Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 56 | 48 |
Cusp forms | 80 | 48 | 32 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
425.2.j.a | $12$ | $3.394$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(-4\) | \(-2\) | \(0\) | \(0\) | \(q+\beta _{8}q^{2}-\beta _{4}q^{3}+(1-\beta _{2})q^{4}+(1+\beta _{5}+\cdots)q^{6}+\cdots\) |
425.2.j.b | $12$ | $3.394$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(-4\) | \(4\) | \(0\) | \(0\) | \(q+\beta _{4}q^{2}-\beta _{5}q^{3}+(1+\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\) |
425.2.j.c | $12$ | $3.394$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(4\) | \(-4\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+\beta _{5}q^{3}+(1+\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\) |
425.2.j.d | $12$ | $3.394$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(4\) | \(2\) | \(0\) | \(0\) | \(q-\beta _{8}q^{2}-\beta _{3}q^{3}+(1-\beta _{2})q^{4}+(1-\beta _{6}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)