Properties

Label 425.2.k.a
Level $425$
Weight $2$
Character orbit 425.k
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 2) q^{2}+ \cdots + 2 \zeta_{10} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - 2 \zeta_{10}^{3} + \zeta_{10}^{2} + \cdots + 2) q^{2}+ \cdots + ( - 4 \zeta_{10}^{3} + 4 \zeta_{10}^{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + q^{3} + 6 q^{4} - 5 q^{5} + q^{6} + 14 q^{7} - 7 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + q^{3} + 6 q^{4} - 5 q^{5} + q^{6} + 14 q^{7} - 7 q^{8} + 2 q^{9} - 10 q^{10} + 4 q^{11} + 9 q^{12} - 9 q^{13} + 9 q^{14} + 5 q^{15} - 14 q^{16} - q^{17} + 12 q^{18} - 9 q^{19} - 15 q^{20} + 6 q^{21} + 4 q^{22} + 5 q^{23} + 12 q^{24} - 5 q^{25} - 24 q^{26} - 5 q^{27} + 21 q^{28} + 5 q^{29} + 5 q^{30} - 13 q^{31} - 30 q^{32} + 6 q^{33} + 4 q^{34} - 15 q^{35} + 18 q^{36} + 19 q^{37} - 9 q^{38} + 9 q^{39} - 5 q^{40} + 12 q^{41} + q^{42} - 14 q^{43} + 6 q^{44} - 10 q^{45} + 5 q^{46} - 4 q^{47} + 14 q^{48} + 26 q^{49} + 20 q^{50} - 4 q^{51} - 36 q^{52} - q^{53} - 5 q^{54} - 20 q^{55} - 22 q^{56} - 6 q^{57} + 10 q^{58} - 8 q^{59} + 5 q^{61} + 22 q^{62} + 2 q^{63} - 17 q^{64} + 6 q^{66} + 32 q^{67} + 6 q^{68} + 5 q^{69} - 20 q^{70} - 12 q^{71} + 14 q^{72} - 9 q^{73} + 34 q^{74} - 20 q^{75} - 36 q^{76} + 14 q^{77} + 9 q^{78} - 9 q^{79} + 25 q^{80} - q^{81} + 32 q^{82} - 17 q^{83} + 24 q^{84} + 5 q^{85} + q^{86} - 10 q^{87} - 12 q^{88} + 6 q^{89} - 20 q^{90} - 24 q^{91} - 32 q^{93} + q^{94} + 15 q^{95} - 4 q^{97} - 9 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-\zeta_{10}^{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
86.1
0.809017 + 0.587785i
−0.309017 0.951057i
−0.309017 + 0.951057i
0.809017 0.587785i
2.11803 1.53884i −0.309017 + 0.951057i 1.50000 4.61653i −1.80902 1.31433i 0.809017 + 2.48990i 2.38197 −2.30902 7.10642i 1.61803 + 1.17557i −5.85410
171.1 −0.118034 + 0.363271i 0.809017 + 0.587785i 1.50000 + 1.08981i −0.690983 2.12663i −0.309017 + 0.224514i 4.61803 −1.19098 + 0.865300i −0.618034 1.90211i 0.854102
256.1 −0.118034 0.363271i 0.809017 0.587785i 1.50000 1.08981i −0.690983 + 2.12663i −0.309017 0.224514i 4.61803 −1.19098 0.865300i −0.618034 + 1.90211i 0.854102
341.1 2.11803 + 1.53884i −0.309017 0.951057i 1.50000 + 4.61653i −1.80902 + 1.31433i 0.809017 2.48990i 2.38197 −2.30902 + 7.10642i 1.61803 1.17557i −5.85410
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.2.k.a 4
25.d even 5 1 inner 425.2.k.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.2.k.a 4 1.a even 1 1 trivial
425.2.k.a 4 25.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 4T_{2}^{3} + 6T_{2}^{2} + T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(425, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 7 T + 11)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( T^{4} + 9 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$17$ \( T^{4} + T^{3} + T^{2} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} + 9 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$23$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$29$ \( T^{4} - 5 T^{3} + \cdots + 3025 \) Copy content Toggle raw display
$31$ \( T^{4} + 13 T^{3} + \cdots + 3481 \) Copy content Toggle raw display
$37$ \( T^{4} - 19 T^{3} + \cdots + 6241 \) Copy content Toggle raw display
$41$ \( T^{4} - 12 T^{3} + \cdots + 256 \) Copy content Toggle raw display
$43$ \( (T^{2} + 7 T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{4} + T^{3} + \cdots + 961 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 11881 \) Copy content Toggle raw display
$61$ \( T^{4} - 5 T^{3} + \cdots + 625 \) Copy content Toggle raw display
$67$ \( T^{4} - 32 T^{3} + \cdots + 30976 \) Copy content Toggle raw display
$71$ \( T^{4} + 12 T^{3} + \cdots + 81 \) Copy content Toggle raw display
$73$ \( T^{4} + 9 T^{3} + \cdots + 6561 \) Copy content Toggle raw display
$79$ \( T^{4} + 9 T^{3} + \cdots + 361 \) Copy content Toggle raw display
$83$ \( T^{4} + 17 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$89$ \( T^{4} - 6 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$97$ \( T^{4} + 4 T^{3} + \cdots + 14641 \) Copy content Toggle raw display
show more
show less