Properties

Label 425.2.k
Level $425$
Weight $2$
Character orbit 425.k
Rep. character $\chi_{425}(86,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $160$
Newform subspaces $3$
Sturm bound $90$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 3 \)
Sturm bound: \(90\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).

Total New Old
Modular forms 184 160 24
Cusp forms 168 160 8
Eisenstein series 16 0 16

Trace form

\( 160 q - 4 q^{3} - 40 q^{4} + 8 q^{5} - 4 q^{6} - 8 q^{7} + 18 q^{8} - 44 q^{9} - 18 q^{10} - 8 q^{11} + 8 q^{12} - 4 q^{13} - 20 q^{14} + 16 q^{15} - 16 q^{16} - 44 q^{18} + 6 q^{19} - 38 q^{20} + 6 q^{22}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
425.2.k.a 425.k 25.d $4$ $3.394$ \(\Q(\zeta_{10})\) None 425.2.k.a \(4\) \(1\) \(-5\) \(14\) $\mathrm{SU}(2)[C_{5}]$ \(q+(2-\zeta_{10}+\zeta_{10}^{2}-2\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{3}+\cdots\)
425.2.k.b 425.k 25.d $76$ $3.394$ None 425.2.k.b \(-6\) \(-7\) \(13\) \(22\) $\mathrm{SU}(2)[C_{5}]$
425.2.k.c 425.k 25.d $80$ $3.394$ None 425.2.k.c \(2\) \(2\) \(0\) \(-44\) $\mathrm{SU}(2)[C_{5}]$

Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)