Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.k (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 160 | 24 |
Cusp forms | 168 | 160 | 8 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
425.2.k.a | $4$ | $3.394$ | \(\Q(\zeta_{10})\) | None | \(4\) | \(1\) | \(-5\) | \(14\) | \(q+(2-\zeta_{10}+\zeta_{10}^{2}-2\zeta_{10}^{3})q^{2}+\zeta_{10}^{3}q^{3}+\cdots\) |
425.2.k.b | $76$ | $3.394$ | None | \(-6\) | \(-7\) | \(13\) | \(22\) | ||
425.2.k.c | $80$ | $3.394$ | None | \(2\) | \(2\) | \(0\) | \(-44\) |
Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)