Properties

Label 425.2.e.d.276.5
Level $425$
Weight $2$
Character 425.276
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(251,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 24x^{10} + 188x^{8} + 572x^{6} + 776x^{4} + 464x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 276.5
Root \(0.803330i\) of defining polynomial
Character \(\chi\) \(=\) 425.276
Dual form 425.2.e.d.251.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.80333i q^{2} +(0.397180 - 0.397180i) q^{3} -1.25200 q^{4} +(0.716248 + 0.716248i) q^{6} +(-2.20051 - 2.20051i) q^{7} +1.34889i q^{8} +2.68450i q^{9} +(3.96825 + 3.96825i) q^{11} +(-0.497270 + 0.497270i) q^{12} -1.24880 q^{13} +(3.96825 - 3.96825i) q^{14} -4.93650 q^{16} +(0.397180 + 4.10393i) q^{17} -4.84103 q^{18} +4.00000i q^{19} -1.74800 q^{21} +(-7.15606 + 7.15606i) q^{22} +(1.64598 + 1.64598i) q^{23} +(0.535753 + 0.535753i) q^{24} -2.25200i q^{26} +(2.25777 + 2.25777i) q^{27} +(2.75504 + 2.75504i) q^{28} +(4.68450 - 4.68450i) q^{29} +(3.22025 - 3.22025i) q^{31} -6.20435i q^{32} +3.15222 q^{33} +(-7.40074 + 0.716248i) q^{34} -3.36099i q^{36} +(1.34889 - 1.34889i) q^{37} -7.21332 q^{38} +(-0.495999 + 0.495999i) q^{39} +(-4.18850 - 4.18850i) q^{41} -3.15222i q^{42} -2.04316i q^{43} +(-4.96825 - 4.96825i) q^{44} +(-2.96825 + 2.96825i) q^{46} -4.85546 q^{47} +(-1.96068 + 1.96068i) q^{48} +2.68450i q^{49} +(1.78775 + 1.47225i) q^{51} +1.56350 q^{52} -9.11674i q^{53} +(-4.07151 + 4.07151i) q^{54} +(2.96825 - 2.96825i) q^{56} +(1.58872 + 1.58872i) q^{57} +(8.44769 + 8.44769i) q^{58} -6.00000i q^{59} +(-4.00000 - 4.00000i) q^{61} +(5.80717 + 5.80717i) q^{62} +(5.90726 - 5.90726i) q^{63} +1.31550 q^{64} +5.68450i q^{66} +8.46212 q^{67} +(-0.497270 - 5.13812i) q^{68} +1.30750 q^{69} +(-6.22025 + 6.22025i) q^{71} -3.62109 q^{72} +(1.10906 - 1.10906i) q^{73} +(2.43250 + 2.43250i) q^{74} -5.00800i q^{76} -17.4643i q^{77} +(-0.894450 - 0.894450i) q^{78} +(3.47225 + 3.47225i) q^{79} -6.26000 q^{81} +(7.55324 - 7.55324i) q^{82} +3.94658i q^{83} +2.18850 q^{84} +3.68450 q^{86} -3.72118i q^{87} +(-5.35273 + 5.35273i) q^{88} +10.6130 q^{89} +(2.74800 + 2.74800i) q^{91} +(-2.06077 - 2.06077i) q^{92} -2.55804i q^{93} -8.75600i q^{94} +(-2.46425 - 2.46425i) q^{96} +(8.76239 - 8.76239i) q^{97} -4.84103 q^{98} +(-10.6527 + 10.6527i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 20 q^{6} + 16 q^{11} + 16 q^{14} + 4 q^{16} - 24 q^{21} + 32 q^{24} - 4 q^{29} + 4 q^{31} - 12 q^{39} + 16 q^{41} - 28 q^{44} - 4 q^{46} + 44 q^{51} - 100 q^{54} + 4 q^{56} - 48 q^{61}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80333i 1.27515i 0.770389 + 0.637574i \(0.220062\pi\)
−0.770389 + 0.637574i \(0.779938\pi\)
\(3\) 0.397180 0.397180i 0.229312 0.229312i −0.583093 0.812405i \(-0.698158\pi\)
0.812405 + 0.583093i \(0.198158\pi\)
\(4\) −1.25200 −0.626000
\(5\) 0 0
\(6\) 0.716248 + 0.716248i 0.292407 + 0.292407i
\(7\) −2.20051 2.20051i −0.831715 0.831715i 0.156036 0.987751i \(-0.450128\pi\)
−0.987751 + 0.156036i \(0.950128\pi\)
\(8\) 1.34889i 0.476905i
\(9\) 2.68450i 0.894832i
\(10\) 0 0
\(11\) 3.96825 + 3.96825i 1.19647 + 1.19647i 0.975216 + 0.221256i \(0.0710156\pi\)
0.221256 + 0.975216i \(0.428984\pi\)
\(12\) −0.497270 + 0.497270i −0.143549 + 0.143549i
\(13\) −1.24880 −0.346355 −0.173178 0.984891i \(-0.555403\pi\)
−0.173178 + 0.984891i \(0.555403\pi\)
\(14\) 3.96825 3.96825i 1.06056 1.06056i
\(15\) 0 0
\(16\) −4.93650 −1.23412
\(17\) 0.397180 + 4.10393i 0.0963304 + 0.995349i
\(18\) −4.84103 −1.14104
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) −1.74800 −0.381445
\(22\) −7.15606 + 7.15606i −1.52568 + 1.52568i
\(23\) 1.64598 + 1.64598i 0.343211 + 0.343211i 0.857573 0.514362i \(-0.171971\pi\)
−0.514362 + 0.857573i \(0.671971\pi\)
\(24\) 0.535753 + 0.535753i 0.109360 + 0.109360i
\(25\) 0 0
\(26\) 2.25200i 0.441654i
\(27\) 2.25777 + 2.25777i 0.434508 + 0.434508i
\(28\) 2.75504 + 2.75504i 0.520654 + 0.520654i
\(29\) 4.68450 4.68450i 0.869889 0.869889i −0.122571 0.992460i \(-0.539114\pi\)
0.992460 + 0.122571i \(0.0391139\pi\)
\(30\) 0 0
\(31\) 3.22025 3.22025i 0.578374 0.578374i −0.356081 0.934455i \(-0.615887\pi\)
0.934455 + 0.356081i \(0.115887\pi\)
\(32\) 6.20435i 1.09678i
\(33\) 3.15222 0.548731
\(34\) −7.40074 + 0.716248i −1.26922 + 0.122835i
\(35\) 0 0
\(36\) 3.36099i 0.560165i
\(37\) 1.34889 1.34889i 0.221756 0.221756i −0.587481 0.809238i \(-0.699880\pi\)
0.809238 + 0.587481i \(0.199880\pi\)
\(38\) −7.21332 −1.17016
\(39\) −0.495999 + 0.495999i −0.0794234 + 0.0794234i
\(40\) 0 0
\(41\) −4.18850 4.18850i −0.654133 0.654133i 0.299852 0.953986i \(-0.403063\pi\)
−0.953986 + 0.299852i \(0.903063\pi\)
\(42\) 3.15222i 0.486398i
\(43\) 2.04316i 0.311579i −0.987790 0.155790i \(-0.950208\pi\)
0.987790 0.155790i \(-0.0497922\pi\)
\(44\) −4.96825 4.96825i −0.748992 0.748992i
\(45\) 0 0
\(46\) −2.96825 + 2.96825i −0.437644 + 0.437644i
\(47\) −4.85546 −0.708242 −0.354121 0.935200i \(-0.615220\pi\)
−0.354121 + 0.935200i \(0.615220\pi\)
\(48\) −1.96068 + 1.96068i −0.283000 + 0.283000i
\(49\) 2.68450i 0.383499i
\(50\) 0 0
\(51\) 1.78775 + 1.47225i 0.250336 + 0.206156i
\(52\) 1.56350 0.216818
\(53\) 9.11674i 1.25228i −0.779710 0.626140i \(-0.784634\pi\)
0.779710 0.626140i \(-0.215366\pi\)
\(54\) −4.07151 + 4.07151i −0.554062 + 0.554062i
\(55\) 0 0
\(56\) 2.96825 2.96825i 0.396649 0.396649i
\(57\) 1.58872 + 1.58872i 0.210431 + 0.210431i
\(58\) 8.44769 + 8.44769i 1.10924 + 1.10924i
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 0 0
\(61\) −4.00000 4.00000i −0.512148 0.512148i 0.403036 0.915184i \(-0.367955\pi\)
−0.915184 + 0.403036i \(0.867955\pi\)
\(62\) 5.80717 + 5.80717i 0.737512 + 0.737512i
\(63\) 5.90726 5.90726i 0.744245 0.744245i
\(64\) 1.31550 0.164438
\(65\) 0 0
\(66\) 5.68450i 0.699713i
\(67\) 8.46212 1.03381 0.516906 0.856042i \(-0.327084\pi\)
0.516906 + 0.856042i \(0.327084\pi\)
\(68\) −0.497270 5.13812i −0.0603029 0.623089i
\(69\) 1.30750 0.157405
\(70\) 0 0
\(71\) −6.22025 + 6.22025i −0.738208 + 0.738208i −0.972231 0.234023i \(-0.924811\pi\)
0.234023 + 0.972231i \(0.424811\pi\)
\(72\) −3.62109 −0.426750
\(73\) 1.10906 1.10906i 0.129806 0.129806i −0.639219 0.769025i \(-0.720742\pi\)
0.769025 + 0.639219i \(0.220742\pi\)
\(74\) 2.43250 + 2.43250i 0.282772 + 0.282772i
\(75\) 0 0
\(76\) 5.00800i 0.574457i
\(77\) 17.4643i 1.99025i
\(78\) −0.894450 0.894450i −0.101277 0.101277i
\(79\) 3.47225 + 3.47225i 0.390658 + 0.390658i 0.874922 0.484264i \(-0.160912\pi\)
−0.484264 + 0.874922i \(0.660912\pi\)
\(80\) 0 0
\(81\) −6.26000 −0.695556
\(82\) 7.55324 7.55324i 0.834116 0.834116i
\(83\) 3.94658i 0.433194i 0.976261 + 0.216597i \(0.0694957\pi\)
−0.976261 + 0.216597i \(0.930504\pi\)
\(84\) 2.18850 0.238785
\(85\) 0 0
\(86\) 3.68450 0.397309
\(87\) 3.72118i 0.398952i
\(88\) −5.35273 + 5.35273i −0.570603 + 0.570603i
\(89\) 10.6130 1.12497 0.562487 0.826806i \(-0.309845\pi\)
0.562487 + 0.826806i \(0.309845\pi\)
\(90\) 0 0
\(91\) 2.74800 + 2.74800i 0.288069 + 0.288069i
\(92\) −2.06077 2.06077i −0.214850 0.214850i
\(93\) 2.55804i 0.265256i
\(94\) 8.75600i 0.903113i
\(95\) 0 0
\(96\) −2.46425 2.46425i −0.251506 0.251506i
\(97\) 8.76239 8.76239i 0.889686 0.889686i −0.104807 0.994493i \(-0.533422\pi\)
0.994493 + 0.104807i \(0.0334224\pi\)
\(98\) −4.84103 −0.489018
\(99\) −10.6527 + 10.6527i −1.07064 + 1.07064i
\(100\) 0 0
\(101\) 9.62099 0.957324 0.478662 0.877999i \(-0.341122\pi\)
0.478662 + 0.877999i \(0.341122\pi\)
\(102\) −2.65495 + 3.22391i −0.262879 + 0.319215i
\(103\) −1.84298 −0.181594 −0.0907972 0.995869i \(-0.528942\pi\)
−0.0907972 + 0.995869i \(0.528942\pi\)
\(104\) 1.68450i 0.165178i
\(105\) 0 0
\(106\) 16.4405 1.59684
\(107\) −12.0115 + 12.0115i −1.16120 + 1.16120i −0.176984 + 0.984214i \(0.556634\pi\)
−0.984214 + 0.176984i \(0.943366\pi\)
\(108\) −2.82673 2.82673i −0.272002 0.272002i
\(109\) 0.315505 + 0.315505i 0.0302199 + 0.0302199i 0.722055 0.691835i \(-0.243198\pi\)
−0.691835 + 0.722055i \(0.743198\pi\)
\(110\) 0 0
\(111\) 1.07151i 0.101703i
\(112\) 10.8628 + 10.8628i 1.02644 + 1.02644i
\(113\) 8.00768 + 8.00768i 0.753299 + 0.753299i 0.975094 0.221794i \(-0.0711913\pi\)
−0.221794 + 0.975094i \(0.571191\pi\)
\(114\) −2.86499 + 2.86499i −0.268331 + 0.268331i
\(115\) 0 0
\(116\) −5.86499 + 5.86499i −0.544551 + 0.544551i
\(117\) 3.35240i 0.309929i
\(118\) 10.8200 0.996060
\(119\) 8.15674 9.90474i 0.747728 0.907966i
\(120\) 0 0
\(121\) 20.4940i 1.86309i
\(122\) 7.21332 7.21332i 0.653063 0.653063i
\(123\) −3.32718 −0.300001
\(124\) −4.03175 + 4.03175i −0.362062 + 0.362062i
\(125\) 0 0
\(126\) 10.6527 + 10.6527i 0.949022 + 0.949022i
\(127\) 5.85000i 0.519104i 0.965729 + 0.259552i \(0.0835748\pi\)
−0.965729 + 0.259552i \(0.916425\pi\)
\(128\) 10.0364i 0.887102i
\(129\) −0.811504 0.811504i −0.0714489 0.0714489i
\(130\) 0 0
\(131\) 13.8332 13.8332i 1.20862 1.20862i 0.237140 0.971475i \(-0.423790\pi\)
0.971475 0.237140i \(-0.0762101\pi\)
\(132\) −3.94658 −0.343506
\(133\) 8.80204 8.80204i 0.763234 0.763234i
\(134\) 15.2600i 1.31826i
\(135\) 0 0
\(136\) −5.53575 + 0.535753i −0.474687 + 0.0459404i
\(137\) 13.8577 1.18394 0.591971 0.805959i \(-0.298350\pi\)
0.591971 + 0.805959i \(0.298350\pi\)
\(138\) 2.35786i 0.200714i
\(139\) −7.21225 + 7.21225i −0.611735 + 0.611735i −0.943398 0.331663i \(-0.892390\pi\)
0.331663 + 0.943398i \(0.392390\pi\)
\(140\) 0 0
\(141\) −1.92849 + 1.92849i −0.162409 + 0.162409i
\(142\) −11.2172 11.2172i −0.941323 0.941323i
\(143\) −4.95555 4.95555i −0.414404 0.414404i
\(144\) 13.2520i 1.10433i
\(145\) 0 0
\(146\) 2.00000 + 2.00000i 0.165521 + 0.165521i
\(147\) 1.06623 + 1.06623i 0.0879411 + 0.0879411i
\(148\) −1.68881 + 1.68881i −0.138819 + 0.138819i
\(149\) −15.9365 −1.30557 −0.652784 0.757544i \(-0.726399\pi\)
−0.652784 + 0.757544i \(0.726399\pi\)
\(150\) 0 0
\(151\) 3.36899i 0.274165i −0.990560 0.137082i \(-0.956228\pi\)
0.990560 0.137082i \(-0.0437725\pi\)
\(152\) −5.39556 −0.437638
\(153\) −11.0170 + 1.06623i −0.890670 + 0.0861995i
\(154\) 31.4940 2.53786
\(155\) 0 0
\(156\) 0.620991 0.620991i 0.0497191 0.0497191i
\(157\) −3.92136 −0.312959 −0.156479 0.987681i \(-0.550014\pi\)
−0.156479 + 0.987681i \(0.550014\pi\)
\(158\) −6.26161 + 6.26161i −0.498147 + 0.498147i
\(159\) −3.62099 3.62099i −0.287163 0.287163i
\(160\) 0 0
\(161\) 7.24400i 0.570907i
\(162\) 11.2889i 0.886936i
\(163\) 10.4084 + 10.4084i 0.815247 + 0.815247i 0.985415 0.170168i \(-0.0544312\pi\)
−0.170168 + 0.985415i \(0.554431\pi\)
\(164\) 5.24400 + 5.24400i 0.409488 + 0.409488i
\(165\) 0 0
\(166\) −7.11699 −0.552386
\(167\) 0.297091 0.297091i 0.0229896 0.0229896i −0.695519 0.718508i \(-0.744825\pi\)
0.718508 + 0.695519i \(0.244825\pi\)
\(168\) 2.35786i 0.181913i
\(169\) −11.4405 −0.880038
\(170\) 0 0
\(171\) −10.7380 −0.821154
\(172\) 2.55804i 0.195049i
\(173\) 11.7397 11.7397i 0.892549 0.892549i −0.102213 0.994763i \(-0.532592\pi\)
0.994763 + 0.102213i \(0.0325924\pi\)
\(174\) 6.71052 0.508723
\(175\) 0 0
\(176\) −19.5892 19.5892i −1.47659 1.47659i
\(177\) −2.38308 2.38308i −0.179123 0.179123i
\(178\) 19.1387i 1.43451i
\(179\) 19.7935i 1.47943i −0.672918 0.739717i \(-0.734959\pi\)
0.672918 0.739717i \(-0.265041\pi\)
\(180\) 0 0
\(181\) −6.62099 6.62099i −0.492134 0.492134i 0.416844 0.908978i \(-0.363136\pi\)
−0.908978 + 0.416844i \(0.863136\pi\)
\(182\) −4.95555 + 4.95555i −0.367330 + 0.367330i
\(183\) −3.17744 −0.234883
\(184\) −2.22025 + 2.22025i −0.163679 + 0.163679i
\(185\) 0 0
\(186\) 4.61299 0.338241
\(187\) −14.7093 + 17.8615i −1.07565 + 1.30616i
\(188\) 6.07904 0.443360
\(189\) 9.93650i 0.722774i
\(190\) 0 0
\(191\) −13.9365 −1.00841 −0.504205 0.863584i \(-0.668214\pi\)
−0.504205 + 0.863584i \(0.668214\pi\)
\(192\) 0.522493 0.522493i 0.0377077 0.0377077i
\(193\) 2.95204 + 2.95204i 0.212493 + 0.212493i 0.805325 0.592833i \(-0.201991\pi\)
−0.592833 + 0.805325i \(0.701991\pi\)
\(194\) 15.8015 + 15.8015i 1.13448 + 1.13448i
\(195\) 0 0
\(196\) 3.36099i 0.240071i
\(197\) 12.5088 + 12.5088i 0.891215 + 0.891215i 0.994637 0.103423i \(-0.0329795\pi\)
−0.103423 + 0.994637i \(0.532979\pi\)
\(198\) −19.2104 19.2104i −1.36522 1.36522i
\(199\) 3.96025 3.96025i 0.280734 0.280734i −0.552667 0.833402i \(-0.686390\pi\)
0.833402 + 0.552667i \(0.186390\pi\)
\(200\) 0 0
\(201\) 3.36099 3.36099i 0.237066 0.237066i
\(202\) 17.3498i 1.22073i
\(203\) −20.6166 −1.44700
\(204\) −2.23827 1.84326i −0.156710 0.129054i
\(205\) 0 0
\(206\) 3.32351i 0.231560i
\(207\) −4.41863 + 4.41863i −0.307116 + 0.307116i
\(208\) 6.16470 0.427445
\(209\) −15.8730 + 15.8730i −1.09796 + 1.09796i
\(210\) 0 0
\(211\) 0.652743 + 0.652743i 0.0449367 + 0.0449367i 0.729218 0.684281i \(-0.239884\pi\)
−0.684281 + 0.729218i \(0.739884\pi\)
\(212\) 11.4142i 0.783928i
\(213\) 4.94112i 0.338560i
\(214\) −21.6607 21.6607i −1.48070 1.48070i
\(215\) 0 0
\(216\) −3.04548 + 3.04548i −0.207219 + 0.207219i
\(217\) −14.1724 −0.962084
\(218\) −0.568959 + 0.568959i −0.0385348 + 0.0385348i
\(219\) 0.880993i 0.0595320i
\(220\) 0 0
\(221\) −0.495999 5.12499i −0.0333645 0.344744i
\(222\) 1.93228 0.129686
\(223\) 1.24880i 0.0836259i 0.999125 + 0.0418129i \(0.0133134\pi\)
−0.999125 + 0.0418129i \(0.986687\pi\)
\(224\) −13.6527 + 13.6527i −0.912212 + 0.912212i
\(225\) 0 0
\(226\) −14.4405 + 14.4405i −0.960568 + 0.960568i
\(227\) −8.19025 8.19025i −0.543606 0.543606i 0.380978 0.924584i \(-0.375587\pi\)
−0.924584 + 0.380978i \(0.875587\pi\)
\(228\) −1.98908 1.98908i −0.131730 0.131730i
\(229\) 11.7480i 0.776330i −0.921590 0.388165i \(-0.873109\pi\)
0.921590 0.388165i \(-0.126891\pi\)
\(230\) 0 0
\(231\) −6.93650 6.93650i −0.456388 0.456388i
\(232\) 6.31887 + 6.31887i 0.414854 + 0.414854i
\(233\) −7.99325 + 7.99325i −0.523655 + 0.523655i −0.918673 0.395018i \(-0.870738\pi\)
0.395018 + 0.918673i \(0.370738\pi\)
\(234\) 6.04548 0.395206
\(235\) 0 0
\(236\) 7.51200i 0.488990i
\(237\) 2.75822 0.179166
\(238\) 17.8615 + 14.7093i 1.15779 + 0.953463i
\(239\) 5.13501 0.332156 0.166078 0.986113i \(-0.446890\pi\)
0.166078 + 0.986113i \(0.446890\pi\)
\(240\) 0 0
\(241\) 6.00000 6.00000i 0.386494 0.386494i −0.486941 0.873435i \(-0.661887\pi\)
0.873435 + 0.486941i \(0.161887\pi\)
\(242\) −36.9574 −2.37571
\(243\) −9.25966 + 9.25966i −0.594008 + 0.594008i
\(244\) 5.00800 + 5.00800i 0.320604 + 0.320604i
\(245\) 0 0
\(246\) 6.00000i 0.382546i
\(247\) 4.99520i 0.317837i
\(248\) 4.34376 + 4.34376i 0.275829 + 0.275829i
\(249\) 1.56750 + 1.56750i 0.0993366 + 0.0993366i
\(250\) 0 0
\(251\) 19.8095 1.25036 0.625182 0.780479i \(-0.285025\pi\)
0.625182 + 0.780479i \(0.285025\pi\)
\(252\) −7.39589 + 7.39589i −0.465897 + 0.465897i
\(253\) 13.0633i 0.821284i
\(254\) −10.5495 −0.661934
\(255\) 0 0
\(256\) 20.7300 1.29562
\(257\) 24.3982i 1.52192i −0.648801 0.760958i \(-0.724729\pi\)
0.648801 0.760958i \(-0.275271\pi\)
\(258\) 1.46341 1.46341i 0.0911079 0.0911079i
\(259\) −5.93650 −0.368876
\(260\) 0 0
\(261\) 12.5755 + 12.5755i 0.778404 + 0.778404i
\(262\) 24.9459 + 24.9459i 1.54116 + 1.54116i
\(263\) 18.0585i 1.11354i −0.830668 0.556768i \(-0.812041\pi\)
0.830668 0.556768i \(-0.187959\pi\)
\(264\) 4.25200i 0.261693i
\(265\) 0 0
\(266\) 15.8730 + 15.8730i 0.973236 + 0.973236i
\(267\) 4.21527 4.21527i 0.257970 0.257970i
\(268\) −10.5946 −0.647167
\(269\) 12.6290 12.6290i 0.770003 0.770003i −0.208104 0.978107i \(-0.566729\pi\)
0.978107 + 0.208104i \(0.0667291\pi\)
\(270\) 0 0
\(271\) −15.8570 −0.963243 −0.481622 0.876379i \(-0.659952\pi\)
−0.481622 + 0.876379i \(0.659952\pi\)
\(272\) −1.96068 20.2590i −0.118884 1.22838i
\(273\) 2.18290 0.132115
\(274\) 24.9900i 1.50970i
\(275\) 0 0
\(276\) −1.63699 −0.0985355
\(277\) 10.0256 10.0256i 0.602381 0.602381i −0.338563 0.940944i \(-0.609941\pi\)
0.940944 + 0.338563i \(0.109941\pi\)
\(278\) −13.0061 13.0061i −0.780052 0.780052i
\(279\) 8.64474 + 8.64474i 0.517547 + 0.517547i
\(280\) 0 0
\(281\) 7.80949i 0.465875i 0.972492 + 0.232937i \(0.0748338\pi\)
−0.972492 + 0.232937i \(0.925166\pi\)
\(282\) −3.47771 3.47771i −0.207095 0.207095i
\(283\) 14.7842 + 14.7842i 0.878828 + 0.878828i 0.993413 0.114586i \(-0.0365540\pi\)
−0.114586 + 0.993413i \(0.536554\pi\)
\(284\) 7.78775 7.78775i 0.462118 0.462118i
\(285\) 0 0
\(286\) 8.93650 8.93650i 0.528426 0.528426i
\(287\) 18.4337i 1.08810i
\(288\) 16.6556 0.981438
\(289\) −16.6845 + 3.26000i −0.981441 + 0.191765i
\(290\) 0 0
\(291\) 6.96050i 0.408032i
\(292\) −1.38854 + 1.38854i −0.0812583 + 0.0812583i
\(293\) −4.79502 −0.280128 −0.140064 0.990142i \(-0.544731\pi\)
−0.140064 + 0.990142i \(0.544731\pi\)
\(294\) −1.92276 + 1.92276i −0.112138 + 0.112138i
\(295\) 0 0
\(296\) 1.81951 + 1.81951i 0.105757 + 0.105757i
\(297\) 17.9188i 1.03975i
\(298\) 28.7388i 1.66479i
\(299\) −2.05550 2.05550i −0.118873 0.118873i
\(300\) 0 0
\(301\) −4.49600 + 4.49600i −0.259145 + 0.259145i
\(302\) 6.07540 0.349600
\(303\) 3.82127 3.82127i 0.219526 0.219526i
\(304\) 19.7460i 1.13251i
\(305\) 0 0
\(306\) −1.92276 19.8673i −0.109917 1.13574i
\(307\) −24.9924 −1.42639 −0.713195 0.700966i \(-0.752753\pi\)
−0.713195 + 0.700966i \(0.752753\pi\)
\(308\) 21.8654i 1.24589i
\(309\) −0.731997 + 0.731997i −0.0416418 + 0.0416418i
\(310\) 0 0
\(311\) −2.85126 + 2.85126i −0.161680 + 0.161680i −0.783311 0.621631i \(-0.786471\pi\)
0.621631 + 0.783311i \(0.286471\pi\)
\(312\) −0.669049 0.669049i −0.0378774 0.0378774i
\(313\) −16.0154 16.0154i −0.905242 0.905242i 0.0906416 0.995884i \(-0.471108\pi\)
−0.995884 + 0.0906416i \(0.971108\pi\)
\(314\) 7.07151i 0.399068i
\(315\) 0 0
\(316\) −4.34726 4.34726i −0.244552 0.244552i
\(317\) 5.85000 + 5.85000i 0.328569 + 0.328569i 0.852042 0.523473i \(-0.175364\pi\)
−0.523473 + 0.852042i \(0.675364\pi\)
\(318\) 6.52984 6.52984i 0.366175 0.366175i
\(319\) 37.1785 2.08160
\(320\) 0 0
\(321\) 9.54148i 0.532554i
\(322\) 13.0633 0.727991
\(323\) −16.4157 + 1.58872i −0.913395 + 0.0883988i
\(324\) 7.83752 0.435418
\(325\) 0 0
\(326\) −18.7697 + 18.7697i −1.03956 + 1.03956i
\(327\) 0.250624 0.0138596
\(328\) 5.64982 5.64982i 0.311959 0.311959i
\(329\) 10.6845 + 10.6845i 0.589055 + 0.589055i
\(330\) 0 0
\(331\) 5.51200i 0.302967i 0.988460 + 0.151484i \(0.0484050\pi\)
−0.988460 + 0.151484i \(0.951595\pi\)
\(332\) 4.94112i 0.271179i
\(333\) 3.62109 + 3.62109i 0.198435 + 0.198435i
\(334\) 0.535753 + 0.535753i 0.0293151 + 0.0293151i
\(335\) 0 0
\(336\) 8.62899 0.470750
\(337\) 6.74445 6.74445i 0.367394 0.367394i −0.499132 0.866526i \(-0.666348\pi\)
0.866526 + 0.499132i \(0.166348\pi\)
\(338\) 20.6310i 1.12218i
\(339\) 6.36099 0.345482
\(340\) 0 0
\(341\) 25.5575 1.38402
\(342\) 19.3641i 1.04709i
\(343\) −9.49631 + 9.49631i −0.512753 + 0.512753i
\(344\) 2.75600 0.148594
\(345\) 0 0
\(346\) 21.1705 + 21.1705i 1.13813 + 1.13813i
\(347\) 8.16503 + 8.16503i 0.438322 + 0.438322i 0.891447 0.453125i \(-0.149691\pi\)
−0.453125 + 0.891447i \(0.649691\pi\)
\(348\) 4.65892i 0.249744i
\(349\) 11.4325i 0.611967i 0.952037 + 0.305984i \(0.0989853\pi\)
−0.952037 + 0.305984i \(0.901015\pi\)
\(350\) 0 0
\(351\) −2.81951 2.81951i −0.150494 0.150494i
\(352\) 24.6204 24.6204i 1.31227 1.31227i
\(353\) 31.8017 1.69263 0.846317 0.532680i \(-0.178815\pi\)
0.846317 + 0.532680i \(0.178815\pi\)
\(354\) 4.29749 4.29749i 0.228409 0.228409i
\(355\) 0 0
\(356\) −13.2875 −0.704234
\(357\) −0.694271 7.17367i −0.0367447 0.379671i
\(358\) 35.6942 1.88650
\(359\) 25.1785i 1.32887i 0.747346 + 0.664435i \(0.231328\pi\)
−0.747346 + 0.664435i \(0.768672\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 11.9398 11.9398i 0.627544 0.627544i
\(363\) 8.13981 + 8.13981i 0.427229 + 0.427229i
\(364\) −3.44050 3.44050i −0.180331 0.180331i
\(365\) 0 0
\(366\) 5.72998i 0.299511i
\(367\) −4.30411 4.30411i −0.224673 0.224673i 0.585790 0.810463i \(-0.300784\pi\)
−0.810463 + 0.585790i \(0.800784\pi\)
\(368\) −8.12538 8.12538i −0.423565 0.423565i
\(369\) 11.2440 11.2440i 0.585339 0.585339i
\(370\) 0 0
\(371\) −20.0615 + 20.0615i −1.04154 + 1.04154i
\(372\) 3.20267i 0.166050i
\(373\) −30.0732 −1.55713 −0.778566 0.627562i \(-0.784053\pi\)
−0.778566 + 0.627562i \(0.784053\pi\)
\(374\) −32.2102 26.5257i −1.66555 1.37161i
\(375\) 0 0
\(376\) 6.54949i 0.337764i
\(377\) −5.85000 + 5.85000i −0.301290 + 0.301290i
\(378\) 17.9188 0.921643
\(379\) −0.716248 + 0.716248i −0.0367912 + 0.0367912i −0.725263 0.688472i \(-0.758282\pi\)
0.688472 + 0.725263i \(0.258282\pi\)
\(380\) 0 0
\(381\) 2.32351 + 2.32351i 0.119037 + 0.119037i
\(382\) 25.1321i 1.28587i
\(383\) 25.8660i 1.32169i 0.750521 + 0.660846i \(0.229802\pi\)
−0.750521 + 0.660846i \(0.770198\pi\)
\(384\) −3.98627 3.98627i −0.203423 0.203423i
\(385\) 0 0
\(386\) −5.32351 + 5.32351i −0.270959 + 0.270959i
\(387\) 5.48486 0.278811
\(388\) −10.9705 + 10.9705i −0.556944 + 0.556944i
\(389\) 33.0695i 1.67669i 0.545140 + 0.838345i \(0.316476\pi\)
−0.545140 + 0.838345i \(0.683524\pi\)
\(390\) 0 0
\(391\) −6.10124 + 7.40874i −0.308553 + 0.374676i
\(392\) −3.62109 −0.182893
\(393\) 10.9886i 0.554301i
\(394\) −22.5575 + 22.5575i −1.13643 + 1.13643i
\(395\) 0 0
\(396\) 13.3372 13.3372i 0.670221 0.670221i
\(397\) 5.76434 + 5.76434i 0.289304 + 0.289304i 0.836805 0.547501i \(-0.184421\pi\)
−0.547501 + 0.836805i \(0.684421\pi\)
\(398\) 7.14163 + 7.14163i 0.357978 + 0.357978i
\(399\) 6.99200i 0.350038i
\(400\) 0 0
\(401\) 0.116990 + 0.116990i 0.00584222 + 0.00584222i 0.710022 0.704180i \(-0.248685\pi\)
−0.704180 + 0.710022i \(0.748685\pi\)
\(402\) 6.06097 + 6.06097i 0.302294 + 0.302294i
\(403\) −4.02145 + 4.02145i −0.200323 + 0.200323i
\(404\) −12.0455 −0.599285
\(405\) 0 0
\(406\) 37.1785i 1.84514i
\(407\) 10.7055 0.530650
\(408\) −1.98590 + 2.41148i −0.0983168 + 0.119386i
\(409\) 13.3690 0.661054 0.330527 0.943797i \(-0.392774\pi\)
0.330527 + 0.943797i \(0.392774\pi\)
\(410\) 0 0
\(411\) 5.50400 5.50400i 0.271492 0.271492i
\(412\) 2.30741 0.113678
\(413\) −13.2031 + 13.2031i −0.649680 + 0.649680i
\(414\) −7.96825 7.96825i −0.391618 0.391618i
\(415\) 0 0
\(416\) 7.74800i 0.379877i
\(417\) 5.72913i 0.280557i
\(418\) −28.6242 28.6242i −1.40006 1.40006i
\(419\) −16.6687 16.6687i −0.814322 0.814322i 0.170957 0.985278i \(-0.445314\pi\)
−0.985278 + 0.170957i \(0.945314\pi\)
\(420\) 0 0
\(421\) 5.82751 0.284015 0.142008 0.989866i \(-0.454644\pi\)
0.142008 + 0.989866i \(0.454644\pi\)
\(422\) −1.17711 + 1.17711i −0.0573009 + 0.0573009i
\(423\) 13.0345i 0.633757i
\(424\) 12.2975 0.597219
\(425\) 0 0
\(426\) −8.91047 −0.431714
\(427\) 17.6041i 0.851921i
\(428\) 15.0384 15.0384i 0.726910 0.726910i
\(429\) −3.93650 −0.190056
\(430\) 0 0
\(431\) 4.90474 + 4.90474i 0.236253 + 0.236253i 0.815297 0.579043i \(-0.196574\pi\)
−0.579043 + 0.815297i \(0.696574\pi\)
\(432\) −11.1455 11.1455i −0.536237 0.536237i
\(433\) 15.4464i 0.742307i −0.928572 0.371153i \(-0.878962\pi\)
0.928572 0.371153i \(-0.121038\pi\)
\(434\) 25.5575i 1.22680i
\(435\) 0 0
\(436\) −0.395012 0.395012i −0.0189176 0.0189176i
\(437\) −6.58392 + 6.58392i −0.314952 + 0.314952i
\(438\) 1.58872 0.0759121
\(439\) −1.03975 + 1.03975i −0.0496247 + 0.0496247i −0.731484 0.681859i \(-0.761172\pi\)
0.681859 + 0.731484i \(0.261172\pi\)
\(440\) 0 0
\(441\) −7.20652 −0.343167
\(442\) 9.24205 0.894450i 0.439600 0.0425447i
\(443\) −12.7838 −0.607379 −0.303689 0.952771i \(-0.598218\pi\)
−0.303689 + 0.952771i \(0.598218\pi\)
\(444\) 1.34153i 0.0636660i
\(445\) 0 0
\(446\) −2.25200 −0.106635
\(447\) −6.32966 + 6.32966i −0.299383 + 0.299383i
\(448\) −2.89478 2.89478i −0.136766 0.136766i
\(449\) −6.88099 6.88099i −0.324734 0.324734i 0.525846 0.850580i \(-0.323749\pi\)
−0.850580 + 0.525846i \(0.823749\pi\)
\(450\) 0 0
\(451\) 33.2420i 1.56530i
\(452\) −10.0256 10.0256i −0.471566 0.471566i
\(453\) −1.33810 1.33810i −0.0628693 0.0628693i
\(454\) 14.7697 14.7697i 0.693178 0.693178i
\(455\) 0 0
\(456\) −2.14301 + 2.14301i −0.100356 + 0.100356i
\(457\) 36.2279i 1.69467i −0.531058 0.847336i \(-0.678205\pi\)
0.531058 0.847336i \(-0.321795\pi\)
\(458\) 21.1855 0.989935
\(459\) −8.36899 + 10.1625i −0.390631 + 0.474344i
\(460\) 0 0
\(461\) 40.0595i 1.86576i −0.360193 0.932878i \(-0.617289\pi\)
0.360193 0.932878i \(-0.382711\pi\)
\(462\) 12.5088 12.5088i 0.581962 0.581962i
\(463\) 15.3607 0.713874 0.356937 0.934128i \(-0.383821\pi\)
0.356937 + 0.934128i \(0.383821\pi\)
\(464\) −23.1250 + 23.1250i −1.07355 + 1.07355i
\(465\) 0 0
\(466\) −14.4145 14.4145i −0.667738 0.667738i
\(467\) 19.4471i 0.899903i −0.893053 0.449952i \(-0.851441\pi\)
0.893053 0.449952i \(-0.148559\pi\)
\(468\) 4.19721i 0.194016i
\(469\) −18.6210 18.6210i −0.859837 0.859837i
\(470\) 0 0
\(471\) −1.55749 + 1.55749i −0.0717652 + 0.0717652i
\(472\) 8.09334 0.372526
\(473\) 8.10777 8.10777i 0.372796 0.372796i
\(474\) 4.97398i 0.228462i
\(475\) 0 0
\(476\) −10.2122 + 12.4007i −0.468078 + 0.568387i
\(477\) 24.4739 1.12058
\(478\) 9.26012i 0.423548i
\(479\) −10.2918 + 10.2918i −0.470242 + 0.470242i −0.901993 0.431751i \(-0.857896\pi\)
0.431751 + 0.901993i \(0.357896\pi\)
\(480\) 0 0
\(481\) −1.68450 + 1.68450i −0.0768064 + 0.0768064i
\(482\) 10.8200 + 10.8200i 0.492837 + 0.492837i
\(483\) −2.87717 2.87717i −0.130916 0.130916i
\(484\) 25.6585i 1.16629i
\(485\) 0 0
\(486\) −16.6982 16.6982i −0.757447 0.757447i
\(487\) −20.9993 20.9993i −0.951570 0.951570i 0.0473104 0.998880i \(-0.484935\pi\)
−0.998880 + 0.0473104i \(0.984935\pi\)
\(488\) 5.39556 5.39556i 0.244246 0.244246i
\(489\) 8.26800 0.373892
\(490\) 0 0
\(491\) 21.0715i 0.950944i 0.879731 + 0.475472i \(0.157723\pi\)
−0.879731 + 0.475472i \(0.842277\pi\)
\(492\) 4.16563 0.187801
\(493\) 21.0854 + 17.3643i 0.949640 + 0.782047i
\(494\) 9.00800 0.405289
\(495\) 0 0
\(496\) −15.8967 + 15.8967i −0.713785 + 0.713785i
\(497\) 27.3754 1.22796
\(498\) −2.82673 + 2.82673i −0.126669 + 0.126669i
\(499\) 6.65274 + 6.65274i 0.297818 + 0.297818i 0.840159 0.542341i \(-0.182462\pi\)
−0.542341 + 0.840159i \(0.682462\pi\)
\(500\) 0 0
\(501\) 0.235997i 0.0105436i
\(502\) 35.7231i 1.59440i
\(503\) 20.7739 + 20.7739i 0.926263 + 0.926263i 0.997462 0.0711991i \(-0.0226826\pi\)
−0.0711991 + 0.997462i \(0.522683\pi\)
\(504\) 7.96825 + 7.96825i 0.354934 + 0.354934i
\(505\) 0 0
\(506\) −23.5575 −1.04726
\(507\) −4.54394 + 4.54394i −0.201804 + 0.201804i
\(508\) 7.32420i 0.324959i
\(509\) 14.3930 0.637958 0.318979 0.947762i \(-0.396660\pi\)
0.318979 + 0.947762i \(0.396660\pi\)
\(510\) 0 0
\(511\) −4.88099 −0.215922
\(512\) 17.3102i 0.765009i
\(513\) −9.03108 + 9.03108i −0.398732 + 0.398732i
\(514\) 43.9980 1.94067
\(515\) 0 0
\(516\) 1.01600 + 1.01600i 0.0447270 + 0.0447270i
\(517\) −19.2677 19.2677i −0.847391 0.847391i
\(518\) 10.7055i 0.470371i
\(519\) 9.32552i 0.409345i
\(520\) 0 0
\(521\) −19.5655 19.5655i −0.857180 0.857180i 0.133825 0.991005i \(-0.457274\pi\)
−0.991005 + 0.133825i \(0.957274\pi\)
\(522\) −22.6778 + 22.6778i −0.992580 + 0.992580i
\(523\) −37.4867 −1.63918 −0.819590 0.572950i \(-0.805799\pi\)
−0.819590 + 0.572950i \(0.805799\pi\)
\(524\) −17.3192 + 17.3192i −0.756594 + 0.756594i
\(525\) 0 0
\(526\) 32.5655 1.41992
\(527\) 14.4947 + 11.9367i 0.631399 + 0.519969i
\(528\) −15.5609 −0.677202
\(529\) 17.5815i 0.764413i
\(530\) 0 0
\(531\) 16.1070 0.698983
\(532\) −11.0202 + 11.0202i −0.477785 + 0.477785i
\(533\) 5.23060 + 5.23060i 0.226562 + 0.226562i
\(534\) 7.60153 + 7.60153i 0.328950 + 0.328950i
\(535\) 0 0
\(536\) 11.4145i 0.493030i
\(537\) −7.86158 7.86158i −0.339252 0.339252i
\(538\) 22.7742 + 22.7742i 0.981867 + 0.981867i
\(539\) −10.6527 + 10.6527i −0.458846 + 0.458846i
\(540\) 0 0
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) 28.5954i 1.22828i
\(543\) −5.25946 −0.225705
\(544\) 25.4622 2.46425i 1.09168 0.105654i
\(545\) 0 0
\(546\) 3.93650i 0.168466i
\(547\) −20.3591 + 20.3591i −0.870493 + 0.870493i −0.992526 0.122033i \(-0.961059\pi\)
0.122033 + 0.992526i \(0.461059\pi\)
\(548\) −17.3498 −0.741148
\(549\) 10.7380 10.7380i 0.458286 0.458286i
\(550\) 0 0
\(551\) 18.7380 + 18.7380i 0.798265 + 0.798265i
\(552\) 1.76368i 0.0750671i
\(553\) 15.2814i 0.649833i
\(554\) 18.0795 + 18.0795i 0.768125 + 0.768125i
\(555\) 0 0
\(556\) 9.02974 9.02974i 0.382946 0.382946i
\(557\) 4.93477 0.209093 0.104546 0.994520i \(-0.466661\pi\)
0.104546 + 0.994520i \(0.466661\pi\)
\(558\) −15.5893 + 15.5893i −0.659949 + 0.659949i
\(559\) 2.55150i 0.107917i
\(560\) 0 0
\(561\) 1.25200 + 12.9365i 0.0528595 + 0.546179i
\(562\) −14.0831 −0.594059
\(563\) 3.97544i 0.167545i −0.996485 0.0837724i \(-0.973303\pi\)
0.996485 0.0837724i \(-0.0266969\pi\)
\(564\) 2.41448 2.41448i 0.101668 0.101668i
\(565\) 0 0
\(566\) −26.6607 + 26.6607i −1.12063 + 1.12063i
\(567\) 13.7752 + 13.7752i 0.578504 + 0.578504i
\(568\) −8.39043 8.39043i −0.352055 0.352055i
\(569\) 5.49600i 0.230404i 0.993342 + 0.115202i \(0.0367516\pi\)
−0.993342 + 0.115202i \(0.963248\pi\)
\(570\) 0 0
\(571\) 12.3372 + 12.3372i 0.516297 + 0.516297i 0.916449 0.400152i \(-0.131043\pi\)
−0.400152 + 0.916449i \(0.631043\pi\)
\(572\) 6.20435 + 6.20435i 0.259417 + 0.259417i
\(573\) −5.53530 + 5.53530i −0.231241 + 0.231241i
\(574\) −33.2420 −1.38749
\(575\) 0 0
\(576\) 3.53147i 0.147144i
\(577\) −32.3418 −1.34641 −0.673203 0.739458i \(-0.735082\pi\)
−0.673203 + 0.739458i \(0.735082\pi\)
\(578\) −5.87886 30.0877i −0.244528 1.25148i
\(579\) 2.34499 0.0974543
\(580\) 0 0
\(581\) 8.68450 8.68450i 0.360294 0.360294i
\(582\) 12.5521 0.520301
\(583\) 36.1775 36.1775i 1.49832 1.49832i
\(584\) 1.49600 + 1.49600i 0.0619049 + 0.0619049i
\(585\) 0 0
\(586\) 8.64701i 0.357205i
\(587\) 28.6847i 1.18394i 0.805959 + 0.591972i \(0.201650\pi\)
−0.805959 + 0.591972i \(0.798350\pi\)
\(588\) −1.33492 1.33492i −0.0550511 0.0550511i
\(589\) 12.8810 + 12.8810i 0.530752 + 0.530752i
\(590\) 0 0
\(591\) 9.93650 0.408733
\(592\) −6.65879 + 6.65879i −0.273675 + 0.273675i
\(593\) 9.74614i 0.400226i 0.979773 + 0.200113i \(0.0641309\pi\)
−0.979773 + 0.200113i \(0.935869\pi\)
\(594\) −32.3135 −1.32584
\(595\) 0 0
\(596\) 19.9525 0.817286
\(597\) 3.14586i 0.128752i
\(598\) 3.70675 3.70675i 0.151580 0.151580i
\(599\) −8.07951 −0.330120 −0.165060 0.986284i \(-0.552782\pi\)
−0.165060 + 0.986284i \(0.552782\pi\)
\(600\) 0 0
\(601\) −12.8810 12.8810i −0.525427 0.525427i 0.393779 0.919205i \(-0.371168\pi\)
−0.919205 + 0.393779i \(0.871168\pi\)
\(602\) −8.10777 8.10777i −0.330448 0.330448i
\(603\) 22.7165i 0.925089i
\(604\) 4.21798i 0.171627i
\(605\) 0 0
\(606\) 6.89101 + 6.89101i 0.279928 + 0.279928i
\(607\) −8.37964 + 8.37964i −0.340119 + 0.340119i −0.856412 0.516293i \(-0.827312\pi\)
0.516293 + 0.856412i \(0.327312\pi\)
\(608\) 24.8174 1.00648
\(609\) −8.18850 + 8.18850i −0.331815 + 0.331815i
\(610\) 0 0
\(611\) 6.06350 0.245303
\(612\) 13.7933 1.33492i 0.557560 0.0539609i
\(613\) −23.1494 −0.934995 −0.467497 0.883994i \(-0.654844\pi\)
−0.467497 + 0.883994i \(0.654844\pi\)
\(614\) 45.0695i 1.81886i
\(615\) 0 0
\(616\) 23.5575 0.949158
\(617\) 7.41350 7.41350i 0.298456 0.298456i −0.541953 0.840409i \(-0.682315\pi\)
0.840409 + 0.541953i \(0.182315\pi\)
\(618\) −1.32003 1.32003i −0.0530995 0.0530995i
\(619\) 16.4702 + 16.4702i 0.661995 + 0.661995i 0.955850 0.293855i \(-0.0949384\pi\)
−0.293855 + 0.955850i \(0.594938\pi\)
\(620\) 0 0
\(621\) 7.43250i 0.298256i
\(622\) −5.14176 5.14176i −0.206166 0.206166i
\(623\) −23.3540 23.3540i −0.935658 0.935658i
\(624\) 2.44850 2.44850i 0.0980184 0.0980184i
\(625\) 0 0
\(626\) 28.8810 28.8810i 1.15432 1.15432i
\(627\) 12.6089i 0.503550i
\(628\) 4.90954 0.195912
\(629\) 6.07151 + 5.00000i 0.242087 + 0.199363i
\(630\) 0 0
\(631\) 41.1310i 1.63740i 0.574223 + 0.818699i \(0.305304\pi\)
−0.574223 + 0.818699i \(0.694696\pi\)
\(632\) −4.68368 + 4.68368i −0.186307 + 0.186307i
\(633\) 0.518514 0.0206091
\(634\) −10.5495 + 10.5495i −0.418974 + 0.418974i
\(635\) 0 0
\(636\) 4.53348 + 4.53348i 0.179764 + 0.179764i
\(637\) 3.35240i 0.132827i
\(638\) 67.0451i 2.65434i
\(639\) −16.6982 16.6982i −0.660572 0.660572i
\(640\) 0 0
\(641\) 33.4325 33.4325i 1.32050 1.32050i 0.407137 0.913367i \(-0.366527\pi\)
0.913367 0.407137i \(-0.133473\pi\)
\(642\) −17.2064 −0.679084
\(643\) −4.99838 + 4.99838i −0.197117 + 0.197117i −0.798763 0.601646i \(-0.794512\pi\)
0.601646 + 0.798763i \(0.294512\pi\)
\(644\) 9.06949i 0.357388i
\(645\) 0 0
\(646\) −2.86499 29.6030i −0.112722 1.16471i
\(647\) −26.9462 −1.05937 −0.529683 0.848196i \(-0.677689\pi\)
−0.529683 + 0.848196i \(0.677689\pi\)
\(648\) 8.44406i 0.331714i
\(649\) 23.8095 23.8095i 0.934604 0.934604i
\(650\) 0 0
\(651\) −5.62899 + 5.62899i −0.220618 + 0.220618i
\(652\) −13.0313 13.0313i −0.510345 0.510345i
\(653\) 19.9764 + 19.9764i 0.781736 + 0.781736i 0.980124 0.198388i \(-0.0635705\pi\)
−0.198388 + 0.980124i \(0.563570\pi\)
\(654\) 0.451959i 0.0176730i
\(655\) 0 0
\(656\) 20.6765 + 20.6765i 0.807281 + 0.807281i
\(657\) 2.97726 + 2.97726i 0.116154 + 0.116154i
\(658\) −19.2677 + 19.2677i −0.751132 + 0.751132i
\(659\) −14.1230 −0.550153 −0.275077 0.961422i \(-0.588703\pi\)
−0.275077 + 0.961422i \(0.588703\pi\)
\(660\) 0 0
\(661\) 49.0355i 1.90726i 0.300984 + 0.953629i \(0.402685\pi\)
−0.300984 + 0.953629i \(0.597315\pi\)
\(662\) −9.93996 −0.386328
\(663\) −2.23255 1.83855i −0.0867050 0.0714032i
\(664\) −5.32351 −0.206592
\(665\) 0 0
\(666\) −6.53002 + 6.53002i −0.253033 + 0.253033i
\(667\) 15.4212 0.597111
\(668\) −0.371958 + 0.371958i −0.0143915 + 0.0143915i
\(669\) 0.495999 + 0.495999i 0.0191764 + 0.0191764i
\(670\) 0 0
\(671\) 31.7460i 1.22554i
\(672\) 10.8452i 0.418363i
\(673\) −22.2405 22.2405i −0.857308 0.857308i 0.133712 0.991020i \(-0.457310\pi\)
−0.991020 + 0.133712i \(0.957310\pi\)
\(674\) 12.1625 + 12.1625i 0.468481 + 0.468481i
\(675\) 0 0
\(676\) 14.3235 0.550904
\(677\) −21.4109 + 21.4109i −0.822889 + 0.822889i −0.986521 0.163633i \(-0.947679\pi\)
0.163633 + 0.986521i \(0.447679\pi\)
\(678\) 11.4710i 0.440540i
\(679\) −38.5635 −1.47993
\(680\) 0 0
\(681\) −6.50602 −0.249311
\(682\) 46.0886i 1.76482i
\(683\) −32.6533 + 32.6533i −1.24944 + 1.24944i −0.293479 + 0.955966i \(0.594813\pi\)
−0.955966 + 0.293479i \(0.905187\pi\)
\(684\) 13.4440 0.514043
\(685\) 0 0
\(686\) −17.1250 17.1250i −0.653835 0.653835i
\(687\) −4.66608 4.66608i −0.178022 0.178022i
\(688\) 10.0861i 0.384527i
\(689\) 11.3850i 0.433734i
\(690\) 0 0
\(691\) −7.52775 7.52775i −0.286369 0.286369i 0.549273 0.835643i \(-0.314905\pi\)
−0.835643 + 0.549273i \(0.814905\pi\)
\(692\) −14.6981 + 14.6981i −0.558736 + 0.558736i
\(693\) 46.8830 1.78094
\(694\) −14.7242 + 14.7242i −0.558925 + 0.558925i
\(695\) 0 0
\(696\) 5.01946 0.190262
\(697\) 15.5257 18.8529i 0.588078 0.714104i
\(698\) −20.6166 −0.780349
\(699\) 6.34953i 0.240161i
\(700\) 0 0
\(701\) −39.4145 −1.48866 −0.744332 0.667810i \(-0.767232\pi\)
−0.744332 + 0.667810i \(0.767232\pi\)
\(702\) 5.08450 5.08450i 0.191902 0.191902i
\(703\) 5.39556 + 5.39556i 0.203497 + 0.203497i
\(704\) 5.22025 + 5.22025i 0.196746 + 0.196746i
\(705\) 0 0
\(706\) 57.3490i 2.15836i
\(707\) −21.1711 21.1711i −0.796221 0.796221i
\(708\) 2.98362 + 2.98362i 0.112131 + 0.112131i
\(709\) −10.7460 + 10.7460i −0.403574 + 0.403574i −0.879490 0.475917i \(-0.842116\pi\)
0.475917 + 0.879490i \(0.342116\pi\)
\(710\) 0 0
\(711\) −9.32124 + 9.32124i −0.349574 + 0.349574i
\(712\) 14.3158i 0.536506i
\(713\) 10.6009 0.397008
\(714\) 12.9365 1.25200i 0.484136 0.0468549i
\(715\) 0 0
\(716\) 24.7815i 0.926126i
\(717\) 2.03953 2.03953i 0.0761675 0.0761675i
\(718\) −45.4051 −1.69450
\(719\) 4.84924 4.84924i 0.180846 0.180846i −0.610878 0.791724i \(-0.709184\pi\)
0.791724 + 0.610878i \(0.209184\pi\)
\(720\) 0 0
\(721\) 4.05550 + 4.05550i 0.151035 + 0.151035i
\(722\) 5.40999i 0.201339i
\(723\) 4.76617i 0.177256i
\(724\) 8.28948 + 8.28948i 0.308076 + 0.308076i
\(725\) 0 0
\(726\) −14.6788 + 14.6788i −0.544780 + 0.544780i
\(727\) 38.5606 1.43013 0.715066 0.699057i \(-0.246397\pi\)
0.715066 + 0.699057i \(0.246397\pi\)
\(728\) −3.70675 + 3.70675i −0.137381 + 0.137381i
\(729\) 11.4245i 0.423129i
\(730\) 0 0
\(731\) 8.38499 0.811504i 0.310130 0.0300146i
\(732\) 3.97816 0.147037
\(733\) 42.7425i 1.57873i −0.613923 0.789366i \(-0.710409\pi\)
0.613923 0.789366i \(-0.289591\pi\)
\(734\) 7.76173 7.76173i 0.286491 0.286491i
\(735\) 0 0
\(736\) 10.2122 10.2122i 0.376428 0.376428i
\(737\) 33.5798 + 33.5798i 1.23693 + 1.23693i
\(738\) 20.2766 + 20.2766i 0.746394 + 0.746394i
\(739\) 6.00000i 0.220714i −0.993892 0.110357i \(-0.964801\pi\)
0.993892 0.110357i \(-0.0351994\pi\)
\(740\) 0 0
\(741\) −1.98400 1.98400i −0.0728839 0.0728839i
\(742\) −36.1775 36.1775i −1.32812 1.32812i
\(743\) 36.9750 36.9750i 1.35648 1.35648i 0.478269 0.878214i \(-0.341265\pi\)
0.878214 0.478269i \(-0.158735\pi\)
\(744\) 3.45051 0.126502
\(745\) 0 0
\(746\) 54.2320i 1.98557i
\(747\) −10.5946 −0.387635
\(748\) 18.4161 22.3626i 0.673358 0.817659i
\(749\) 52.8630 1.93157
\(750\) 0 0
\(751\) 27.9027 27.9027i 1.01818 1.01818i 0.0183534 0.999832i \(-0.494158\pi\)
0.999832 0.0183534i \(-0.00584240\pi\)
\(752\) 23.9690 0.874058
\(753\) 7.86794 7.86794i 0.286724 0.286724i
\(754\) −10.5495 10.5495i −0.384190 0.384190i
\(755\) 0 0
\(756\) 12.4405i 0.452456i
\(757\) 8.61186i 0.313003i 0.987678 + 0.156502i \(0.0500216\pi\)
−0.987678 + 0.156502i \(0.949978\pi\)
\(758\) −1.29163 1.29163i −0.0469141 0.0469141i
\(759\) 5.18850 + 5.18850i 0.188330 + 0.188330i
\(760\) 0 0
\(761\) −41.2400 −1.49495 −0.747474 0.664291i \(-0.768733\pi\)
−0.747474 + 0.664291i \(0.768733\pi\)
\(762\) −4.19005 + 4.19005i −0.151789 + 0.151789i
\(763\) 1.38854i 0.0502686i
\(764\) 17.4485 0.631265
\(765\) 0 0
\(766\) −46.6450 −1.68535
\(767\) 7.49280i 0.270549i
\(768\) 8.23354 8.23354i 0.297102 0.297102i
\(769\) −17.3510 −0.625692 −0.312846 0.949804i \(-0.601282\pi\)
−0.312846 + 0.949804i \(0.601282\pi\)
\(770\) 0 0
\(771\) −9.69048 9.69048i −0.348994 0.348994i
\(772\) −3.69596 3.69596i −0.133020 0.133020i
\(773\) 20.0124i 0.719796i −0.932992 0.359898i \(-0.882812\pi\)
0.932992 0.359898i \(-0.117188\pi\)
\(774\) 9.89101i 0.355525i
\(775\) 0 0
\(776\) 11.8195 + 11.8195i 0.424296 + 0.424296i
\(777\) −2.35786 + 2.35786i −0.0845878 + 0.0845878i
\(778\) −59.6352 −2.13803
\(779\) 16.7540 16.7540i 0.600274 0.600274i
\(780\) 0 0
\(781\) −49.3670 −1.76649
\(782\) −13.3604 11.0026i −0.477767 0.393451i
\(783\) 21.1530 0.755948
\(784\) 13.2520i 0.473286i
\(785\) 0 0
\(786\) 19.8160 0.706815
\(787\) 23.9802 23.9802i 0.854802 0.854802i −0.135918 0.990720i \(-0.543398\pi\)
0.990720 + 0.135918i \(0.0433983\pi\)
\(788\) −15.6610 15.6610i −0.557901 0.557901i
\(789\) −7.17249 7.17249i −0.255348 0.255348i
\(790\) 0 0
\(791\) 35.2420i 1.25306i
\(792\) −14.3694 14.3694i −0.510594 0.510594i
\(793\) 4.99520 + 4.99520i 0.177385 + 0.177385i
\(794\) −10.3950 + 10.3950i −0.368905 + 0.368905i
\(795\) 0 0
\(796\) −4.95823 + 4.95823i −0.175740 + 0.175740i
\(797\) 0.730287i 0.0258681i 0.999916 + 0.0129340i \(0.00411715\pi\)
−0.999916 + 0.0129340i \(0.995883\pi\)
\(798\) 12.6089 0.446350
\(799\) −1.92849 19.9265i −0.0682252 0.704948i
\(800\) 0 0
\(801\) 28.4905i 1.00666i
\(802\) −0.210972 + 0.210972i −0.00744970 + 0.00744970i
\(803\) 8.80204 0.310617
\(804\) −4.20796 + 4.20796i −0.148403 + 0.148403i
\(805\) 0 0
\(806\) −7.25200 7.25200i −0.255441 0.255441i
\(807\) 10.0320i 0.353142i
\(808\) 12.9777i 0.456553i
\(809\) −14.4485 14.4485i −0.507982 0.507982i 0.405924 0.913907i \(-0.366950\pi\)
−0.913907 + 0.405924i \(0.866950\pi\)
\(810\) 0 0
\(811\) −1.77975 + 1.77975i −0.0624955 + 0.0624955i −0.737664 0.675168i \(-0.764071\pi\)
0.675168 + 0.737664i \(0.264071\pi\)
\(812\) 25.8119 0.905822
\(813\) −6.29809 + 6.29809i −0.220883 + 0.220883i
\(814\) 19.3055i 0.676657i
\(815\) 0 0
\(816\) −8.82524 7.26775i −0.308945 0.254422i
\(817\) 8.17265 0.285925
\(818\) 24.1087i 0.842941i
\(819\) −7.37699 + 7.37699i −0.257773 + 0.257773i
\(820\) 0 0
\(821\) 10.8175 10.8175i 0.377533 0.377533i −0.492678 0.870211i \(-0.663982\pi\)
0.870211 + 0.492678i \(0.163982\pi\)
\(822\) 9.92553 + 9.92553i 0.346193 + 0.346193i
\(823\) −10.1433 10.1433i −0.353574 0.353574i 0.507864 0.861437i \(-0.330435\pi\)
−0.861437 + 0.507864i \(0.830435\pi\)
\(824\) 2.48598i 0.0866033i
\(825\) 0 0
\(826\) −23.8095 23.8095i −0.828438 0.828438i
\(827\) −28.5066 28.5066i −0.991270 0.991270i 0.00869233 0.999962i \(-0.497233\pi\)
−0.999962 + 0.00869233i \(0.997233\pi\)
\(828\) 5.53213 5.53213i 0.192255 0.192255i
\(829\) −37.1150 −1.28906 −0.644528 0.764581i \(-0.722946\pi\)
−0.644528 + 0.764581i \(0.722946\pi\)
\(830\) 0 0
\(831\) 7.96396i 0.276267i
\(832\) −1.64280 −0.0569540
\(833\) −11.0170 + 1.06623i −0.381716 + 0.0369426i
\(834\) −10.3315 −0.357751
\(835\) 0 0
\(836\) 19.8730 19.8730i 0.687322 0.687322i
\(837\) 14.5412 0.502616
\(838\) 30.0593 30.0593i 1.03838 1.03838i
\(839\) 5.02173 + 5.02173i 0.173370 + 0.173370i 0.788458 0.615089i \(-0.210880\pi\)
−0.615089 + 0.788458i \(0.710880\pi\)
\(840\) 0 0
\(841\) 14.8890i 0.513414i
\(842\) 10.5089i 0.362161i
\(843\) 3.10178 + 3.10178i 0.106831 + 0.106831i
\(844\) −0.817235 0.817235i −0.0281304 0.0281304i
\(845\) 0 0
\(846\) 23.5054 0.808134
\(847\) 45.0972 45.0972i 1.54956 1.54956i
\(848\) 45.0048i 1.54547i
\(849\) 11.7440 0.403052
\(850\) 0 0
\(851\) 4.44050 0.152218
\(852\) 6.18629i 0.211939i
\(853\) −27.1104 + 27.1104i −0.928242 + 0.928242i −0.997592 0.0693502i \(-0.977907\pi\)
0.0693502 + 0.997592i \(0.477907\pi\)
\(854\) −31.7460 −1.08633
\(855\) 0 0
\(856\) −16.2022 16.2022i −0.553781 0.553781i
\(857\) −1.22358 1.22358i −0.0417966 0.0417966i 0.685900 0.727696i \(-0.259409\pi\)
−0.727696 + 0.685900i \(0.759409\pi\)
\(858\) 7.09880i 0.242349i
\(859\) 30.9245i 1.05513i −0.849515 0.527565i \(-0.823105\pi\)
0.849515 0.527565i \(-0.176895\pi\)
\(860\) 0 0
\(861\) 7.32149 + 7.32149i 0.249516 + 0.249516i
\(862\) −8.84487 + 8.84487i −0.301258 + 0.301258i
\(863\) 40.2134 1.36888 0.684439 0.729070i \(-0.260047\pi\)
0.684439 + 0.729070i \(0.260047\pi\)
\(864\) 14.0080 14.0080i 0.476562 0.476562i
\(865\) 0 0
\(866\) 27.8550 0.946550
\(867\) −5.33195 + 7.92156i −0.181082 + 0.269030i
\(868\) 17.7438 0.602265
\(869\) 27.5575i 0.934824i
\(870\) 0 0
\(871\) −10.5675 −0.358066
\(872\) −0.425581 + 0.425581i −0.0144120 + 0.0144120i
\(873\) 23.5226 + 23.5226i 0.796119 + 0.796119i
\(874\) −11.8730 11.8730i −0.401610 0.401610i
\(875\) 0 0
\(876\) 1.10300i 0.0372670i
\(877\) −0.715057 0.715057i −0.0241458 0.0241458i 0.694931 0.719077i \(-0.255435\pi\)
−0.719077 + 0.694931i \(0.755435\pi\)
\(878\) −1.87502 1.87502i −0.0632788 0.0632788i
\(879\) −1.90449 + 1.90449i −0.0642368 + 0.0642368i
\(880\) 0 0
\(881\) 13.8095 13.8095i 0.465253 0.465253i −0.435119 0.900373i \(-0.643294\pi\)
0.900373 + 0.435119i \(0.143294\pi\)
\(882\) 12.9957i 0.437589i
\(883\) −12.6125 −0.424445 −0.212223 0.977221i \(-0.568070\pi\)
−0.212223 + 0.977221i \(0.568070\pi\)
\(884\) 0.620991 + 6.41649i 0.0208862 + 0.215810i
\(885\) 0 0
\(886\) 23.0535i 0.774497i
\(887\) 26.2443 26.2443i 0.881199 0.881199i −0.112458 0.993657i \(-0.535872\pi\)
0.993657 + 0.112458i \(0.0358723\pi\)
\(888\) 1.44534 0.0485026
\(889\) 12.8730 12.8730i 0.431746 0.431746i
\(890\) 0 0
\(891\) −24.8412 24.8412i −0.832213 0.832213i
\(892\) 1.56350i 0.0523498i
\(893\) 19.4218i 0.649927i
\(894\) −11.4145 11.4145i −0.381757 0.381757i
\(895\) 0 0
\(896\) −22.0852 + 22.0852i −0.737816 + 0.737816i
\(897\) −1.63281 −0.0545180
\(898\) 12.4087 12.4087i 0.414084 0.414084i
\(899\) 30.1705i 1.00624i
\(900\) 0 0
\(901\) 37.4145 3.62099i 1.24646 0.120633i
\(902\) 59.9463 1.99599
\(903\) 3.57145i 0.118850i
\(904\) −10.8015 + 10.8015i −0.359252 + 0.359252i
\(905\) 0 0
\(906\) 2.41303 2.41303i 0.0801676 0.0801676i
\(907\) −24.3554 24.3554i −0.808706 0.808706i 0.175732 0.984438i \(-0.443771\pi\)
−0.984438 + 0.175732i \(0.943771\pi\)
\(908\) 10.2542 + 10.2542i 0.340298 + 0.340298i
\(909\) 25.8275i 0.856644i
\(910\) 0 0
\(911\) −7.21023 7.21023i −0.238886 0.238886i 0.577503 0.816389i \(-0.304027\pi\)
−0.816389 + 0.577503i \(0.804027\pi\)
\(912\) −7.84272 7.84272i −0.259698 0.259698i
\(913\) −15.6610 + 15.6610i −0.518304 + 0.518304i
\(914\) 65.3309 2.16096
\(915\) 0 0
\(916\) 14.7085i 0.485983i
\(917\) −60.8804 −2.01045
\(918\) −18.3263 15.0921i −0.604858 0.498112i
\(919\) −50.5315 −1.66688 −0.833440 0.552611i \(-0.813632\pi\)
−0.833440 + 0.552611i \(0.813632\pi\)
\(920\) 0 0
\(921\) −9.92648 + 9.92648i −0.327089 + 0.327089i
\(922\) 72.2405 2.37911
\(923\) 7.76785 7.76785i 0.255682 0.255682i
\(924\) 8.68450 + 8.68450i 0.285699 + 0.285699i
\(925\) 0 0
\(926\) 27.7005i 0.910295i
\(927\) 4.94748i 0.162496i
\(928\) −29.0643 29.0643i −0.954081 0.954081i
\(929\) −20.0615 20.0615i −0.658196 0.658196i 0.296757 0.954953i \(-0.404095\pi\)
−0.954953 + 0.296757i \(0.904095\pi\)
\(930\) 0 0
\(931\) −10.7380 −0.351923
\(932\) 10.0076 10.0076i 0.327808 0.327808i
\(933\) 2.26493i 0.0741504i
\(934\) 35.0695 1.14751
\(935\) 0 0
\(936\) 4.52202 0.147807
\(937\) 47.5024i 1.55183i 0.630835 + 0.775917i \(0.282713\pi\)
−0.630835 + 0.775917i \(0.717287\pi\)
\(938\) 33.5798 33.5798i 1.09642 1.09642i
\(939\) −12.7220 −0.415166
\(940\) 0 0
\(941\) 32.5555 + 32.5555i 1.06128 + 1.06128i 0.997996 + 0.0632823i \(0.0201569\pi\)
0.0632823 + 0.997996i \(0.479843\pi\)
\(942\) −2.80866 2.80866i −0.0915112 0.0915112i
\(943\) 13.7884i 0.449011i
\(944\) 29.6190i 0.964016i
\(945\) 0 0
\(946\) 14.6210 + 14.6210i 0.475369 + 0.475369i
\(947\) −21.0282 + 21.0282i −0.683324 + 0.683324i −0.960748 0.277424i \(-0.910519\pi\)
0.277424 + 0.960748i \(0.410519\pi\)
\(948\) −3.45329 −0.112158
\(949\) −1.38499 + 1.38499i −0.0449588 + 0.0449588i
\(950\) 0 0
\(951\) 4.64701 0.150690
\(952\) 13.3604 + 11.0026i 0.433014 + 0.356595i
\(953\) −9.02109 −0.292222 −0.146111 0.989268i \(-0.546676\pi\)
−0.146111 + 0.989268i \(0.546676\pi\)
\(954\) 44.1344i 1.42891i
\(955\) 0 0
\(956\) −6.42903 −0.207930
\(957\) 14.7666 14.7666i 0.477335 0.477335i
\(958\) −18.5594 18.5594i −0.599628 0.599628i
\(959\) −30.4940 30.4940i −0.984702 0.984702i
\(960\) 0 0
\(961\) 10.2600i 0.330968i
\(962\) −3.03770 3.03770i −0.0979394 0.0979394i
\(963\) −32.2449 32.2449i −1.03908 1.03908i
\(964\) −7.51200 + 7.51200i −0.241945 + 0.241945i
\(965\) 0 0
\(966\) 5.18850 5.18850i 0.166937 0.166937i
\(967\) 11.7541i 0.377986i 0.981978 + 0.188993i \(0.0605223\pi\)
−0.981978 + 0.188993i \(0.939478\pi\)
\(968\) −27.6441 −0.888516
\(969\) −5.88899 + 7.15101i −0.189182 + 0.229724i
\(970\) 0 0
\(971\) 19.9525i 0.640306i 0.947366 + 0.320153i \(0.103734\pi\)
−0.947366 + 0.320153i \(0.896266\pi\)
\(972\) 11.5931 11.5931i 0.371849 0.371849i
\(973\) 31.7413 1.01758
\(974\) 37.8687 37.8687i 1.21339 1.21339i
\(975\) 0 0
\(976\) 19.7460 + 19.7460i 0.632054 + 0.632054i
\(977\) 27.2005i 0.870221i −0.900377 0.435110i \(-0.856709\pi\)
0.900377 0.435110i \(-0.143291\pi\)
\(978\) 14.9099i 0.476767i
\(979\) 42.1150 + 42.1150i 1.34600 + 1.34600i
\(980\) 0 0
\(981\) −0.846971 + 0.846971i −0.0270417 + 0.0270417i
\(982\) −37.9989 −1.21259
\(983\) 5.03803 5.03803i 0.160688 0.160688i −0.622183 0.782872i \(-0.713754\pi\)
0.782872 + 0.622183i \(0.213754\pi\)
\(984\) 4.48800i 0.143072i
\(985\) 0 0
\(986\) −31.3135 + 38.0240i −0.997225 + 1.21093i
\(987\) 8.48734 0.270155
\(988\) 6.25400i 0.198966i
\(989\) 3.36301 3.36301i 0.106937 0.106937i
\(990\) 0 0
\(991\) 40.2817 40.2817i 1.27959 1.27959i 0.338695 0.940896i \(-0.390014\pi\)
0.940896 0.338695i \(-0.109986\pi\)
\(992\) −19.9796 19.9796i −0.634351 0.634351i
\(993\) 2.18926 + 2.18926i 0.0694740 + 0.0694740i
\(994\) 49.3670i 1.56583i
\(995\) 0 0
\(996\) −1.96252 1.96252i −0.0621847 0.0621847i
\(997\) 3.56701 + 3.56701i 0.112968 + 0.112968i 0.761331 0.648363i \(-0.224546\pi\)
−0.648363 + 0.761331i \(0.724546\pi\)
\(998\) −11.9971 + 11.9971i −0.379761 + 0.379761i
\(999\) 6.09097 0.192710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.e.d.276.5 12
5.2 odd 4 85.2.j.c.4.2 12
5.3 odd 4 85.2.j.c.4.5 yes 12
5.4 even 2 inner 425.2.e.d.276.2 12
15.2 even 4 765.2.t.e.514.5 12
15.8 even 4 765.2.t.e.514.2 12
17.8 even 8 7225.2.a.bp.1.9 12
17.9 even 8 7225.2.a.bp.1.10 12
17.13 even 4 inner 425.2.e.d.251.2 12
85.8 odd 8 1445.2.b.f.579.3 12
85.9 even 8 7225.2.a.bp.1.3 12
85.13 odd 4 85.2.j.c.64.2 yes 12
85.42 odd 8 1445.2.b.f.579.10 12
85.43 odd 8 1445.2.b.f.579.4 12
85.47 odd 4 85.2.j.c.64.5 yes 12
85.59 even 8 7225.2.a.bp.1.4 12
85.64 even 4 inner 425.2.e.d.251.5 12
85.77 odd 8 1445.2.b.f.579.9 12
255.47 even 4 765.2.t.e.64.2 12
255.98 even 4 765.2.t.e.64.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.c.4.2 12 5.2 odd 4
85.2.j.c.4.5 yes 12 5.3 odd 4
85.2.j.c.64.2 yes 12 85.13 odd 4
85.2.j.c.64.5 yes 12 85.47 odd 4
425.2.e.d.251.2 12 17.13 even 4 inner
425.2.e.d.251.5 12 85.64 even 4 inner
425.2.e.d.276.2 12 5.4 even 2 inner
425.2.e.d.276.5 12 1.1 even 1 trivial
765.2.t.e.64.2 12 255.47 even 4
765.2.t.e.64.5 12 255.98 even 4
765.2.t.e.514.2 12 15.8 even 4
765.2.t.e.514.5 12 15.2 even 4
1445.2.b.f.579.3 12 85.8 odd 8
1445.2.b.f.579.4 12 85.43 odd 8
1445.2.b.f.579.9 12 85.77 odd 8
1445.2.b.f.579.10 12 85.42 odd 8
7225.2.a.bp.1.3 12 85.9 even 8
7225.2.a.bp.1.4 12 85.59 even 8
7225.2.a.bp.1.9 12 17.8 even 8
7225.2.a.bp.1.10 12 17.9 even 8