Properties

Label 425.2.j
Level $425$
Weight $2$
Character orbit 425.j
Rep. character $\chi_{425}(149,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $48$
Newform subspaces $4$
Sturm bound $90$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(90\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).

Total New Old
Modular forms 104 56 48
Cusp forms 80 48 32
Eisenstein series 24 8 16

Trace form

\( 48 q + 48 q^{4} + 12 q^{6} - 16 q^{11} - 20 q^{14} + 16 q^{16} - 16 q^{21} + 8 q^{24} + 36 q^{29} - 12 q^{31} - 36 q^{34} + 8 q^{39} - 36 q^{41} - 80 q^{44} + 12 q^{46} - 16 q^{51} - 88 q^{54} - 32 q^{56}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
425.2.j.a 425.j 85.j $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 425.2.e.c \(-4\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{8}q^{2}-\beta _{4}q^{3}+(1-\beta _{2})q^{4}+(1+\beta _{5}+\cdots)q^{6}+\cdots\)
425.2.j.b 425.j 85.j $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 85.2.e.a \(-4\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}-\beta _{5}q^{3}+(1+\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\)
425.2.j.c 425.j 85.j $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 85.2.e.a \(4\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{4}q^{2}+\beta _{5}q^{3}+(1+\beta _{3}-\beta _{4}+\beta _{6}+\cdots)q^{4}+\cdots\)
425.2.j.d 425.j 85.j $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 425.2.e.c \(4\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{8}q^{2}-\beta _{3}q^{3}+(1-\beta _{2})q^{4}+(1-\beta _{6}+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)