Properties

Label 425.2.k.a.171.1
Level $425$
Weight $2$
Character 425.171
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 171.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 425.171
Dual form 425.2.k.a.256.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.118034 + 0.363271i) q^{2} +(0.809017 + 0.587785i) q^{3} +(1.50000 + 1.08981i) q^{4} +(-0.690983 - 2.12663i) q^{5} +(-0.309017 + 0.224514i) q^{6} +4.61803 q^{7} +(-1.19098 + 0.865300i) q^{8} +(-0.618034 - 1.90211i) q^{9} +0.854102 q^{10} +(1.00000 - 3.07768i) q^{11} +(0.572949 + 1.76336i) q^{12} +(-0.572949 - 1.76336i) q^{13} +(-0.545085 + 1.67760i) q^{14} +(0.690983 - 2.12663i) q^{15} +(0.972136 + 2.99193i) q^{16} +(-0.809017 + 0.587785i) q^{17} +0.763932 q^{18} +(-3.92705 + 2.85317i) q^{19} +(1.28115 - 3.94298i) q^{20} +(3.73607 + 2.71441i) q^{21} +(1.00000 + 0.726543i) q^{22} +(0.690983 - 2.12663i) q^{23} -1.47214 q^{24} +(-4.04508 + 2.93893i) q^{25} +0.708204 q^{26} +(1.54508 - 4.75528i) q^{27} +(6.92705 + 5.03280i) q^{28} +(5.16312 + 3.75123i) q^{29} +(0.690983 + 0.502029i) q^{30} +(-8.28115 + 6.01661i) q^{31} -4.14590 q^{32} +(2.61803 - 1.90211i) q^{33} +(-0.118034 - 0.363271i) q^{34} +(-3.19098 - 9.82084i) q^{35} +(1.14590 - 3.52671i) q^{36} +(3.07295 + 9.45756i) q^{37} +(-0.572949 - 1.76336i) q^{38} +(0.572949 - 1.76336i) q^{39} +(2.66312 + 1.93487i) q^{40} +(0.763932 + 2.35114i) q^{41} +(-1.42705 + 1.03681i) q^{42} -6.85410 q^{43} +(4.85410 - 3.52671i) q^{44} +(-3.61803 + 2.62866i) q^{45} +(0.690983 + 0.502029i) q^{46} +(-2.11803 - 1.53884i) q^{47} +(-0.972136 + 2.99193i) q^{48} +14.3262 q^{49} +(-0.590170 - 1.81636i) q^{50} -1.00000 q^{51} +(1.06231 - 3.26944i) q^{52} +(-3.04508 - 2.21238i) q^{53} +(1.54508 + 1.12257i) q^{54} -7.23607 q^{55} +(-5.50000 + 3.99598i) q^{56} -4.85410 q^{57} +(-1.97214 + 1.43284i) q^{58} +(3.59017 + 11.0494i) q^{59} +(3.35410 - 2.43690i) q^{60} +(-1.54508 + 4.75528i) q^{61} +(-1.20820 - 3.71847i) q^{62} +(-2.85410 - 8.78402i) q^{63} +(-1.45492 + 4.47777i) q^{64} +(-3.35410 + 2.43690i) q^{65} +(0.381966 + 1.17557i) q^{66} +(12.4721 - 9.06154i) q^{67} -1.85410 q^{68} +(1.80902 - 1.31433i) q^{69} +3.94427 q^{70} +(-6.35410 - 4.61653i) q^{71} +(2.38197 + 1.73060i) q^{72} +(2.78115 - 8.55951i) q^{73} -3.79837 q^{74} -5.00000 q^{75} -9.00000 q^{76} +(4.61803 - 14.2128i) q^{77} +(0.572949 + 0.416272i) q^{78} +(-1.69098 - 1.22857i) q^{79} +(5.69098 - 4.13474i) q^{80} +(-0.809017 + 0.587785i) q^{81} -0.944272 q^{82} +(-4.80902 + 3.49396i) q^{83} +(2.64590 + 8.14324i) q^{84} +(1.80902 + 1.31433i) q^{85} +(0.809017 - 2.48990i) q^{86} +(1.97214 + 6.06961i) q^{87} +(1.47214 + 4.53077i) q^{88} +(0.381966 - 1.17557i) q^{89} +(-0.527864 - 1.62460i) q^{90} +(-2.64590 - 8.14324i) q^{91} +(3.35410 - 2.43690i) q^{92} -10.2361 q^{93} +(0.809017 - 0.587785i) q^{94} +(8.78115 + 6.37988i) q^{95} +(-3.35410 - 2.43690i) q^{96} +(-6.59017 - 4.78804i) q^{97} +(-1.69098 + 5.20431i) q^{98} -6.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + q^{3} + 6 q^{4} - 5 q^{5} + q^{6} + 14 q^{7} - 7 q^{8} + 2 q^{9} - 10 q^{10} + 4 q^{11} + 9 q^{12} - 9 q^{13} + 9 q^{14} + 5 q^{15} - 14 q^{16} - q^{17} + 12 q^{18} - 9 q^{19} - 15 q^{20}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.118034 + 0.363271i −0.0834626 + 0.256872i −0.984076 0.177750i \(-0.943118\pi\)
0.900613 + 0.434622i \(0.143118\pi\)
\(3\) 0.809017 + 0.587785i 0.467086 + 0.339358i 0.796305 0.604896i \(-0.206785\pi\)
−0.329218 + 0.944254i \(0.606785\pi\)
\(4\) 1.50000 + 1.08981i 0.750000 + 0.544907i
\(5\) −0.690983 2.12663i −0.309017 0.951057i
\(6\) −0.309017 + 0.224514i −0.126156 + 0.0916575i
\(7\) 4.61803 1.74545 0.872726 0.488210i \(-0.162350\pi\)
0.872726 + 0.488210i \(0.162350\pi\)
\(8\) −1.19098 + 0.865300i −0.421076 + 0.305930i
\(9\) −0.618034 1.90211i −0.206011 0.634038i
\(10\) 0.854102 0.270091
\(11\) 1.00000 3.07768i 0.301511 0.927957i −0.679445 0.733727i \(-0.737779\pi\)
0.980956 0.194230i \(-0.0622207\pi\)
\(12\) 0.572949 + 1.76336i 0.165396 + 0.509037i
\(13\) −0.572949 1.76336i −0.158907 0.489067i 0.839628 0.543161i \(-0.182773\pi\)
−0.998536 + 0.0540944i \(0.982773\pi\)
\(14\) −0.545085 + 1.67760i −0.145680 + 0.448357i
\(15\) 0.690983 2.12663i 0.178411 0.549093i
\(16\) 0.972136 + 2.99193i 0.243034 + 0.747982i
\(17\) −0.809017 + 0.587785i −0.196215 + 0.142559i
\(18\) 0.763932 0.180061
\(19\) −3.92705 + 2.85317i −0.900927 + 0.654562i −0.938704 0.344724i \(-0.887972\pi\)
0.0377767 + 0.999286i \(0.487972\pi\)
\(20\) 1.28115 3.94298i 0.286475 0.881678i
\(21\) 3.73607 + 2.71441i 0.815277 + 0.592333i
\(22\) 1.00000 + 0.726543i 0.213201 + 0.154899i
\(23\) 0.690983 2.12663i 0.144080 0.443432i −0.852812 0.522219i \(-0.825104\pi\)
0.996892 + 0.0787863i \(0.0251045\pi\)
\(24\) −1.47214 −0.300498
\(25\) −4.04508 + 2.93893i −0.809017 + 0.587785i
\(26\) 0.708204 0.138890
\(27\) 1.54508 4.75528i 0.297352 0.915155i
\(28\) 6.92705 + 5.03280i 1.30909 + 0.951109i
\(29\) 5.16312 + 3.75123i 0.958767 + 0.696585i 0.952864 0.303397i \(-0.0981210\pi\)
0.00590304 + 0.999983i \(0.498121\pi\)
\(30\) 0.690983 + 0.502029i 0.126156 + 0.0916575i
\(31\) −8.28115 + 6.01661i −1.48734 + 1.08062i −0.512241 + 0.858842i \(0.671184\pi\)
−0.975098 + 0.221773i \(0.928816\pi\)
\(32\) −4.14590 −0.732898
\(33\) 2.61803 1.90211i 0.455741 0.331115i
\(34\) −0.118034 0.363271i −0.0202427 0.0623005i
\(35\) −3.19098 9.82084i −0.539375 1.66002i
\(36\) 1.14590 3.52671i 0.190983 0.587785i
\(37\) 3.07295 + 9.45756i 0.505190 + 1.55481i 0.800451 + 0.599398i \(0.204593\pi\)
−0.295262 + 0.955416i \(0.595407\pi\)
\(38\) −0.572949 1.76336i −0.0929446 0.286054i
\(39\) 0.572949 1.76336i 0.0917453 0.282363i
\(40\) 2.66312 + 1.93487i 0.421076 + 0.305930i
\(41\) 0.763932 + 2.35114i 0.119306 + 0.367187i 0.992821 0.119611i \(-0.0381648\pi\)
−0.873515 + 0.486798i \(0.838165\pi\)
\(42\) −1.42705 + 1.03681i −0.220199 + 0.159984i
\(43\) −6.85410 −1.04524 −0.522620 0.852566i \(-0.675045\pi\)
−0.522620 + 0.852566i \(0.675045\pi\)
\(44\) 4.85410 3.52671i 0.731783 0.531672i
\(45\) −3.61803 + 2.62866i −0.539345 + 0.391857i
\(46\) 0.690983 + 0.502029i 0.101880 + 0.0740201i
\(47\) −2.11803 1.53884i −0.308947 0.224463i 0.422498 0.906364i \(-0.361154\pi\)
−0.731445 + 0.681901i \(0.761154\pi\)
\(48\) −0.972136 + 2.99193i −0.140316 + 0.431847i
\(49\) 14.3262 2.04661
\(50\) −0.590170 1.81636i −0.0834626 0.256872i
\(51\) −1.00000 −0.140028
\(52\) 1.06231 3.26944i 0.147315 0.453390i
\(53\) −3.04508 2.21238i −0.418275 0.303894i 0.358669 0.933465i \(-0.383231\pi\)
−0.776943 + 0.629571i \(0.783231\pi\)
\(54\) 1.54508 + 1.12257i 0.210259 + 0.152762i
\(55\) −7.23607 −0.975711
\(56\) −5.50000 + 3.99598i −0.734968 + 0.533986i
\(57\) −4.85410 −0.642942
\(58\) −1.97214 + 1.43284i −0.258954 + 0.188141i
\(59\) 3.59017 + 11.0494i 0.467400 + 1.43851i 0.855939 + 0.517078i \(0.172980\pi\)
−0.388538 + 0.921433i \(0.627020\pi\)
\(60\) 3.35410 2.43690i 0.433013 0.314602i
\(61\) −1.54508 + 4.75528i −0.197828 + 0.608852i 0.802104 + 0.597184i \(0.203714\pi\)
−0.999932 + 0.0116673i \(0.996286\pi\)
\(62\) −1.20820 3.71847i −0.153442 0.472246i
\(63\) −2.85410 8.78402i −0.359583 1.10668i
\(64\) −1.45492 + 4.47777i −0.181864 + 0.559721i
\(65\) −3.35410 + 2.43690i −0.416025 + 0.302260i
\(66\) 0.381966 + 1.17557i 0.0470168 + 0.144703i
\(67\) 12.4721 9.06154i 1.52371 1.10704i 0.564106 0.825702i \(-0.309221\pi\)
0.959608 0.281341i \(-0.0907790\pi\)
\(68\) −1.85410 −0.224843
\(69\) 1.80902 1.31433i 0.217780 0.158226i
\(70\) 3.94427 0.471431
\(71\) −6.35410 4.61653i −0.754093 0.547881i 0.143000 0.989723i \(-0.454325\pi\)
−0.897093 + 0.441842i \(0.854325\pi\)
\(72\) 2.38197 + 1.73060i 0.280717 + 0.203953i
\(73\) 2.78115 8.55951i 0.325509 1.00181i −0.645701 0.763590i \(-0.723435\pi\)
0.971210 0.238224i \(-0.0765653\pi\)
\(74\) −3.79837 −0.441552
\(75\) −5.00000 −0.577350
\(76\) −9.00000 −1.03237
\(77\) 4.61803 14.2128i 0.526274 1.61970i
\(78\) 0.572949 + 0.416272i 0.0648737 + 0.0471335i
\(79\) −1.69098 1.22857i −0.190250 0.138225i 0.488583 0.872518i \(-0.337514\pi\)
−0.678833 + 0.734293i \(0.737514\pi\)
\(80\) 5.69098 4.13474i 0.636271 0.462278i
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) −0.944272 −0.104277
\(83\) −4.80902 + 3.49396i −0.527858 + 0.383511i −0.819556 0.572999i \(-0.805780\pi\)
0.291698 + 0.956511i \(0.405780\pi\)
\(84\) 2.64590 + 8.14324i 0.288691 + 0.888500i
\(85\) 1.80902 + 1.31433i 0.196215 + 0.142559i
\(86\) 0.809017 2.48990i 0.0872385 0.268493i
\(87\) 1.97214 + 6.06961i 0.211435 + 0.650731i
\(88\) 1.47214 + 4.53077i 0.156930 + 0.482982i
\(89\) 0.381966 1.17557i 0.0404883 0.124610i −0.928769 0.370658i \(-0.879132\pi\)
0.969258 + 0.246048i \(0.0791321\pi\)
\(90\) −0.527864 1.62460i −0.0556418 0.171248i
\(91\) −2.64590 8.14324i −0.277365 0.853643i
\(92\) 3.35410 2.43690i 0.349689 0.254064i
\(93\) −10.2361 −1.06143
\(94\) 0.809017 0.587785i 0.0834437 0.0606254i
\(95\) 8.78115 + 6.37988i 0.900927 + 0.654562i
\(96\) −3.35410 2.43690i −0.342327 0.248715i
\(97\) −6.59017 4.78804i −0.669130 0.486152i 0.200604 0.979672i \(-0.435710\pi\)
−0.869734 + 0.493521i \(0.835710\pi\)
\(98\) −1.69098 + 5.20431i −0.170815 + 0.525715i
\(99\) −6.47214 −0.650474
\(100\) −9.27051 −0.927051
\(101\) −7.76393 −0.772540 −0.386270 0.922386i \(-0.626237\pi\)
−0.386270 + 0.922386i \(0.626237\pi\)
\(102\) 0.118034 0.363271i 0.0116871 0.0359692i
\(103\) −1.07295 0.779543i −0.105721 0.0768107i 0.533669 0.845694i \(-0.320813\pi\)
−0.639390 + 0.768883i \(0.720813\pi\)
\(104\) 2.20820 + 1.60435i 0.216532 + 0.157320i
\(105\) 3.19098 9.82084i 0.311408 0.958415i
\(106\) 1.16312 0.845055i 0.112972 0.0820790i
\(107\) −0.0557281 −0.00538744 −0.00269372 0.999996i \(-0.500857\pi\)
−0.00269372 + 0.999996i \(0.500857\pi\)
\(108\) 7.50000 5.44907i 0.721688 0.524337i
\(109\) −1.76393 5.42882i −0.168954 0.519987i 0.830352 0.557239i \(-0.188139\pi\)
−0.999306 + 0.0372524i \(0.988139\pi\)
\(110\) 0.854102 2.62866i 0.0814354 0.250632i
\(111\) −3.07295 + 9.45756i −0.291671 + 0.897672i
\(112\) 4.48936 + 13.8168i 0.424204 + 1.30557i
\(113\) −2.26393 6.96767i −0.212973 0.655463i −0.999291 0.0376416i \(-0.988015\pi\)
0.786318 0.617821i \(-0.211985\pi\)
\(114\) 0.572949 1.76336i 0.0536616 0.165153i
\(115\) −5.00000 −0.466252
\(116\) 3.65654 + 11.2537i 0.339501 + 1.04488i
\(117\) −3.00000 + 2.17963i −0.277350 + 0.201507i
\(118\) −4.43769 −0.408523
\(119\) −3.73607 + 2.71441i −0.342485 + 0.248830i
\(120\) 1.01722 + 3.13068i 0.0928591 + 0.285791i
\(121\) 0.427051 + 0.310271i 0.0388228 + 0.0282064i
\(122\) −1.54508 1.12257i −0.139885 0.101633i
\(123\) −0.763932 + 2.35114i −0.0688814 + 0.211995i
\(124\) −18.9787 −1.70434
\(125\) 9.04508 + 6.57164i 0.809017 + 0.587785i
\(126\) 3.52786 0.314287
\(127\) 2.29180 7.05342i 0.203364 0.625890i −0.796413 0.604754i \(-0.793272\pi\)
0.999777 0.0211364i \(-0.00672843\pi\)
\(128\) −8.16312 5.93085i −0.721525 0.524218i
\(129\) −5.54508 4.02874i −0.488218 0.354711i
\(130\) −0.489357 1.50609i −0.0429194 0.132092i
\(131\) −16.4443 + 11.9475i −1.43674 + 1.04385i −0.448032 + 0.894018i \(0.647875\pi\)
−0.988711 + 0.149837i \(0.952125\pi\)
\(132\) 6.00000 0.522233
\(133\) −18.1353 + 13.1760i −1.57253 + 1.14251i
\(134\) 1.81966 + 5.60034i 0.157195 + 0.483796i
\(135\) −11.1803 −0.962250
\(136\) 0.454915 1.40008i 0.0390086 0.120056i
\(137\) −1.36475 4.20025i −0.116598 0.358852i 0.875679 0.482894i \(-0.160414\pi\)
−0.992277 + 0.124042i \(0.960414\pi\)
\(138\) 0.263932 + 0.812299i 0.0224674 + 0.0691475i
\(139\) 1.30902 4.02874i 0.111029 0.341713i −0.880069 0.474846i \(-0.842504\pi\)
0.991098 + 0.133133i \(0.0425037\pi\)
\(140\) 5.91641 18.2088i 0.500028 1.53893i
\(141\) −0.809017 2.48990i −0.0681315 0.209687i
\(142\) 2.42705 1.76336i 0.203674 0.147978i
\(143\) −6.00000 −0.501745
\(144\) 5.09017 3.69822i 0.424181 0.308185i
\(145\) 4.40983 13.5721i 0.366216 1.12710i
\(146\) 2.78115 + 2.02063i 0.230170 + 0.167228i
\(147\) 11.5902 + 8.42075i 0.955941 + 0.694532i
\(148\) −5.69756 + 17.5353i −0.468337 + 1.44139i
\(149\) −15.1803 −1.24362 −0.621811 0.783167i \(-0.713603\pi\)
−0.621811 + 0.783167i \(0.713603\pi\)
\(150\) 0.590170 1.81636i 0.0481872 0.148305i
\(151\) 11.1459 0.907040 0.453520 0.891246i \(-0.350168\pi\)
0.453520 + 0.891246i \(0.350168\pi\)
\(152\) 2.20820 6.79615i 0.179109 0.551241i
\(153\) 1.61803 + 1.17557i 0.130810 + 0.0950392i
\(154\) 4.61803 + 3.35520i 0.372132 + 0.270370i
\(155\) 18.5172 + 13.4535i 1.48734 + 1.08062i
\(156\) 2.78115 2.02063i 0.222670 0.161780i
\(157\) 21.0000 1.67598 0.837991 0.545684i \(-0.183730\pi\)
0.837991 + 0.545684i \(0.183730\pi\)
\(158\) 0.645898 0.469272i 0.0513849 0.0373333i
\(159\) −1.16312 3.57971i −0.0922413 0.283890i
\(160\) 2.86475 + 8.81678i 0.226478 + 0.697028i
\(161\) 3.19098 9.82084i 0.251485 0.773990i
\(162\) −0.118034 0.363271i −0.00927363 0.0285413i
\(163\) −3.60081 11.0822i −0.282037 0.868022i −0.987271 0.159047i \(-0.949158\pi\)
0.705234 0.708975i \(-0.250842\pi\)
\(164\) −1.41641 + 4.35926i −0.110603 + 0.340401i
\(165\) −5.85410 4.25325i −0.455741 0.331115i
\(166\) −0.701626 2.15938i −0.0544567 0.167601i
\(167\) 16.2533 11.8087i 1.25772 0.913785i 0.259074 0.965857i \(-0.416583\pi\)
0.998643 + 0.0520724i \(0.0165827\pi\)
\(168\) −6.79837 −0.524506
\(169\) 7.73607 5.62058i 0.595082 0.432352i
\(170\) −0.690983 + 0.502029i −0.0529960 + 0.0385038i
\(171\) 7.85410 + 5.70634i 0.600618 + 0.436375i
\(172\) −10.2812 7.46969i −0.783931 0.569559i
\(173\) −1.92705 + 5.93085i −0.146511 + 0.450914i −0.997202 0.0747513i \(-0.976184\pi\)
0.850691 + 0.525666i \(0.176184\pi\)
\(174\) −2.43769 −0.184801
\(175\) −18.6803 + 13.5721i −1.41210 + 1.02595i
\(176\) 10.1803 0.767372
\(177\) −3.59017 + 11.0494i −0.269854 + 0.830524i
\(178\) 0.381966 + 0.277515i 0.0286296 + 0.0208006i
\(179\) 21.2254 + 15.4212i 1.58646 + 1.15263i 0.908778 + 0.417280i \(0.137017\pi\)
0.677685 + 0.735352i \(0.262983\pi\)
\(180\) −8.29180 −0.618034
\(181\) 4.38197 3.18368i 0.325709 0.236641i −0.412899 0.910777i \(-0.635484\pi\)
0.738608 + 0.674136i \(0.235484\pi\)
\(182\) 3.27051 0.242426
\(183\) −4.04508 + 2.93893i −0.299021 + 0.217252i
\(184\) 1.01722 + 3.13068i 0.0749905 + 0.230797i
\(185\) 17.9894 13.0700i 1.32260 0.960928i
\(186\) 1.20820 3.71847i 0.0885898 0.272651i
\(187\) 1.00000 + 3.07768i 0.0731272 + 0.225063i
\(188\) −1.50000 4.61653i −0.109399 0.336695i
\(189\) 7.13525 21.9601i 0.519013 1.59736i
\(190\) −3.35410 + 2.43690i −0.243332 + 0.176791i
\(191\) −6.38197 19.6417i −0.461783 1.42122i −0.862984 0.505231i \(-0.831407\pi\)
0.401201 0.915990i \(-0.368593\pi\)
\(192\) −3.80902 + 2.76741i −0.274892 + 0.199721i
\(193\) 22.9443 1.65156 0.825782 0.563989i \(-0.190734\pi\)
0.825782 + 0.563989i \(0.190734\pi\)
\(194\) 2.51722 1.82887i 0.180726 0.131305i
\(195\) −4.14590 −0.296894
\(196\) 21.4894 + 15.6129i 1.53495 + 1.11521i
\(197\) 1.76393 + 1.28157i 0.125675 + 0.0913082i 0.648847 0.760919i \(-0.275252\pi\)
−0.523172 + 0.852227i \(0.675252\pi\)
\(198\) 0.763932 2.35114i 0.0542903 0.167088i
\(199\) 10.3262 0.732008 0.366004 0.930613i \(-0.380726\pi\)
0.366004 + 0.930613i \(0.380726\pi\)
\(200\) 2.27458 7.00042i 0.160837 0.495005i
\(201\) 15.4164 1.08739
\(202\) 0.916408 2.82041i 0.0644782 0.198444i
\(203\) 23.8435 + 17.3233i 1.67348 + 1.21586i
\(204\) −1.50000 1.08981i −0.105021 0.0763022i
\(205\) 4.47214 3.24920i 0.312348 0.226934i
\(206\) 0.409830 0.297759i 0.0285542 0.0207459i
\(207\) −4.47214 −0.310835
\(208\) 4.71885 3.42844i 0.327193 0.237720i
\(209\) 4.85410 + 14.9394i 0.335765 + 1.03338i
\(210\) 3.19098 + 2.31838i 0.220199 + 0.159984i
\(211\) −6.54508 + 20.1437i −0.450582 + 1.38675i 0.425662 + 0.904882i \(0.360041\pi\)
−0.876244 + 0.481867i \(0.839959\pi\)
\(212\) −2.15654 6.63715i −0.148112 0.455841i
\(213\) −2.42705 7.46969i −0.166299 0.511815i
\(214\) 0.00657781 0.0202444i 0.000449650 0.00138388i
\(215\) 4.73607 + 14.5761i 0.322997 + 0.994083i
\(216\) 2.27458 + 7.00042i 0.154765 + 0.476318i
\(217\) −38.2426 + 27.7849i −2.59608 + 1.88616i
\(218\) 2.18034 0.147671
\(219\) 7.28115 5.29007i 0.492015 0.357470i
\(220\) −10.8541 7.88597i −0.731783 0.531672i
\(221\) 1.50000 + 1.08981i 0.100901 + 0.0733088i
\(222\) −3.07295 2.23263i −0.206243 0.149844i
\(223\) 3.00000 9.23305i 0.200895 0.618291i −0.798962 0.601381i \(-0.794617\pi\)
0.999857 0.0169095i \(-0.00538272\pi\)
\(224\) −19.1459 −1.27924
\(225\) 8.09017 + 5.87785i 0.539345 + 0.391857i
\(226\) 2.79837 0.186145
\(227\) −4.14590 + 12.7598i −0.275173 + 0.846895i 0.714001 + 0.700145i \(0.246881\pi\)
−0.989174 + 0.146750i \(0.953119\pi\)
\(228\) −7.28115 5.29007i −0.482206 0.350343i
\(229\) −4.85410 3.52671i −0.320768 0.233052i 0.415735 0.909486i \(-0.363524\pi\)
−0.736503 + 0.676434i \(0.763524\pi\)
\(230\) 0.590170 1.81636i 0.0389147 0.119767i
\(231\) 12.0902 8.78402i 0.795475 0.577946i
\(232\) −9.39512 −0.616820
\(233\) −6.61803 + 4.80828i −0.433562 + 0.315001i −0.783072 0.621932i \(-0.786348\pi\)
0.349510 + 0.936933i \(0.386348\pi\)
\(234\) −0.437694 1.34708i −0.0286130 0.0880616i
\(235\) −1.80902 + 5.56758i −0.118007 + 0.363189i
\(236\) −6.65654 + 20.4867i −0.433304 + 1.33357i
\(237\) −0.645898 1.98787i −0.0419556 0.129126i
\(238\) −0.545085 1.67760i −0.0353326 0.108743i
\(239\) 0.454915 1.40008i 0.0294260 0.0905639i −0.935265 0.353949i \(-0.884839\pi\)
0.964691 + 0.263385i \(0.0848388\pi\)
\(240\) 7.03444 0.454071
\(241\) −4.07295 12.5352i −0.262362 0.807466i −0.992289 0.123942i \(-0.960446\pi\)
0.729928 0.683524i \(-0.239554\pi\)
\(242\) −0.163119 + 0.118513i −0.0104857 + 0.00761830i
\(243\) −16.0000 −1.02640
\(244\) −7.50000 + 5.44907i −0.480138 + 0.348841i
\(245\) −9.89919 30.4666i −0.632436 1.94644i
\(246\) −0.763932 0.555029i −0.0487065 0.0353874i
\(247\) 7.28115 + 5.29007i 0.463289 + 0.336599i
\(248\) 4.65654 14.3314i 0.295691 0.910042i
\(249\) −5.94427 −0.376703
\(250\) −3.45492 + 2.51014i −0.218508 + 0.158755i
\(251\) −23.6525 −1.49293 −0.746466 0.665424i \(-0.768251\pi\)
−0.746466 + 0.665424i \(0.768251\pi\)
\(252\) 5.29180 16.2865i 0.333352 1.02595i
\(253\) −5.85410 4.25325i −0.368044 0.267400i
\(254\) 2.29180 + 1.66509i 0.143800 + 0.104477i
\(255\) 0.690983 + 2.12663i 0.0432710 + 0.133175i
\(256\) −4.50000 + 3.26944i −0.281250 + 0.204340i
\(257\) 4.85410 0.302791 0.151395 0.988473i \(-0.451623\pi\)
0.151395 + 0.988473i \(0.451623\pi\)
\(258\) 2.11803 1.53884i 0.131863 0.0958041i
\(259\) 14.1910 + 43.6754i 0.881785 + 2.71385i
\(260\) −7.68692 −0.476722
\(261\) 3.94427 12.1392i 0.244144 0.751399i
\(262\) −2.39919 7.38394i −0.148222 0.456181i
\(263\) 2.28115 + 7.02067i 0.140662 + 0.432913i 0.996428 0.0844506i \(-0.0269135\pi\)
−0.855766 + 0.517363i \(0.826914\pi\)
\(264\) −1.47214 + 4.53077i −0.0906037 + 0.278850i
\(265\) −2.60081 + 8.00448i −0.159767 + 0.491711i
\(266\) −2.64590 8.14324i −0.162230 0.499294i
\(267\) 1.00000 0.726543i 0.0611990 0.0444637i
\(268\) 28.5836 1.74602
\(269\) 10.8541 7.88597i 0.661786 0.480816i −0.205479 0.978661i \(-0.565875\pi\)
0.867266 + 0.497846i \(0.165875\pi\)
\(270\) 1.31966 4.06150i 0.0803120 0.247175i
\(271\) 12.8541 + 9.33905i 0.780831 + 0.567307i 0.905228 0.424926i \(-0.139700\pi\)
−0.124397 + 0.992232i \(0.539700\pi\)
\(272\) −2.54508 1.84911i −0.154318 0.112119i
\(273\) 2.64590 8.14324i 0.160137 0.492851i
\(274\) 1.68692 0.101910
\(275\) 5.00000 + 15.3884i 0.301511 + 0.927957i
\(276\) 4.14590 0.249554
\(277\) −5.48936 + 16.8945i −0.329823 + 1.01509i 0.639393 + 0.768880i \(0.279186\pi\)
−0.969216 + 0.246212i \(0.920814\pi\)
\(278\) 1.30902 + 0.951057i 0.0785096 + 0.0570406i
\(279\) 16.5623 + 12.0332i 0.991559 + 0.720410i
\(280\) 12.2984 + 8.93529i 0.734968 + 0.533986i
\(281\) 6.92705 5.03280i 0.413233 0.300232i −0.361676 0.932304i \(-0.617795\pi\)
0.774909 + 0.632072i \(0.217795\pi\)
\(282\) 1.00000 0.0595491
\(283\) −2.35410 + 1.71036i −0.139937 + 0.101670i −0.655551 0.755151i \(-0.727564\pi\)
0.515614 + 0.856821i \(0.327564\pi\)
\(284\) −4.50000 13.8496i −0.267026 0.821821i
\(285\) 3.35410 + 10.3229i 0.198680 + 0.611474i
\(286\) 0.708204 2.17963i 0.0418770 0.128884i
\(287\) 3.52786 + 10.8576i 0.208243 + 0.640907i
\(288\) 2.56231 + 7.88597i 0.150985 + 0.464685i
\(289\) 0.309017 0.951057i 0.0181775 0.0559445i
\(290\) 4.40983 + 3.20393i 0.258954 + 0.188141i
\(291\) −2.51722 7.74721i −0.147562 0.454149i
\(292\) 13.5000 9.80832i 0.790028 0.573989i
\(293\) −2.94427 −0.172006 −0.0860031 0.996295i \(-0.527409\pi\)
−0.0860031 + 0.996295i \(0.527409\pi\)
\(294\) −4.42705 + 3.21644i −0.258191 + 0.187587i
\(295\) 21.0172 15.2699i 1.22367 0.889048i
\(296\) −11.8435 8.60478i −0.688387 0.500142i
\(297\) −13.0902 9.51057i −0.759569 0.551859i
\(298\) 1.79180 5.51458i 0.103796 0.319451i
\(299\) −4.14590 −0.239763
\(300\) −7.50000 5.44907i −0.433013 0.314602i
\(301\) −31.6525 −1.82442
\(302\) −1.31559 + 4.04898i −0.0757040 + 0.232993i
\(303\) −6.28115 4.56352i −0.360843 0.262168i
\(304\) −12.3541 8.97578i −0.708556 0.514796i
\(305\) 11.1803 0.640184
\(306\) −0.618034 + 0.449028i −0.0353307 + 0.0256692i
\(307\) −1.05573 −0.0602536 −0.0301268 0.999546i \(-0.509591\pi\)
−0.0301268 + 0.999546i \(0.509591\pi\)
\(308\) 22.4164 16.2865i 1.27729 0.928008i
\(309\) −0.409830 1.26133i −0.0233144 0.0717544i
\(310\) −7.07295 + 5.13880i −0.401717 + 0.291864i
\(311\) 1.84346 5.67358i 0.104533 0.321719i −0.885088 0.465424i \(-0.845902\pi\)
0.989621 + 0.143705i \(0.0459017\pi\)
\(312\) 0.843459 + 2.59590i 0.0477515 + 0.146964i
\(313\) 4.14590 + 12.7598i 0.234340 + 0.721224i 0.997208 + 0.0746704i \(0.0237905\pi\)
−0.762868 + 0.646554i \(0.776210\pi\)
\(314\) −2.47871 + 7.62870i −0.139882 + 0.430512i
\(315\) −16.7082 + 12.1392i −0.941401 + 0.683968i
\(316\) −1.19756 3.68571i −0.0673681 0.207338i
\(317\) −7.19098 + 5.22455i −0.403886 + 0.293440i −0.771122 0.636688i \(-0.780304\pi\)
0.367236 + 0.930128i \(0.380304\pi\)
\(318\) 1.43769 0.0806219
\(319\) 16.7082 12.1392i 0.935480 0.679666i
\(320\) 10.5279 0.588525
\(321\) −0.0450850 0.0327561i −0.00251640 0.00182827i
\(322\) 3.19098 + 2.31838i 0.177827 + 0.129199i
\(323\) 1.50000 4.61653i 0.0834622 0.256870i
\(324\) −1.85410 −0.103006
\(325\) 7.50000 + 5.44907i 0.416025 + 0.302260i
\(326\) 4.45085 0.246510
\(327\) 1.76393 5.42882i 0.0975457 0.300215i
\(328\) −2.94427 2.13914i −0.162570 0.118114i
\(329\) −9.78115 7.10642i −0.539252 0.391790i
\(330\) 2.23607 1.62460i 0.123091 0.0894312i
\(331\) 14.0902 10.2371i 0.774466 0.562682i −0.128847 0.991664i \(-0.541128\pi\)
0.903313 + 0.428982i \(0.141128\pi\)
\(332\) −11.0213 −0.604872
\(333\) 16.0902 11.6902i 0.881736 0.640619i
\(334\) 2.37132 + 7.29818i 0.129753 + 0.399339i
\(335\) −27.8885 20.2622i −1.52371 1.10704i
\(336\) −4.48936 + 13.8168i −0.244914 + 0.753769i
\(337\) −4.42705 13.6251i −0.241157 0.742204i −0.996245 0.0865809i \(-0.972406\pi\)
0.755088 0.655623i \(-0.227594\pi\)
\(338\) 1.12868 + 3.47371i 0.0613919 + 0.188945i
\(339\) 2.26393 6.96767i 0.122960 0.378432i
\(340\) 1.28115 + 3.94298i 0.0694803 + 0.213838i
\(341\) 10.2361 + 31.5034i 0.554314 + 1.70600i
\(342\) −3.00000 + 2.17963i −0.162221 + 0.117861i
\(343\) 33.8328 1.82680
\(344\) 8.16312 5.93085i 0.440126 0.319770i
\(345\) −4.04508 2.93893i −0.217780 0.158226i
\(346\) −1.92705 1.40008i −0.103599 0.0752690i
\(347\) −7.30902 5.31031i −0.392369 0.285072i 0.374057 0.927406i \(-0.377966\pi\)
−0.766425 + 0.642333i \(0.777966\pi\)
\(348\) −3.65654 + 11.2537i −0.196011 + 0.603260i
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) −2.72542 8.38800i −0.145680 0.448357i
\(351\) −9.27051 −0.494823
\(352\) −4.14590 + 12.7598i −0.220977 + 0.680098i
\(353\) −20.2082 14.6821i −1.07557 0.781450i −0.0986683 0.995120i \(-0.531458\pi\)
−0.976906 + 0.213670i \(0.931458\pi\)
\(354\) −3.59017 2.60841i −0.190815 0.138635i
\(355\) −5.42705 + 16.7027i −0.288038 + 0.886490i
\(356\) 1.85410 1.34708i 0.0982672 0.0713953i
\(357\) −4.61803 −0.244412
\(358\) −8.10739 + 5.89036i −0.428489 + 0.311315i
\(359\) −10.7533 33.0952i −0.567537 1.74670i −0.660291 0.751010i \(-0.729567\pi\)
0.0927541 0.995689i \(-0.470433\pi\)
\(360\) 2.03444 6.26137i 0.107225 0.330003i
\(361\) 1.40983 4.33901i 0.0742016 0.228369i
\(362\) 0.639320 + 1.96763i 0.0336019 + 0.103416i
\(363\) 0.163119 + 0.502029i 0.00856153 + 0.0263497i
\(364\) 4.90576 15.0984i 0.257132 0.791371i
\(365\) −20.1246 −1.05337
\(366\) −0.590170 1.81636i −0.0308487 0.0949425i
\(367\) −27.3885 + 19.8989i −1.42967 + 1.03872i −0.439592 + 0.898197i \(0.644877\pi\)
−0.990078 + 0.140519i \(0.955123\pi\)
\(368\) 7.03444 0.366696
\(369\) 4.00000 2.90617i 0.208232 0.151289i
\(370\) 2.62461 + 8.07772i 0.136447 + 0.419941i
\(371\) −14.0623 10.2169i −0.730079 0.530433i
\(372\) −15.3541 11.1554i −0.796073 0.578381i
\(373\) 4.06231 12.5025i 0.210338 0.647354i −0.789114 0.614247i \(-0.789460\pi\)
0.999452 0.0331072i \(-0.0105403\pi\)
\(374\) −1.23607 −0.0639156
\(375\) 3.45492 + 10.6331i 0.178411 + 0.549093i
\(376\) 3.85410 0.198760
\(377\) 3.65654 11.2537i 0.188321 0.579594i
\(378\) 7.13525 + 5.18407i 0.366998 + 0.266640i
\(379\) −18.5172 13.4535i −0.951166 0.691062i −8.34488e−5 1.00000i \(-0.500027\pi\)
−0.951082 + 0.308938i \(0.900027\pi\)
\(380\) 6.21885 + 19.1396i 0.319020 + 0.981843i
\(381\) 6.00000 4.35926i 0.307389 0.223331i
\(382\) 7.88854 0.403613
\(383\) −13.3713 + 9.71483i −0.683243 + 0.496405i −0.874432 0.485148i \(-0.838766\pi\)
0.191189 + 0.981553i \(0.438766\pi\)
\(384\) −3.11803 9.59632i −0.159117 0.489710i
\(385\) −33.4164 −1.70306
\(386\) −2.70820 + 8.33499i −0.137844 + 0.424240i
\(387\) 4.23607 + 13.0373i 0.215331 + 0.662722i
\(388\) −4.66718 14.3641i −0.236940 0.729228i
\(389\) 7.21885 22.2173i 0.366010 1.12646i −0.583336 0.812231i \(-0.698253\pi\)
0.949346 0.314232i \(-0.101747\pi\)
\(390\) 0.489357 1.50609i 0.0247795 0.0762636i
\(391\) 0.690983 + 2.12663i 0.0349445 + 0.107548i
\(392\) −17.0623 + 12.3965i −0.861777 + 0.626117i
\(393\) −20.3262 −1.02532
\(394\) −0.673762 + 0.489517i −0.0339436 + 0.0246615i
\(395\) −1.44427 + 4.44501i −0.0726692 + 0.223653i
\(396\) −9.70820 7.05342i −0.487856 0.354448i
\(397\) −4.78115 3.47371i −0.239959 0.174341i 0.461306 0.887241i \(-0.347381\pi\)
−0.701265 + 0.712901i \(0.747381\pi\)
\(398\) −1.21885 + 3.75123i −0.0610953 + 0.188032i
\(399\) −22.4164 −1.12222
\(400\) −12.7254 9.24556i −0.636271 0.462278i
\(401\) 3.76393 0.187962 0.0939809 0.995574i \(-0.470041\pi\)
0.0939809 + 0.995574i \(0.470041\pi\)
\(402\) −1.81966 + 5.60034i −0.0907564 + 0.279319i
\(403\) 15.3541 + 11.1554i 0.764842 + 0.555690i
\(404\) −11.6459 8.46124i −0.579405 0.420962i
\(405\) 1.80902 + 1.31433i 0.0898908 + 0.0653095i
\(406\) −9.10739 + 6.61691i −0.451992 + 0.328392i
\(407\) 32.1803 1.59512
\(408\) 1.19098 0.865300i 0.0589624 0.0428387i
\(409\) 4.36475 + 13.4333i 0.215823 + 0.664234i 0.999094 + 0.0425542i \(0.0135495\pi\)
−0.783271 + 0.621680i \(0.786450\pi\)
\(410\) 0.652476 + 2.00811i 0.0322235 + 0.0991737i
\(411\) 1.36475 4.20025i 0.0673179 0.207183i
\(412\) −0.759867 2.33863i −0.0374359 0.115216i
\(413\) 16.5795 + 51.0265i 0.815825 + 2.51085i
\(414\) 0.527864 1.62460i 0.0259431 0.0798447i
\(415\) 10.7533 + 7.81272i 0.527858 + 0.383511i
\(416\) 2.37539 + 7.31069i 0.116463 + 0.358436i
\(417\) 3.42705 2.48990i 0.167823 0.121931i
\(418\) −6.00000 −0.293470
\(419\) −30.4615 + 22.1316i −1.48814 + 1.08120i −0.513323 + 0.858195i \(0.671586\pi\)
−0.974818 + 0.223003i \(0.928414\pi\)
\(420\) 15.4894 11.2537i 0.755803 0.549123i
\(421\) −2.23607 1.62460i −0.108979 0.0791781i 0.531961 0.846769i \(-0.321455\pi\)
−0.640940 + 0.767591i \(0.721455\pi\)
\(422\) −6.54508 4.75528i −0.318610 0.231484i
\(423\) −1.61803 + 4.97980i −0.0786715 + 0.242126i
\(424\) 5.54102 0.269096
\(425\) 1.54508 4.75528i 0.0749476 0.230665i
\(426\) 3.00000 0.145350
\(427\) −7.13525 + 21.9601i −0.345299 + 1.06272i
\(428\) −0.0835921 0.0607332i −0.00404058 0.00293565i
\(429\) −4.85410 3.52671i −0.234358 0.170271i
\(430\) −5.85410 −0.282310
\(431\) 25.3713 18.4333i 1.22209 0.887903i 0.225821 0.974169i \(-0.427493\pi\)
0.996272 + 0.0862657i \(0.0274934\pi\)
\(432\) 15.7295 0.756785
\(433\) −6.92705 + 5.03280i −0.332893 + 0.241861i −0.741657 0.670779i \(-0.765960\pi\)
0.408764 + 0.912640i \(0.365960\pi\)
\(434\) −5.57953 17.1720i −0.267826 0.824283i
\(435\) 11.5451 8.38800i 0.553544 0.402174i
\(436\) 3.27051 10.0656i 0.156629 0.482055i
\(437\) 3.35410 + 10.3229i 0.160448 + 0.493810i
\(438\) 1.06231 + 3.26944i 0.0507589 + 0.156220i
\(439\) −2.57295 + 7.91872i −0.122800 + 0.377940i −0.993494 0.113886i \(-0.963670\pi\)
0.870694 + 0.491826i \(0.163670\pi\)
\(440\) 8.61803 6.26137i 0.410849 0.298499i
\(441\) −8.85410 27.2501i −0.421624 1.29762i
\(442\) −0.572949 + 0.416272i −0.0272524 + 0.0198000i
\(443\) 5.47214 0.259989 0.129995 0.991515i \(-0.458504\pi\)
0.129995 + 0.991515i \(0.458504\pi\)
\(444\) −14.9164 + 10.8374i −0.707901 + 0.514320i
\(445\) −2.76393 −0.131023
\(446\) 3.00000 + 2.17963i 0.142054 + 0.103208i
\(447\) −12.2812 8.92278i −0.580879 0.422033i
\(448\) −6.71885 + 20.6785i −0.317436 + 0.976967i
\(449\) −22.0902 −1.04250 −0.521250 0.853404i \(-0.674534\pi\)
−0.521250 + 0.853404i \(0.674534\pi\)
\(450\) −3.09017 + 2.24514i −0.145672 + 0.105837i
\(451\) 8.00000 0.376705
\(452\) 4.19756 12.9188i 0.197437 0.607648i
\(453\) 9.01722 + 6.55139i 0.423666 + 0.307811i
\(454\) −4.14590 3.01217i −0.194577 0.141368i
\(455\) −15.4894 + 11.2537i −0.726152 + 0.527580i
\(456\) 5.78115 4.20025i 0.270727 0.196695i
\(457\) 24.8328 1.16163 0.580815 0.814036i \(-0.302734\pi\)
0.580815 + 0.814036i \(0.302734\pi\)
\(458\) 1.85410 1.34708i 0.0866365 0.0629451i
\(459\) 1.54508 + 4.75528i 0.0721184 + 0.221958i
\(460\) −7.50000 5.44907i −0.349689 0.254064i
\(461\) −1.39919 + 4.30625i −0.0651666 + 0.200562i −0.978338 0.207013i \(-0.933626\pi\)
0.913172 + 0.407576i \(0.133626\pi\)
\(462\) 1.76393 + 5.42882i 0.0820655 + 0.252572i
\(463\) −6.98278 21.4908i −0.324517 0.998761i −0.971658 0.236391i \(-0.924035\pi\)
0.647141 0.762371i \(-0.275965\pi\)
\(464\) −6.20414 + 19.0944i −0.288020 + 0.886434i
\(465\) 7.07295 + 21.7683i 0.328000 + 1.00948i
\(466\) −0.965558 2.97168i −0.0447286 0.137661i
\(467\) −4.11803 + 2.99193i −0.190560 + 0.138450i −0.678975 0.734162i \(-0.737575\pi\)
0.488415 + 0.872612i \(0.337575\pi\)
\(468\) −6.87539 −0.317815
\(469\) 57.5967 41.8465i 2.65957 1.93229i
\(470\) −1.80902 1.31433i −0.0834437 0.0606254i
\(471\) 16.9894 + 12.3435i 0.782828 + 0.568758i
\(472\) −13.8369 10.0531i −0.636894 0.462731i
\(473\) −6.85410 + 21.0948i −0.315152 + 0.969938i
\(474\) 0.798374 0.0366705
\(475\) 7.50000 23.0826i 0.344124 1.05910i
\(476\) −8.56231 −0.392453
\(477\) −2.32624 + 7.15942i −0.106511 + 0.327808i
\(478\) 0.454915 + 0.330515i 0.0208073 + 0.0151174i
\(479\) −0.781153 0.567541i −0.0356918 0.0259316i 0.569796 0.821786i \(-0.307022\pi\)
−0.605488 + 0.795854i \(0.707022\pi\)
\(480\) −2.86475 + 8.81678i −0.130757 + 0.402429i
\(481\) 14.9164 10.8374i 0.680130 0.494143i
\(482\) 5.03444 0.229313
\(483\) 8.35410 6.06961i 0.380125 0.276177i
\(484\) 0.302439 + 0.930812i 0.0137472 + 0.0423096i
\(485\) −5.62868 + 17.3233i −0.255585 + 0.786610i
\(486\) 1.88854 5.81234i 0.0856661 0.263653i
\(487\) 6.92705 + 21.3193i 0.313895 + 0.966068i 0.976207 + 0.216841i \(0.0695752\pi\)
−0.662312 + 0.749228i \(0.730425\pi\)
\(488\) −2.27458 7.00042i −0.102965 0.316894i
\(489\) 3.60081 11.0822i 0.162834 0.501153i
\(490\) 12.2361 0.552769
\(491\) 4.30902 + 13.2618i 0.194463 + 0.598496i 0.999982 + 0.00592659i \(0.00188650\pi\)
−0.805519 + 0.592570i \(0.798113\pi\)
\(492\) −3.70820 + 2.69417i −0.167179 + 0.121462i
\(493\) −6.38197 −0.287429
\(494\) −2.78115 + 2.02063i −0.125130 + 0.0909123i
\(495\) 4.47214 + 13.7638i 0.201008 + 0.618638i
\(496\) −26.0517 18.9276i −1.16975 0.849876i
\(497\) −29.3435 21.3193i −1.31623 0.956300i
\(498\) 0.701626 2.15938i 0.0314406 0.0967643i
\(499\) −22.3262 −0.999460 −0.499730 0.866181i \(-0.666567\pi\)
−0.499730 + 0.866181i \(0.666567\pi\)
\(500\) 6.40576 + 19.7149i 0.286475 + 0.881678i
\(501\) 20.0902 0.897563
\(502\) 2.79180 8.59226i 0.124604 0.383492i
\(503\) 22.5623 + 16.3925i 1.00600 + 0.730904i 0.963367 0.268186i \(-0.0864243\pi\)
0.0426364 + 0.999091i \(0.486424\pi\)
\(504\) 11.0000 + 7.99197i 0.489979 + 0.355991i
\(505\) 5.36475 + 16.5110i 0.238728 + 0.734729i
\(506\) 2.23607 1.62460i 0.0994053 0.0722222i
\(507\) 9.56231 0.424677
\(508\) 11.1246 8.08250i 0.493575 0.358603i
\(509\) −2.13525 6.57164i −0.0946435 0.291283i 0.892517 0.451014i \(-0.148937\pi\)
−0.987161 + 0.159731i \(0.948937\pi\)
\(510\) −0.854102 −0.0378203
\(511\) 12.8435 39.5281i 0.568161 1.74862i
\(512\) −6.89261 21.2133i −0.304613 0.937503i
\(513\) 7.50000 + 23.0826i 0.331133 + 1.01912i
\(514\) −0.572949 + 1.76336i −0.0252717 + 0.0777783i
\(515\) −0.916408 + 2.82041i −0.0403818 + 0.124282i
\(516\) −3.92705 12.0862i −0.172879 0.532066i
\(517\) −6.85410 + 4.97980i −0.301443 + 0.219011i
\(518\) −17.5410 −0.770708
\(519\) −5.04508 + 3.66547i −0.221455 + 0.160896i
\(520\) 1.88603 5.80461i 0.0827079 0.254549i
\(521\) −1.89919 1.37984i −0.0832049 0.0604519i 0.545405 0.838173i \(-0.316376\pi\)
−0.628610 + 0.777721i \(0.716376\pi\)
\(522\) 3.94427 + 2.86568i 0.172636 + 0.125427i
\(523\) 4.40983 13.5721i 0.192828 0.593465i −0.807167 0.590324i \(-0.799000\pi\)
0.999995 0.00314118i \(-0.000999871\pi\)
\(524\) −37.6869 −1.64636
\(525\) −23.0902 −1.00774
\(526\) −2.81966 −0.122943
\(527\) 3.16312 9.73508i 0.137788 0.424067i
\(528\) 8.23607 + 5.98385i 0.358429 + 0.260414i
\(529\) 14.5623 + 10.5801i 0.633144 + 0.460006i
\(530\) −2.60081 1.88960i −0.112972 0.0820790i
\(531\) 18.7984 13.6578i 0.815780 0.592699i
\(532\) −41.5623 −1.80195
\(533\) 3.70820 2.69417i 0.160620 0.116697i
\(534\) 0.145898 + 0.449028i 0.00631363 + 0.0194313i
\(535\) 0.0385072 + 0.118513i 0.00166481 + 0.00512376i
\(536\) −7.01316 + 21.5843i −0.302922 + 0.932299i
\(537\) 8.10739 + 24.9520i 0.349860 + 1.07676i
\(538\) 1.58359 + 4.87380i 0.0682735 + 0.210124i
\(539\) 14.3262 44.0916i 0.617075 1.89916i
\(540\) −16.7705 12.1845i −0.721688 0.524337i
\(541\) −7.67376 23.6174i −0.329921 1.01539i −0.969170 0.246392i \(-0.920755\pi\)
0.639249 0.769000i \(-0.279245\pi\)
\(542\) −4.90983 + 3.56720i −0.210895 + 0.153224i
\(543\) 5.41641 0.232440
\(544\) 3.35410 2.43690i 0.143806 0.104481i
\(545\) −10.3262 + 7.50245i −0.442327 + 0.321370i
\(546\) 2.64590 + 1.92236i 0.113234 + 0.0822693i
\(547\) 27.9894 + 20.3355i 1.19674 + 0.869481i 0.993960 0.109743i \(-0.0350029\pi\)
0.202779 + 0.979225i \(0.435003\pi\)
\(548\) 2.53038 7.78770i 0.108092 0.332674i
\(549\) 10.0000 0.426790
\(550\) −6.18034 −0.263531
\(551\) −30.9787 −1.31974
\(552\) −1.01722 + 3.13068i −0.0432958 + 0.133251i
\(553\) −7.80902 5.67358i −0.332073 0.241265i
\(554\) −5.48936 3.98825i −0.233220 0.169445i
\(555\) 22.2361 0.943869
\(556\) 6.35410 4.61653i 0.269474 0.195784i
\(557\) 44.8328 1.89963 0.949814 0.312816i \(-0.101272\pi\)
0.949814 + 0.312816i \(0.101272\pi\)
\(558\) −6.32624 + 4.59628i −0.267811 + 0.194576i
\(559\) 3.92705 + 12.0862i 0.166097 + 0.511193i
\(560\) 26.2812 19.0944i 1.11058 0.806885i
\(561\) −1.00000 + 3.07768i −0.0422200 + 0.129940i
\(562\) 1.01064 + 3.11044i 0.0426314 + 0.131206i
\(563\) −3.13525 9.64932i −0.132135 0.406670i 0.862998 0.505207i \(-0.168584\pi\)
−0.995133 + 0.0985366i \(0.968584\pi\)
\(564\) 1.50000 4.61653i 0.0631614 0.194391i
\(565\) −13.2533 + 9.62908i −0.557570 + 0.405098i
\(566\) −0.343459 1.05706i −0.0144367 0.0444314i
\(567\) −3.73607 + 2.71441i −0.156900 + 0.113995i
\(568\) 11.5623 0.485144
\(569\) −34.2254 + 24.8662i −1.43480 + 1.04245i −0.445708 + 0.895178i \(0.647048\pi\)
−0.989097 + 0.147268i \(0.952952\pi\)
\(570\) −4.14590 −0.173653
\(571\) −1.71885 1.24882i −0.0719315 0.0522613i 0.551238 0.834348i \(-0.314155\pi\)
−0.623170 + 0.782086i \(0.714155\pi\)
\(572\) −9.00000 6.53888i −0.376309 0.273404i
\(573\) 6.38197 19.6417i 0.266610 0.820543i
\(574\) −4.36068 −0.182011
\(575\) 3.45492 + 10.6331i 0.144080 + 0.443432i
\(576\) 9.41641 0.392350
\(577\) 5.65248 17.3965i 0.235316 0.724227i −0.761764 0.647855i \(-0.775666\pi\)
0.997079 0.0763722i \(-0.0243337\pi\)
\(578\) 0.309017 + 0.224514i 0.0128534 + 0.00933855i
\(579\) 18.5623 + 13.4863i 0.771423 + 0.560472i
\(580\) 21.4058 15.5522i 0.888826 0.645770i
\(581\) −22.2082 + 16.1352i −0.921352 + 0.669401i
\(582\) 3.11146 0.128974
\(583\) −9.85410 + 7.15942i −0.408115 + 0.296513i
\(584\) 4.09424 + 12.6008i 0.169421 + 0.521423i
\(585\) 6.70820 + 4.87380i 0.277350 + 0.201507i
\(586\) 0.347524 1.06957i 0.0143561 0.0441835i
\(587\) 3.98278 + 12.2577i 0.164387 + 0.505931i 0.998991 0.0449200i \(-0.0143033\pi\)
−0.834604 + 0.550851i \(0.814303\pi\)
\(588\) 8.20820 + 25.2623i 0.338501 + 1.04180i
\(589\) 15.3541 47.2551i 0.632655 1.94711i
\(590\) 3.06637 + 9.43732i 0.126241 + 0.388528i
\(591\) 0.673762 + 2.07363i 0.0277149 + 0.0852976i
\(592\) −25.3090 + 18.3881i −1.04019 + 0.755745i
\(593\) 37.0902 1.52311 0.761555 0.648100i \(-0.224436\pi\)
0.761555 + 0.648100i \(0.224436\pi\)
\(594\) 5.00000 3.63271i 0.205152 0.149052i
\(595\) 8.35410 + 6.06961i 0.342485 + 0.248830i
\(596\) −22.7705 16.5437i −0.932716 0.677658i
\(597\) 8.35410 + 6.06961i 0.341911 + 0.248413i
\(598\) 0.489357 1.50609i 0.0200113 0.0615884i
\(599\) −12.8197 −0.523797 −0.261899 0.965095i \(-0.584349\pi\)
−0.261899 + 0.965095i \(0.584349\pi\)
\(600\) 5.95492 4.32650i 0.243108 0.176629i
\(601\) 27.8541 1.13619 0.568096 0.822962i \(-0.307680\pi\)
0.568096 + 0.822962i \(0.307680\pi\)
\(602\) 3.73607 11.4984i 0.152271 0.468641i
\(603\) −24.9443 18.1231i −1.01581 0.738029i
\(604\) 16.7188 + 12.1470i 0.680280 + 0.494253i
\(605\) 0.364745 1.12257i 0.0148290 0.0456390i
\(606\) 2.39919 1.74311i 0.0974603 0.0708091i
\(607\) −30.6180 −1.24275 −0.621374 0.783514i \(-0.713425\pi\)
−0.621374 + 0.783514i \(0.713425\pi\)
\(608\) 16.2812 11.8290i 0.660288 0.479727i
\(609\) 9.10739 + 28.0297i 0.369050 + 1.13582i
\(610\) −1.31966 + 4.06150i −0.0534315 + 0.164445i
\(611\) −1.50000 + 4.61653i −0.0606835 + 0.186765i
\(612\) 1.14590 + 3.52671i 0.0463202 + 0.142559i
\(613\) −8.60739 26.4908i −0.347649 1.06995i −0.960150 0.279485i \(-0.909836\pi\)
0.612501 0.790470i \(-0.290164\pi\)
\(614\) 0.124612 0.383516i 0.00502892 0.0154774i
\(615\) 5.52786 0.222905
\(616\) 6.79837 + 20.9232i 0.273914 + 0.843021i
\(617\) 25.8992 18.8169i 1.04266 0.757538i 0.0718586 0.997415i \(-0.477107\pi\)
0.970803 + 0.239877i \(0.0771070\pi\)
\(618\) 0.506578 0.0203775
\(619\) −24.8435 + 18.0498i −0.998543 + 0.725484i −0.961775 0.273840i \(-0.911706\pi\)
−0.0367676 + 0.999324i \(0.511706\pi\)
\(620\) 13.1140 + 40.3606i 0.526670 + 1.62092i
\(621\) −9.04508 6.57164i −0.362967 0.263711i
\(622\) 1.84346 + 1.33935i 0.0739160 + 0.0537031i
\(623\) 1.76393 5.42882i 0.0706704 0.217501i
\(624\) 5.83282 0.233500
\(625\) 7.72542 23.7764i 0.309017 0.951057i
\(626\) −5.12461 −0.204821
\(627\) −4.85410 + 14.9394i −0.193854 + 0.596622i
\(628\) 31.5000 + 22.8861i 1.25699 + 0.913254i
\(629\) −8.04508 5.84510i −0.320779 0.233059i
\(630\) −2.43769 7.50245i −0.0971201 0.298905i
\(631\) −9.80902 + 7.12667i −0.390491 + 0.283708i −0.765657 0.643250i \(-0.777586\pi\)
0.375166 + 0.926958i \(0.377586\pi\)
\(632\) 3.07701 0.122397
\(633\) −17.1353 + 12.4495i −0.681065 + 0.494823i
\(634\) −1.04915 3.22895i −0.0416671 0.128238i
\(635\) −16.5836 −0.658100
\(636\) 2.15654 6.63715i 0.0855124 0.263180i
\(637\) −8.20820 25.2623i −0.325221 1.00093i
\(638\) 2.43769 + 7.50245i 0.0965092 + 0.297025i
\(639\) −4.85410 + 14.9394i −0.192025 + 0.590993i
\(640\) −6.97214 + 21.4580i −0.275598 + 0.848203i
\(641\) 9.28115 + 28.5645i 0.366584 + 1.12823i 0.948984 + 0.315326i \(0.102114\pi\)
−0.582400 + 0.812902i \(0.697886\pi\)
\(642\) 0.0172209 0.0125117i 0.000679656 0.000493799i
\(643\) −5.70820 −0.225110 −0.112555 0.993646i \(-0.535903\pi\)
−0.112555 + 0.993646i \(0.535903\pi\)
\(644\) 15.4894 11.2537i 0.610366 0.443457i
\(645\) −4.73607 + 14.5761i −0.186482 + 0.573934i
\(646\) 1.50000 + 1.08981i 0.0590167 + 0.0428782i
\(647\) 4.52786 + 3.28969i 0.178009 + 0.129331i 0.673222 0.739441i \(-0.264910\pi\)
−0.495213 + 0.868772i \(0.664910\pi\)
\(648\) 0.454915 1.40008i 0.0178708 0.0550005i
\(649\) 37.5967 1.47580
\(650\) −2.86475 + 2.08136i −0.112365 + 0.0816376i
\(651\) −47.2705 −1.85268
\(652\) 6.67627 20.5475i 0.261463 0.804701i
\(653\) 7.88197 + 5.72658i 0.308445 + 0.224099i 0.731229 0.682132i \(-0.238947\pi\)
−0.422784 + 0.906231i \(0.638947\pi\)
\(654\) 1.76393 + 1.28157i 0.0689752 + 0.0501134i
\(655\) 36.7705 + 26.7153i 1.43674 + 1.04385i
\(656\) −6.29180 + 4.57126i −0.245653 + 0.178478i
\(657\) −18.0000 −0.702247
\(658\) 3.73607 2.71441i 0.145647 0.105819i
\(659\) 10.3607 + 31.8869i 0.403595 + 1.24214i 0.922063 + 0.387040i \(0.126502\pi\)
−0.518468 + 0.855097i \(0.673498\pi\)
\(660\) −4.14590 12.7598i −0.161379 0.496673i
\(661\) 14.7361 45.3530i 0.573167 1.76403i −0.0691723 0.997605i \(-0.522036\pi\)
0.642339 0.766421i \(-0.277964\pi\)
\(662\) 2.05573 + 6.32688i 0.0798981 + 0.245901i
\(663\) 0.572949 + 1.76336i 0.0222515 + 0.0684831i
\(664\) 2.70414 8.32248i 0.104941 0.322975i
\(665\) 40.5517 + 29.4625i 1.57253 + 1.14251i
\(666\) 2.34752 + 7.22494i 0.0909647 + 0.279961i
\(667\) 11.5451 8.38800i 0.447027 0.324784i
\(668\) 37.2492 1.44122
\(669\) 7.85410 5.70634i 0.303657 0.220620i
\(670\) 10.6525 7.73948i 0.411541 0.299002i
\(671\) 13.0902 + 9.51057i 0.505340 + 0.367151i
\(672\) −15.4894 11.2537i −0.597515 0.434120i
\(673\) −6.41641 + 19.7477i −0.247334 + 0.761217i 0.747909 + 0.663801i \(0.231058\pi\)
−0.995244 + 0.0974160i \(0.968942\pi\)
\(674\) 5.47214 0.210779
\(675\) 7.72542 + 23.7764i 0.297352 + 0.915155i
\(676\) 17.7295 0.681903
\(677\) 14.7533 45.4060i 0.567015 1.74509i −0.0948726 0.995489i \(-0.530244\pi\)
0.661888 0.749603i \(-0.269756\pi\)
\(678\) 2.26393 + 1.64484i 0.0869458 + 0.0631698i
\(679\) −30.4336 22.1113i −1.16794 0.848555i
\(680\) −3.29180 −0.126235
\(681\) −10.8541 + 7.88597i −0.415930 + 0.302191i
\(682\) −12.6525 −0.484488
\(683\) 36.7877 26.7279i 1.40764 1.02271i 0.413984 0.910284i \(-0.364137\pi\)
0.993660 0.112428i \(-0.0358629\pi\)
\(684\) 5.56231 + 17.1190i 0.212680 + 0.654562i
\(685\) −7.98936 + 5.80461i −0.305258 + 0.221783i
\(686\) −3.99342 + 12.2905i −0.152470 + 0.469253i
\(687\) −1.85410 5.70634i −0.0707384 0.217710i
\(688\) −6.66312 20.5070i −0.254029 0.781821i
\(689\) −2.15654 + 6.63715i −0.0821577 + 0.252855i
\(690\) 1.54508 1.12257i 0.0588204 0.0427355i
\(691\) 1.77051 + 5.44907i 0.0673534 + 0.207292i 0.979069 0.203530i \(-0.0652415\pi\)
−0.911715 + 0.410823i \(0.865242\pi\)
\(692\) −9.35410 + 6.79615i −0.355590 + 0.258351i
\(693\) −29.8885 −1.13537
\(694\) 2.79180 2.02836i 0.105975 0.0769954i
\(695\) −9.47214 −0.359299
\(696\) −7.60081 5.52231i −0.288108 0.209323i
\(697\) −2.00000 1.45309i −0.0757554 0.0550395i
\(698\) 0.708204 2.17963i 0.0268059 0.0825001i
\(699\) −8.18034 −0.309409
\(700\) −42.8115 −1.61812
\(701\) 42.3607 1.59994 0.799970 0.600039i \(-0.204848\pi\)
0.799970 + 0.600039i \(0.204848\pi\)
\(702\) 1.09424 3.36771i 0.0412992 0.127106i
\(703\) −39.0517 28.3727i −1.47286 1.07010i
\(704\) 12.3262 + 8.95554i 0.464563 + 0.337524i
\(705\) −4.73607 + 3.44095i −0.178371 + 0.129594i
\(706\) 7.71885 5.60807i 0.290503 0.211063i
\(707\) −35.8541 −1.34843
\(708\) −17.4271 + 12.6615i −0.654949 + 0.475848i
\(709\) −3.39919 10.4616i −0.127659 0.392894i 0.866717 0.498800i \(-0.166226\pi\)
−0.994376 + 0.105906i \(0.966226\pi\)
\(710\) −5.42705 3.94298i −0.203674 0.147978i
\(711\) −1.29180 + 3.97574i −0.0484461 + 0.149102i
\(712\) 0.562306 + 1.73060i 0.0210733 + 0.0648570i
\(713\) 7.07295 + 21.7683i 0.264884 + 0.815229i
\(714\) 0.545085 1.67760i 0.0203993 0.0627826i
\(715\) 4.14590 + 12.7598i 0.155048 + 0.477188i
\(716\) 15.0319 + 46.2635i 0.561770 + 1.72895i
\(717\) 1.19098 0.865300i 0.0444781 0.0323152i
\(718\) 13.2918 0.496045
\(719\) 12.7533 9.26581i 0.475617 0.345556i −0.324009 0.946054i \(-0.605031\pi\)
0.799626 + 0.600498i \(0.205031\pi\)
\(720\) −11.3820 8.26948i −0.424181 0.308185i
\(721\) −4.95492 3.59996i −0.184531 0.134069i
\(722\) 1.40983 + 1.02430i 0.0524684 + 0.0381206i
\(723\) 4.07295 12.5352i 0.151475 0.466191i
\(724\) 10.0426 0.373229
\(725\) −31.9098 −1.18510
\(726\) −0.201626 −0.00748305
\(727\) 7.20820 22.1846i 0.267337 0.822780i −0.723808 0.690001i \(-0.757610\pi\)
0.991146 0.132779i \(-0.0423900\pi\)
\(728\) 10.1976 + 7.40896i 0.377947 + 0.274594i
\(729\) −10.5172 7.64121i −0.389527 0.283008i
\(730\) 2.37539 7.31069i 0.0879171 0.270581i
\(731\) 5.54508 4.02874i 0.205092 0.149008i
\(732\) −9.27051 −0.342648
\(733\) −23.5795 + 17.1315i −0.870930 + 0.632767i −0.930836 0.365437i \(-0.880920\pi\)
0.0599066 + 0.998204i \(0.480920\pi\)
\(734\) −3.99593 12.2982i −0.147493 0.453936i
\(735\) 9.89919 30.4666i 0.365137 1.12378i
\(736\) −2.86475 + 8.81678i −0.105596 + 0.324991i
\(737\) −15.4164 47.4468i −0.567871 1.74773i
\(738\) 0.583592 + 1.79611i 0.0214823 + 0.0661158i
\(739\) −9.62461 + 29.6215i −0.354047 + 1.08964i 0.602513 + 0.798109i \(0.294166\pi\)
−0.956560 + 0.291536i \(0.905834\pi\)
\(740\) 41.2279 1.51557
\(741\) 2.78115 + 8.55951i 0.102168 + 0.314441i
\(742\) 5.37132 3.90249i 0.197187 0.143265i
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 12.1910 8.85727i 0.446943 0.324723i
\(745\) 10.4894 + 32.2829i 0.384300 + 1.18275i
\(746\) 4.06231 + 2.95144i 0.148732 + 0.108060i
\(747\) 9.61803 + 6.98791i 0.351905 + 0.255674i
\(748\) −1.85410 + 5.70634i −0.0677927 + 0.208644i
\(749\) −0.257354 −0.00940352
\(750\) −4.27051 −0.155937
\(751\) 8.52786 0.311186 0.155593 0.987821i \(-0.450271\pi\)
0.155593 + 0.987821i \(0.450271\pi\)
\(752\) 2.54508 7.83297i 0.0928097 0.285639i
\(753\) −19.1353 13.9026i −0.697327 0.506638i
\(754\) 3.65654 + 2.65663i 0.133163 + 0.0967489i
\(755\) −7.70163 23.7032i −0.280291 0.862647i
\(756\) 34.6353 25.1640i 1.25967 0.915205i
\(757\) −29.3607 −1.06713 −0.533566 0.845758i \(-0.679148\pi\)
−0.533566 + 0.845758i \(0.679148\pi\)
\(758\) 7.07295 5.13880i 0.256901 0.186650i
\(759\) −2.23607 6.88191i −0.0811641 0.249797i
\(760\) −15.9787 −0.579609
\(761\) 5.40983 16.6497i 0.196106 0.603553i −0.803856 0.594824i \(-0.797222\pi\)
0.999962 0.00872845i \(-0.00277839\pi\)
\(762\) 0.875388 + 2.69417i 0.0317120 + 0.0975994i
\(763\) −8.14590 25.0705i −0.294901 0.907613i
\(764\) 11.8328 36.4177i 0.428096 1.31754i
\(765\) 1.38197 4.25325i 0.0499651 0.153777i
\(766\) −1.95085 6.00410i −0.0704871 0.216937i
\(767\) 17.4271 12.6615i 0.629254 0.457180i
\(768\) −5.56231 −0.200712
\(769\) −7.85410 + 5.70634i −0.283226 + 0.205776i