + 6.15537i −0.0757554 + 0.233151i
\(698\) −12.7082 + 9.23305i −0.481013 + 0.349476i
\(699\) 14.1803 0.536350
\(700\) 57.8115 2.18507
\(701\) −2.36068 −0.0891616 −0.0445808 0.999006i \(-0.514195\pi\)
−0.0445808 + 0.999006i \(0.514195\pi\)
\(702\) 51.4058 37.3485i 1.94019 1.40963i
\(703\) 4.55166 14.0086i 0.171669 0.528344i
\(704\) −3.32624 + 10.2371i −0.125362 + 0.385826i
\(705\) −0.263932 0.812299i −0.00994026 0.0305930i
\(706\) 17.7812 + 54.7248i 0.669203 + 2.05959i
\(707\) −29.1459 −1.09614
\(708\) −14.0729 43.3121i −0.528894 1.62777i
\(709\) 8.89919 + 6.46564i 0.334216 + 0.242822i 0.742217 0.670159i \(-0.233774\pi\)
−0.408001 + 0.912981i \(0.633774\pi\)
\(710\) −2.07295 + 6.37988i −0.0777964 + 0.239433i
\(711\) −14.7082 + 10.6861i −0.551601 + 0.400761i
\(712\) −19.5623 14.2128i −0.733128 0.532649i
\(713\) 10.4271 + 7.57570i 0.390496 + 0.283712i
\(714\) −5.04508 + 3.66547i −0.188808 + 0.137177i
\(715\) 10.8541 + 7.88597i 0.405920 + 0.294918i
\(716\) 85.4681 + 62.0962i 3.19409 + 2.32064i
\(717\) 2.30902 + 7.10642i 0.0862318 + 0.265394i
\(718\) 26.7082 0.996741
\(719\) −6.25329 19.2456i −0.233208 0.717741i −0.997354 0.0726977i \(-0.976839\pi\)
0.764146 0.645044i \(-0.223161\pi\)
\(720\) −13.6180 + 41.9120i −0.507514 + 1.56197i
\(721\) −10.5451 + 32.4544i −0.392719 + 1.20867i
\(722\) 12.5902 38.7486i 0.468558 1.44207i
\(723\) 7.42705 5.39607i 0.276215 0.200682i
\(724\) 103.957 3.86355
\(725\) −43.0902 −1.60033
\(726\) −24.7984 −0.920354
\(727\) −6.20820 + 4.51052i −0.230250 + 0.167286i −0.696928 0.717141i \(-0.745450\pi\)
0.466679 + 0.884427i \(0.345450\pi\)
\(728\) −26.6976 + 82.1666i −0.989477 + 3.04530i
\(729\) 4.01722 12.3637i 0.148786 0.457916i
\(730\) 42.6246 30.9686i 1.57761 1.14620i
\(731\) −0.0450850 0.138757i −0.00166753 0.00513212i
\(732\) 24.2705 0.897064
\(733\) 11.0795 + 34.0993i 0.409232 + 1.25949i 0.917310 + 0.398175i \(0.130356\pi\)
−0.508078 + 0.861311i \(0.669644\pi\)
\(734\) 57.4959 + 41.7732i 2.12221 + 1.54188i
\(735\) −2.39919 + 1.74311i −0.0884953 + 0.0642956i
\(736\) −19.6353 + 14.2658i −0.723765 + 0.525846i
\(737\) 11.4164 + 8.29451i 0.420529 + 0.305532i
\(738\) 27.4164 + 19.9192i 1.00921 + 0.733235i
\(739\) 30.6246 22.2501i 1.12654 0.818483i 0.141356 0.989959i \(-0.454854\pi\)
0.985188 + 0.171476i \(0.0548537\pi\)
\(740\) −86.2279 −3.16980
\(741\) −7.28115 5.29007i −0.267480 0.194335i
\(742\) −15.8713 48.8469i −0.582655 1.79323i
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 13.3090 + 40.9609i 0.487932 + 1.50170i
\(745\) −12.9894 9.43732i −0.475893 0.345757i
\(746\) −16.0623 + 49.4347i −0.588083 + 1.80993i
\(747\) 7.38197 22.7194i 0.270092 0.831258i
\(748\) 4.85410 3.52671i 0.177484 0.128949i
\(749\) −42.7426 −1.56178
\(750\) 29.2705 1.06881
\(751\) 17.4721 0.637567 0.318784 0.947828i \(-0.396726\pi\)
0.318784 + 0.947828i \(0.396726\pi\)
\(752\) −3.04508 + 2.21238i −0.111043 + 0.0806773i
\(753\) −2.36475 + 7.27794i −0.0861761 + 0.265223i
\(754\) 33.8435 104.159i 1.23251 3.79326i
\(755\) −32.2984 23.4661i −1.17546 0.854020i
\(756\) 17.8647 + 54.9820i 0.649734 + 1.99968i
\(757\) 15.3607 0.558293 0.279147 0.960248i \(-0.409948\pi\)
0.279147 + 0.960248i \(0.409948\pi\)
\(758\) 10.4271 + 32.0912i 0.378728 + 1.16560i
\(759\) 2.23607 + 1.62460i 0.0811641 + 0.0589692i
\(760\) 30.9787 1.12372
\(761\) 16.5902 12.0535i 0.601393 0.436938i −0.244980 0.969528i \(-0.578781\pi\)
0.846373 + 0.532590i \(0.178781\pi\)
\(762\) 41.1246 + 29.8788i 1.48979 + 1.08239i
\(763\) −14.8541 10.7921i −0.537755 0.390702i
\(764\) −41.8328 + 30.3933i −1.51346 + 1.09959i
\(765\) 3.61803 2.62866i 0.130810 0.0950392i
\(766\) 53.9508 + 39.1976i 1.94932 + 1.41627i
\(767\) 14.0729 + 43.3121i 0.508145 + 1.56391i
\(768\) 14.5623 0.525472
\(769\) −1.14590 3.52671i −0.0413221 0.127176i 0.928267 0.371914i \(-0.121298\pi\)