Properties

Label 425.2.e.b.276.1
Level $425$
Weight $2$
Character 425.276
Analytic conductor $3.394$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(251,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 276.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 425.276
Dual form 425.2.e.b.251.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(1.00000 - 1.00000i) q^{3} +1.00000 q^{4} +(1.00000 + 1.00000i) q^{6} +(3.00000 + 3.00000i) q^{7} +3.00000i q^{8} +1.00000i q^{9} +(-3.00000 - 3.00000i) q^{11} +(1.00000 - 1.00000i) q^{12} +(-3.00000 + 3.00000i) q^{14} -1.00000 q^{16} +(-4.00000 + 1.00000i) q^{17} -1.00000 q^{18} -6.00000i q^{19} +6.00000 q^{21} +(3.00000 - 3.00000i) q^{22} +(1.00000 + 1.00000i) q^{23} +(3.00000 + 3.00000i) q^{24} +(4.00000 + 4.00000i) q^{27} +(3.00000 + 3.00000i) q^{28} +(3.00000 - 3.00000i) q^{29} +(-1.00000 + 1.00000i) q^{31} +5.00000i q^{32} -6.00000 q^{33} +(-1.00000 - 4.00000i) q^{34} +1.00000i q^{36} +(3.00000 - 3.00000i) q^{37} +6.00000 q^{38} +(-3.00000 - 3.00000i) q^{41} +6.00000i q^{42} -12.0000i q^{43} +(-3.00000 - 3.00000i) q^{44} +(-1.00000 + 1.00000i) q^{46} -2.00000 q^{47} +(-1.00000 + 1.00000i) q^{48} +11.0000i q^{49} +(-3.00000 + 5.00000i) q^{51} +2.00000i q^{53} +(-4.00000 + 4.00000i) q^{54} +(-9.00000 + 9.00000i) q^{56} +(-6.00000 - 6.00000i) q^{57} +(3.00000 + 3.00000i) q^{58} -6.00000i q^{59} +(1.00000 + 1.00000i) q^{61} +(-1.00000 - 1.00000i) q^{62} +(-3.00000 + 3.00000i) q^{63} -7.00000 q^{64} -6.00000i q^{66} -6.00000 q^{67} +(-4.00000 + 1.00000i) q^{68} +2.00000 q^{69} +(3.00000 - 3.00000i) q^{71} -3.00000 q^{72} +(-3.00000 + 3.00000i) q^{73} +(3.00000 + 3.00000i) q^{74} -6.00000i q^{76} -18.0000i q^{77} +(7.00000 + 7.00000i) q^{79} +5.00000 q^{81} +(3.00000 - 3.00000i) q^{82} -4.00000i q^{83} +6.00000 q^{84} +12.0000 q^{86} -6.00000i q^{87} +(9.00000 - 9.00000i) q^{88} -6.00000 q^{89} +(1.00000 + 1.00000i) q^{92} +2.00000i q^{93} -2.00000i q^{94} +(5.00000 + 5.00000i) q^{96} +(3.00000 - 3.00000i) q^{97} -11.0000 q^{98} +(3.00000 - 3.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{4} + 2 q^{6} + 6 q^{7} - 6 q^{11} + 2 q^{12} - 6 q^{14} - 2 q^{16} - 8 q^{17} - 2 q^{18} + 12 q^{21} + 6 q^{22} + 2 q^{23} + 6 q^{24} + 8 q^{27} + 6 q^{28} + 6 q^{29} - 2 q^{31} - 12 q^{33}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 1.00000 1.00000i 0.577350 0.577350i −0.356822 0.934172i \(-0.616140\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 + 1.00000i 0.408248 + 0.408248i
\(7\) 3.00000 + 3.00000i 1.13389 + 1.13389i 0.989524 + 0.144370i \(0.0461154\pi\)
0.144370 + 0.989524i \(0.453885\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −3.00000 3.00000i −0.904534 0.904534i 0.0912903 0.995824i \(-0.470901\pi\)
−0.995824 + 0.0912903i \(0.970901\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) −3.00000 + 3.00000i −0.801784 + 0.801784i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −4.00000 + 1.00000i −0.970143 + 0.242536i
\(18\) −1.00000 −0.235702
\(19\) 6.00000i 1.37649i −0.725476 0.688247i \(-0.758380\pi\)
0.725476 0.688247i \(-0.241620\pi\)
\(20\) 0 0
\(21\) 6.00000 1.30931
\(22\) 3.00000 3.00000i 0.639602 0.639602i
\(23\) 1.00000 + 1.00000i 0.208514 + 0.208514i 0.803636 0.595121i \(-0.202896\pi\)
−0.595121 + 0.803636i \(0.702896\pi\)
\(24\) 3.00000 + 3.00000i 0.612372 + 0.612372i
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 3.00000 + 3.00000i 0.566947 + 0.566947i
\(29\) 3.00000 3.00000i 0.557086 0.557086i −0.371391 0.928477i \(-0.621119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.00000i −0.179605 + 0.179605i −0.791184 0.611578i \(-0.790535\pi\)
0.611578 + 0.791184i \(0.290535\pi\)
\(32\) 5.00000i 0.883883i
\(33\) −6.00000 −1.04447
\(34\) −1.00000 4.00000i −0.171499 0.685994i
\(35\) 0 0
\(36\) 1.00000i 0.166667i
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 6.00000 0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 3.00000i −0.468521 0.468521i 0.432914 0.901435i \(-0.357485\pi\)
−0.901435 + 0.432914i \(0.857485\pi\)
\(42\) 6.00000i 0.925820i
\(43\) 12.0000i 1.82998i −0.403473 0.914991i \(-0.632197\pi\)
0.403473 0.914991i \(-0.367803\pi\)
\(44\) −3.00000 3.00000i −0.452267 0.452267i
\(45\) 0 0
\(46\) −1.00000 + 1.00000i −0.147442 + 0.147442i
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) −1.00000 + 1.00000i −0.144338 + 0.144338i
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) −3.00000 + 5.00000i −0.420084 + 0.700140i
\(52\) 0 0
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) −4.00000 + 4.00000i −0.544331 + 0.544331i
\(55\) 0 0
\(56\) −9.00000 + 9.00000i −1.20268 + 1.20268i
\(57\) −6.00000 6.00000i −0.794719 0.794719i
\(58\) 3.00000 + 3.00000i 0.393919 + 0.393919i
\(59\) 6.00000i 0.781133i −0.920575 0.390567i \(-0.872279\pi\)
0.920575 0.390567i \(-0.127721\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.00000i 0.128037 + 0.128037i 0.768221 0.640184i \(-0.221142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −1.00000 1.00000i −0.127000 0.127000i
\(63\) −3.00000 + 3.00000i −0.377964 + 0.377964i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 6.00000i 0.738549i
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) −4.00000 + 1.00000i −0.485071 + 0.121268i
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 3.00000 3.00000i 0.356034 0.356034i −0.506314 0.862349i \(-0.668992\pi\)
0.862349 + 0.506314i \(0.168992\pi\)
\(72\) −3.00000 −0.353553
\(73\) −3.00000 + 3.00000i −0.351123 + 0.351123i −0.860527 0.509404i \(-0.829866\pi\)
0.509404 + 0.860527i \(0.329866\pi\)
\(74\) 3.00000 + 3.00000i 0.348743 + 0.348743i
\(75\) 0 0
\(76\) 6.00000i 0.688247i
\(77\) 18.0000i 2.05129i
\(78\) 0 0
\(79\) 7.00000 + 7.00000i 0.787562 + 0.787562i 0.981094 0.193532i \(-0.0619944\pi\)
−0.193532 + 0.981094i \(0.561994\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 3.00000 3.00000i 0.331295 0.331295i
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 6.00000 0.654654
\(85\) 0 0
\(86\) 12.0000 1.29399
\(87\) 6.00000i 0.643268i
\(88\) 9.00000 9.00000i 0.959403 0.959403i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.00000 + 1.00000i 0.104257 + 0.104257i
\(93\) 2.00000i 0.207390i
\(94\) 2.00000i 0.206284i
\(95\) 0 0
\(96\) 5.00000 + 5.00000i 0.510310 + 0.510310i
\(97\) 3.00000 3.00000i 0.304604 0.304604i −0.538208 0.842812i \(-0.680899\pi\)
0.842812 + 0.538208i \(0.180899\pi\)
\(98\) −11.0000 −1.11117
\(99\) 3.00000 3.00000i 0.301511 0.301511i
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) −5.00000 3.00000i −0.495074 0.297044i
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −9.00000 + 9.00000i −0.870063 + 0.870063i −0.992479 0.122416i \(-0.960936\pi\)
0.122416 + 0.992479i \(0.460936\pi\)
\(108\) 4.00000 + 4.00000i 0.384900 + 0.384900i
\(109\) 7.00000 + 7.00000i 0.670478 + 0.670478i 0.957826 0.287348i \(-0.0927736\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) 6.00000i 0.569495i
\(112\) −3.00000 3.00000i −0.283473 0.283473i
\(113\) −9.00000 9.00000i −0.846649 0.846649i 0.143065 0.989713i \(-0.454304\pi\)
−0.989713 + 0.143065i \(0.954304\pi\)
\(114\) 6.00000 6.00000i 0.561951 0.561951i
\(115\) 0 0
\(116\) 3.00000 3.00000i 0.278543 0.278543i
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) −15.0000 9.00000i −1.37505 0.825029i
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) −1.00000 + 1.00000i −0.0905357 + 0.0905357i
\(123\) −6.00000 −0.541002
\(124\) −1.00000 + 1.00000i −0.0898027 + 0.0898027i
\(125\) 0 0
\(126\) −3.00000 3.00000i −0.267261 0.267261i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 3.00000i 0.265165i
\(129\) −12.0000 12.0000i −1.05654 1.05654i
\(130\) 0 0
\(131\) 3.00000 3.00000i 0.262111 0.262111i −0.563800 0.825911i \(-0.690661\pi\)
0.825911 + 0.563800i \(0.190661\pi\)
\(132\) −6.00000 −0.522233
\(133\) 18.0000 18.0000i 1.56080 1.56080i
\(134\) 6.00000i 0.518321i
\(135\) 0 0
\(136\) −3.00000 12.0000i −0.257248 1.02899i
\(137\) −4.00000 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(138\) 2.00000i 0.170251i
\(139\) −7.00000 + 7.00000i −0.593732 + 0.593732i −0.938638 0.344905i \(-0.887911\pi\)
0.344905 + 0.938638i \(0.387911\pi\)
\(140\) 0 0
\(141\) −2.00000 + 2.00000i −0.168430 + 0.168430i
\(142\) 3.00000 + 3.00000i 0.251754 + 0.251754i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −3.00000 3.00000i −0.248282 0.248282i
\(147\) 11.0000 + 11.0000i 0.907265 + 0.907265i
\(148\) 3.00000 3.00000i 0.246598 0.246598i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i 0.913475 + 0.406894i \(0.133388\pi\)
−0.913475 + 0.406894i \(0.866612\pi\)
\(152\) 18.0000 1.45999
\(153\) −1.00000 4.00000i −0.0808452 0.323381i
\(154\) 18.0000 1.45048
\(155\) 0 0
\(156\) 0 0
\(157\) −12.0000 −0.957704 −0.478852 0.877896i \(-0.658947\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) −7.00000 + 7.00000i −0.556890 + 0.556890i
\(159\) 2.00000 + 2.00000i 0.158610 + 0.158610i
\(160\) 0 0
\(161\) 6.00000i 0.472866i
\(162\) 5.00000i 0.392837i
\(163\) 9.00000 + 9.00000i 0.704934 + 0.704934i 0.965465 0.260531i \(-0.0838976\pi\)
−0.260531 + 0.965465i \(0.583898\pi\)
\(164\) −3.00000 3.00000i −0.234261 0.234261i
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 3.00000 3.00000i 0.232147 0.232147i −0.581441 0.813588i \(-0.697511\pi\)
0.813588 + 0.581441i \(0.197511\pi\)
\(168\) 18.0000i 1.38873i
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 12.0000i 0.914991i
\(173\) −15.0000 + 15.0000i −1.14043 + 1.14043i −0.152057 + 0.988372i \(0.548590\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 6.00000 0.454859
\(175\) 0 0
\(176\) 3.00000 + 3.00000i 0.226134 + 0.226134i
\(177\) −6.00000 6.00000i −0.450988 0.450988i
\(178\) 6.00000i 0.449719i
\(179\) 6.00000i 0.448461i −0.974536 0.224231i \(-0.928013\pi\)
0.974536 0.224231i \(-0.0719869\pi\)
\(180\) 0 0
\(181\) −11.0000 11.0000i −0.817624 0.817624i 0.168140 0.985763i \(-0.446224\pi\)
−0.985763 + 0.168140i \(0.946224\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) −3.00000 + 3.00000i −0.221163 + 0.221163i
\(185\) 0 0
\(186\) −2.00000 −0.146647
\(187\) 15.0000 + 9.00000i 1.09691 + 0.658145i
\(188\) −2.00000 −0.145865
\(189\) 24.0000i 1.74574i
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −7.00000 + 7.00000i −0.505181 + 0.505181i
\(193\) 3.00000 + 3.00000i 0.215945 + 0.215945i 0.806787 0.590842i \(-0.201204\pi\)
−0.590842 + 0.806787i \(0.701204\pi\)
\(194\) 3.00000 + 3.00000i 0.215387 + 0.215387i
\(195\) 0 0
\(196\) 11.0000i 0.785714i
\(197\) 13.0000 + 13.0000i 0.926212 + 0.926212i 0.997459 0.0712470i \(-0.0226979\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 3.00000 + 3.00000i 0.213201 + 0.213201i
\(199\) 1.00000 1.00000i 0.0708881 0.0708881i −0.670774 0.741662i \(-0.734038\pi\)
0.741662 + 0.670774i \(0.234038\pi\)
\(200\) 0 0
\(201\) −6.00000 + 6.00000i −0.423207 + 0.423207i
\(202\) 6.00000i 0.422159i
\(203\) 18.0000 1.26335
\(204\) −3.00000 + 5.00000i −0.210042 + 0.350070i
\(205\) 0 0
\(206\) 6.00000i 0.418040i
\(207\) −1.00000 + 1.00000i −0.0695048 + 0.0695048i
\(208\) 0 0
\(209\) −18.0000 + 18.0000i −1.24509 + 1.24509i
\(210\) 0 0
\(211\) 17.0000 + 17.0000i 1.17033 + 1.17033i 0.982131 + 0.188197i \(0.0602643\pi\)
0.188197 + 0.982131i \(0.439736\pi\)
\(212\) 2.00000i 0.137361i
\(213\) 6.00000i 0.411113i
\(214\) −9.00000 9.00000i −0.615227 0.615227i
\(215\) 0 0
\(216\) −12.0000 + 12.0000i −0.816497 + 0.816497i
\(217\) −6.00000 −0.407307
\(218\) −7.00000 + 7.00000i −0.474100 + 0.474100i
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) 0 0
\(222\) 6.00000 0.402694
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −15.0000 + 15.0000i −1.00223 + 1.00223i
\(225\) 0 0
\(226\) 9.00000 9.00000i 0.598671 0.598671i
\(227\) 15.0000 + 15.0000i 0.995585 + 0.995585i 0.999990 0.00440533i \(-0.00140226\pi\)
−0.00440533 + 0.999990i \(0.501402\pi\)
\(228\) −6.00000 6.00000i −0.397360 0.397360i
\(229\) 24.0000i 1.58596i −0.609245 0.792982i \(-0.708527\pi\)
0.609245 0.792982i \(-0.291473\pi\)
\(230\) 0 0
\(231\) −18.0000 18.0000i −1.18431 1.18431i
\(232\) 9.00000 + 9.00000i 0.590879 + 0.590879i
\(233\) 5.00000 5.00000i 0.327561 0.327561i −0.524097 0.851658i \(-0.675597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.00000i 0.390567i
\(237\) 14.0000 0.909398
\(238\) 9.00000 15.0000i 0.583383 0.972306i
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −19.0000 + 19.0000i −1.22390 + 1.22390i −0.257663 + 0.966235i \(0.582952\pi\)
−0.966235 + 0.257663i \(0.917048\pi\)
\(242\) −7.00000 −0.449977
\(243\) −7.00000 + 7.00000i −0.449050 + 0.449050i
\(244\) 1.00000 + 1.00000i 0.0640184 + 0.0640184i
\(245\) 0 0
\(246\) 6.00000i 0.382546i
\(247\) 0 0
\(248\) −3.00000 3.00000i −0.190500 0.190500i
\(249\) −4.00000 4.00000i −0.253490 0.253490i
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) −3.00000 + 3.00000i −0.188982 + 0.188982i
\(253\) 6.00000i 0.377217i
\(254\) 0 0
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 14.0000i 0.873296i 0.899632 + 0.436648i \(0.143834\pi\)
−0.899632 + 0.436648i \(0.856166\pi\)
\(258\) 12.0000 12.0000i 0.747087 0.747087i
\(259\) 18.0000 1.11847
\(260\) 0 0
\(261\) 3.00000 + 3.00000i 0.185695 + 0.185695i
\(262\) 3.00000 + 3.00000i 0.185341 + 0.185341i
\(263\) 16.0000i 0.986602i 0.869859 + 0.493301i \(0.164210\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(264\) 18.0000i 1.10782i
\(265\) 0 0
\(266\) 18.0000 + 18.0000i 1.10365 + 1.10365i
\(267\) −6.00000 + 6.00000i −0.367194 + 0.367194i
\(268\) −6.00000 −0.366508
\(269\) 3.00000 3.00000i 0.182913 0.182913i −0.609711 0.792624i \(-0.708714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 4.00000 1.00000i 0.242536 0.0606339i
\(273\) 0 0
\(274\) 4.00000i 0.241649i
\(275\) 0 0
\(276\) 2.00000 0.120386
\(277\) −21.0000 + 21.0000i −1.26177 + 1.26177i −0.311532 + 0.950236i \(0.600842\pi\)
−0.950236 + 0.311532i \(0.899158\pi\)
\(278\) −7.00000 7.00000i −0.419832 0.419832i
\(279\) −1.00000 1.00000i −0.0598684 0.0598684i
\(280\) 0 0
\(281\) 24.0000i 1.43172i −0.698244 0.715860i \(-0.746035\pi\)
0.698244 0.715860i \(-0.253965\pi\)
\(282\) −2.00000 2.00000i −0.119098 0.119098i
\(283\) 9.00000 + 9.00000i 0.534994 + 0.534994i 0.922055 0.387060i \(-0.126509\pi\)
−0.387060 + 0.922055i \(0.626509\pi\)
\(284\) 3.00000 3.00000i 0.178017 0.178017i
\(285\) 0 0
\(286\) 0 0
\(287\) 18.0000i 1.06251i
\(288\) −5.00000 −0.294628
\(289\) 15.0000 8.00000i 0.882353 0.470588i
\(290\) 0 0
\(291\) 6.00000i 0.351726i
\(292\) −3.00000 + 3.00000i −0.175562 + 0.175562i
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) −11.0000 + 11.0000i −0.641533 + 0.641533i
\(295\) 0 0
\(296\) 9.00000 + 9.00000i 0.523114 + 0.523114i
\(297\) 24.0000i 1.39262i
\(298\) 18.0000i 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) 36.0000 36.0000i 2.07501 2.07501i
\(302\) −10.0000 −0.575435
\(303\) −6.00000 + 6.00000i −0.344691 + 0.344691i
\(304\) 6.00000i 0.344124i
\(305\) 0 0
\(306\) 4.00000 1.00000i 0.228665 0.0571662i
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) 18.0000i 1.02565i
\(309\) −6.00000 + 6.00000i −0.341328 + 0.341328i
\(310\) 0 0
\(311\) 3.00000 3.00000i 0.170114 0.170114i −0.616915 0.787030i \(-0.711618\pi\)
0.787030 + 0.616915i \(0.211618\pi\)
\(312\) 0 0
\(313\) 3.00000 + 3.00000i 0.169570 + 0.169570i 0.786790 0.617220i \(-0.211741\pi\)
−0.617220 + 0.786790i \(0.711741\pi\)
\(314\) 12.0000i 0.677199i
\(315\) 0 0
\(316\) 7.00000 + 7.00000i 0.393781 + 0.393781i
\(317\) −15.0000 15.0000i −0.842484 0.842484i 0.146697 0.989181i \(-0.453136\pi\)
−0.989181 + 0.146697i \(0.953136\pi\)
\(318\) −2.00000 + 2.00000i −0.112154 + 0.112154i
\(319\) −18.0000 −1.00781
\(320\) 0 0
\(321\) 18.0000i 1.00466i
\(322\) −6.00000 −0.334367
\(323\) 6.00000 + 24.0000i 0.333849 + 1.33540i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) −9.00000 + 9.00000i −0.498464 + 0.498464i
\(327\) 14.0000 0.774202
\(328\) 9.00000 9.00000i 0.496942 0.496942i
\(329\) −6.00000 6.00000i −0.330791 0.330791i
\(330\) 0 0
\(331\) 18.0000i 0.989369i −0.869072 0.494685i \(-0.835284\pi\)
0.869072 0.494685i \(-0.164716\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 3.00000 + 3.00000i 0.164399 + 0.164399i
\(334\) 3.00000 + 3.00000i 0.164153 + 0.164153i
\(335\) 0 0
\(336\) −6.00000 −0.327327
\(337\) 15.0000 15.0000i 0.817102 0.817102i −0.168585 0.985687i \(-0.553920\pi\)
0.985687 + 0.168585i \(0.0539198\pi\)
\(338\) 13.0000i 0.707107i
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) 6.00000i 0.324443i
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 36.0000 1.94099
\(345\) 0 0
\(346\) −15.0000 15.0000i −0.806405 0.806405i
\(347\) −9.00000 9.00000i −0.483145 0.483145i 0.422989 0.906135i \(-0.360981\pi\)
−0.906135 + 0.422989i \(0.860981\pi\)
\(348\) 6.00000i 0.321634i
\(349\) 28.0000i 1.49881i −0.662114 0.749403i \(-0.730341\pi\)
0.662114 0.749403i \(-0.269659\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 15.0000 15.0000i 0.799503 0.799503i
\(353\) 16.0000 0.851594 0.425797 0.904819i \(-0.359994\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 6.00000 6.00000i 0.318896 0.318896i
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) −24.0000 + 6.00000i −1.27021 + 0.317554i
\(358\) 6.00000 0.317110
\(359\) 30.0000i 1.58334i 0.610949 + 0.791670i \(0.290788\pi\)
−0.610949 + 0.791670i \(0.709212\pi\)
\(360\) 0 0
\(361\) −17.0000 −0.894737
\(362\) 11.0000 11.0000i 0.578147 0.578147i
\(363\) 7.00000 + 7.00000i 0.367405 + 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 2.00000i 0.104542i
\(367\) 3.00000 + 3.00000i 0.156599 + 0.156599i 0.781058 0.624459i \(-0.214680\pi\)
−0.624459 + 0.781058i \(0.714680\pi\)
\(368\) −1.00000 1.00000i −0.0521286 0.0521286i
\(369\) 3.00000 3.00000i 0.156174 0.156174i
\(370\) 0 0
\(371\) −6.00000 + 6.00000i −0.311504 + 0.311504i
\(372\) 2.00000i 0.103695i
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) −9.00000 + 15.0000i −0.465379 + 0.775632i
\(375\) 0 0
\(376\) 6.00000i 0.309426i
\(377\) 0 0
\(378\) −24.0000 −1.23443
\(379\) −11.0000 + 11.0000i −0.565032 + 0.565032i −0.930733 0.365701i \(-0.880829\pi\)
0.365701 + 0.930733i \(0.380829\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.0000i 0.817562i −0.912633 0.408781i \(-0.865954\pi\)
0.912633 0.408781i \(-0.134046\pi\)
\(384\) 3.00000 + 3.00000i 0.153093 + 0.153093i
\(385\) 0 0
\(386\) −3.00000 + 3.00000i −0.152696 + 0.152696i
\(387\) 12.0000 0.609994
\(388\) 3.00000 3.00000i 0.152302 0.152302i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) −5.00000 3.00000i −0.252861 0.151717i
\(392\) −33.0000 −1.66675
\(393\) 6.00000i 0.302660i
\(394\) −13.0000 + 13.0000i −0.654931 + 0.654931i
\(395\) 0 0
\(396\) 3.00000 3.00000i 0.150756 0.150756i
\(397\) −27.0000 27.0000i −1.35509 1.35509i −0.879862 0.475229i \(-0.842365\pi\)
−0.475229 0.879862i \(-0.657635\pi\)
\(398\) 1.00000 + 1.00000i 0.0501255 + 0.0501255i
\(399\) 36.0000i 1.80225i
\(400\) 0 0
\(401\) 9.00000 + 9.00000i 0.449439 + 0.449439i 0.895168 0.445729i \(-0.147056\pi\)
−0.445729 + 0.895168i \(0.647056\pi\)
\(402\) −6.00000 6.00000i −0.299253 0.299253i
\(403\) 0 0
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 18.0000i 0.893325i
\(407\) −18.0000 −0.892227
\(408\) −15.0000 9.00000i −0.742611 0.445566i
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) −4.00000 + 4.00000i −0.197305 + 0.197305i
\(412\) −6.00000 −0.295599
\(413\) 18.0000 18.0000i 0.885722 0.885722i
\(414\) −1.00000 1.00000i −0.0491473 0.0491473i
\(415\) 0 0
\(416\) 0 0
\(417\) 14.0000i 0.685583i
\(418\) −18.0000 18.0000i −0.880409 0.880409i
\(419\) 15.0000 + 15.0000i 0.732798 + 0.732798i 0.971173 0.238375i \(-0.0766148\pi\)
−0.238375 + 0.971173i \(0.576615\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) −17.0000 + 17.0000i −0.827547 + 0.827547i
\(423\) 2.00000i 0.0972433i
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 6.00000 0.290701
\(427\) 6.00000i 0.290360i
\(428\) −9.00000 + 9.00000i −0.435031 + 0.435031i
\(429\) 0 0
\(430\) 0 0
\(431\) 9.00000 + 9.00000i 0.433515 + 0.433515i 0.889822 0.456307i \(-0.150828\pi\)
−0.456307 + 0.889822i \(0.650828\pi\)
\(432\) −4.00000 4.00000i −0.192450 0.192450i
\(433\) 30.0000i 1.44171i −0.693087 0.720854i \(-0.743750\pi\)
0.693087 0.720854i \(-0.256250\pi\)
\(434\) 6.00000i 0.288009i
\(435\) 0 0
\(436\) 7.00000 + 7.00000i 0.335239 + 0.335239i
\(437\) 6.00000 6.00000i 0.287019 0.287019i
\(438\) −6.00000 −0.286691
\(439\) −19.0000 + 19.0000i −0.906821 + 0.906821i −0.996014 0.0891938i \(-0.971571\pi\)
0.0891938 + 0.996014i \(0.471571\pi\)
\(440\) 0 0
\(441\) −11.0000 −0.523810
\(442\) 0 0
\(443\) 22.0000 1.04525 0.522626 0.852562i \(-0.324953\pi\)
0.522626 + 0.852562i \(0.324953\pi\)
\(444\) 6.00000i 0.284747i
\(445\) 0 0
\(446\) 0 0
\(447\) 18.0000 18.0000i 0.851371 0.851371i
\(448\) −21.0000 21.0000i −0.992157 0.992157i
\(449\) 15.0000 + 15.0000i 0.707894 + 0.707894i 0.966092 0.258198i \(-0.0831288\pi\)
−0.258198 + 0.966092i \(0.583129\pi\)
\(450\) 0 0
\(451\) 18.0000i 0.847587i
\(452\) −9.00000 9.00000i −0.423324 0.423324i
\(453\) 10.0000 + 10.0000i 0.469841 + 0.469841i
\(454\) −15.0000 + 15.0000i −0.703985 + 0.703985i
\(455\) 0 0
\(456\) 18.0000 18.0000i 0.842927 0.842927i
\(457\) 6.00000i 0.280668i 0.990104 + 0.140334i \(0.0448177\pi\)
−0.990104 + 0.140334i \(0.955182\pi\)
\(458\) 24.0000 1.12145
\(459\) −20.0000 12.0000i −0.933520 0.560112i
\(460\) 0 0
\(461\) 12.0000i 0.558896i 0.960161 + 0.279448i \(0.0901514\pi\)
−0.960161 + 0.279448i \(0.909849\pi\)
\(462\) 18.0000 18.0000i 0.837436 0.837436i
\(463\) 18.0000 0.836531 0.418265 0.908325i \(-0.362638\pi\)
0.418265 + 0.908325i \(0.362638\pi\)
\(464\) −3.00000 + 3.00000i −0.139272 + 0.139272i
\(465\) 0 0
\(466\) 5.00000 + 5.00000i 0.231621 + 0.231621i
\(467\) 28.0000i 1.29569i 0.761774 + 0.647843i \(0.224329\pi\)
−0.761774 + 0.647843i \(0.775671\pi\)
\(468\) 0 0
\(469\) −18.0000 18.0000i −0.831163 0.831163i
\(470\) 0 0
\(471\) −12.0000 + 12.0000i −0.552931 + 0.552931i
\(472\) 18.0000 0.828517
\(473\) −36.0000 + 36.0000i −1.65528 + 1.65528i
\(474\) 14.0000i 0.643041i
\(475\) 0 0
\(476\) −15.0000 9.00000i −0.687524 0.412514i
\(477\) −2.00000 −0.0915737
\(478\) 24.0000i 1.09773i
\(479\) 9.00000 9.00000i 0.411220 0.411220i −0.470943 0.882164i \(-0.656086\pi\)
0.882164 + 0.470943i \(0.156086\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −19.0000 19.0000i −0.865426 0.865426i
\(483\) 6.00000 + 6.00000i 0.273009 + 0.273009i
\(484\) 7.00000i 0.318182i
\(485\) 0 0
\(486\) −7.00000 7.00000i −0.317526 0.317526i
\(487\) 3.00000 + 3.00000i 0.135943 + 0.135943i 0.771804 0.635861i \(-0.219355\pi\)
−0.635861 + 0.771804i \(0.719355\pi\)
\(488\) −3.00000 + 3.00000i −0.135804 + 0.135804i
\(489\) 18.0000 0.813988
\(490\) 0 0
\(491\) 6.00000i 0.270776i 0.990793 + 0.135388i \(0.0432281\pi\)
−0.990793 + 0.135388i \(0.956772\pi\)
\(492\) −6.00000 −0.270501
\(493\) −9.00000 + 15.0000i −0.405340 + 0.675566i
\(494\) 0 0
\(495\) 0 0
\(496\) 1.00000 1.00000i 0.0449013 0.0449013i
\(497\) 18.0000 0.807410
\(498\) 4.00000 4.00000i 0.179244 0.179244i
\(499\) 23.0000 + 23.0000i 1.02962 + 1.02962i 0.999548 + 0.0300737i \(0.00957421\pi\)
0.0300737 + 0.999548i \(0.490426\pi\)
\(500\) 0 0
\(501\) 6.00000i 0.268060i
\(502\) 12.0000i 0.535586i
\(503\) −3.00000 3.00000i −0.133763 0.133763i 0.637055 0.770818i \(-0.280152\pi\)
−0.770818 + 0.637055i \(0.780152\pi\)
\(504\) −9.00000 9.00000i −0.400892 0.400892i
\(505\) 0 0
\(506\) 6.00000 0.266733
\(507\) −13.0000 + 13.0000i −0.577350 + 0.577350i
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) 11.0000i 0.486136i
\(513\) 24.0000 24.0000i 1.05963 1.05963i
\(514\) −14.0000 −0.617514
\(515\) 0 0
\(516\) −12.0000 12.0000i −0.528271 0.528271i
\(517\) 6.00000 + 6.00000i 0.263880 + 0.263880i
\(518\) 18.0000i 0.790875i
\(519\) 30.0000i 1.31685i
\(520\) 0 0
\(521\) 9.00000 + 9.00000i 0.394297 + 0.394297i 0.876216 0.481919i \(-0.160060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) −3.00000 + 3.00000i −0.131306 + 0.131306i
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 3.00000 3.00000i 0.131056 0.131056i
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 3.00000 5.00000i 0.130682 0.217803i
\(528\) 6.00000 0.261116
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 18.0000 18.0000i 0.780399 0.780399i
\(533\) 0 0
\(534\) −6.00000 6.00000i −0.259645 0.259645i
\(535\) 0 0
\(536\) 18.0000i 0.777482i
\(537\) −6.00000 6.00000i −0.258919 0.258919i
\(538\) 3.00000 + 3.00000i 0.129339 + 0.129339i
\(539\) 33.0000 33.0000i 1.42141 1.42141i
\(540\) 0 0
\(541\) 1.00000 1.00000i 0.0429934 0.0429934i −0.685283 0.728277i \(-0.740322\pi\)
0.728277 + 0.685283i \(0.240322\pi\)
\(542\) 24.0000i 1.03089i
\(543\) −22.0000 −0.944110
\(544\) −5.00000 20.0000i −0.214373 0.857493i
\(545\) 0 0
\(546\) 0 0
\(547\) −9.00000 + 9.00000i −0.384812 + 0.384812i −0.872832 0.488020i \(-0.837719\pi\)
0.488020 + 0.872832i \(0.337719\pi\)
\(548\) −4.00000 −0.170872
\(549\) −1.00000 + 1.00000i −0.0426790 + 0.0426790i
\(550\) 0 0
\(551\) −18.0000 18.0000i −0.766826 0.766826i
\(552\) 6.00000i 0.255377i
\(553\) 42.0000i 1.78602i
\(554\) −21.0000 21.0000i −0.892205 0.892205i
\(555\) 0 0
\(556\) −7.00000 + 7.00000i −0.296866 + 0.296866i
\(557\) 32.0000 1.35588 0.677942 0.735116i \(-0.262872\pi\)
0.677942 + 0.735116i \(0.262872\pi\)
\(558\) 1.00000 1.00000i 0.0423334 0.0423334i
\(559\) 0 0
\(560\) 0 0
\(561\) 24.0000 6.00000i 1.01328 0.253320i
\(562\) 24.0000 1.01238
\(563\) 28.0000i 1.18006i −0.807382 0.590030i \(-0.799116\pi\)
0.807382 0.590030i \(-0.200884\pi\)
\(564\) −2.00000 + 2.00000i −0.0842152 + 0.0842152i
\(565\) 0 0
\(566\) −9.00000 + 9.00000i −0.378298 + 0.378298i
\(567\) 15.0000 + 15.0000i 0.629941 + 0.629941i
\(568\) 9.00000 + 9.00000i 0.377632 + 0.377632i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −23.0000 23.0000i −0.962520 0.962520i 0.0368025 0.999323i \(-0.488283\pi\)
−0.999323 + 0.0368025i \(0.988283\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 18.0000 0.751305
\(575\) 0 0
\(576\) 7.00000i 0.291667i
\(577\) −36.0000 −1.49870 −0.749350 0.662174i \(-0.769634\pi\)
−0.749350 + 0.662174i \(0.769634\pi\)
\(578\) 8.00000 + 15.0000i 0.332756 + 0.623918i
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) 12.0000 12.0000i 0.497844 0.497844i
\(582\) 6.00000 0.248708
\(583\) 6.00000 6.00000i 0.248495 0.248495i
\(584\) −9.00000 9.00000i −0.372423 0.372423i
\(585\) 0 0
\(586\) 4.00000i 0.165238i
\(587\) 4.00000i 0.165098i −0.996587 0.0825488i \(-0.973694\pi\)
0.996587 0.0825488i \(-0.0263060\pi\)
\(588\) 11.0000 + 11.0000i 0.453632 + 0.453632i
\(589\) 6.00000 + 6.00000i 0.247226 + 0.247226i
\(590\) 0 0
\(591\) 26.0000 1.06950
\(592\) −3.00000 + 3.00000i −0.123299 + 0.123299i
\(593\) 2.00000i 0.0821302i −0.999156 0.0410651i \(-0.986925\pi\)
0.999156 0.0410651i \(-0.0130751\pi\)
\(594\) 24.0000 0.984732
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 2.00000i 0.0818546i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 29.0000 + 29.0000i 1.18293 + 1.18293i 0.978980 + 0.203954i \(0.0653794\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 36.0000 + 36.0000i 1.46725 + 1.46725i
\(603\) 6.00000i 0.244339i
\(604\) 10.0000i 0.406894i
\(605\) 0 0
\(606\) −6.00000 6.00000i −0.243733 0.243733i
\(607\) −33.0000 + 33.0000i −1.33943 + 1.33943i −0.442816 + 0.896612i \(0.646021\pi\)
−0.896612 + 0.442816i \(0.853979\pi\)
\(608\) 30.0000 1.21666
\(609\) 18.0000 18.0000i 0.729397 0.729397i
\(610\) 0 0
\(611\) 0 0
\(612\) −1.00000 4.00000i −0.0404226 0.161690i
\(613\) −36.0000 −1.45403 −0.727013 0.686624i \(-0.759092\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 0 0
\(616\) 54.0000 2.17572
\(617\) 15.0000 15.0000i 0.603877 0.603877i −0.337462 0.941339i \(-0.609568\pi\)
0.941339 + 0.337462i \(0.109568\pi\)
\(618\) −6.00000 6.00000i −0.241355 0.241355i
\(619\) −13.0000 13.0000i −0.522514 0.522514i 0.395816 0.918330i \(-0.370462\pi\)
−0.918330 + 0.395816i \(0.870462\pi\)
\(620\) 0 0
\(621\) 8.00000i 0.321029i
\(622\) 3.00000 + 3.00000i 0.120289 + 0.120289i
\(623\) −18.0000 18.0000i −0.721155 0.721155i
\(624\) 0 0
\(625\) 0 0
\(626\) −3.00000 + 3.00000i −0.119904 + 0.119904i
\(627\) 36.0000i 1.43770i
\(628\) −12.0000 −0.478852
\(629\) −9.00000 + 15.0000i −0.358854 + 0.598089i
\(630\) 0 0
\(631\) 34.0000i 1.35352i 0.736204 + 0.676759i \(0.236616\pi\)
−0.736204 + 0.676759i \(0.763384\pi\)
\(632\) −21.0000 + 21.0000i −0.835335 + 0.835335i
\(633\) 34.0000 1.35138
\(634\) 15.0000 15.0000i 0.595726 0.595726i
\(635\) 0 0
\(636\) 2.00000 + 2.00000i 0.0793052 + 0.0793052i
\(637\) 0 0
\(638\) 18.0000i 0.712627i
\(639\) 3.00000 + 3.00000i 0.118678 + 0.118678i
\(640\) 0 0
\(641\) 9.00000 9.00000i 0.355479 0.355479i −0.506665 0.862143i \(-0.669122\pi\)
0.862143 + 0.506665i \(0.169122\pi\)
\(642\) −18.0000 −0.710403
\(643\) 9.00000 9.00000i 0.354925 0.354925i −0.507013 0.861938i \(-0.669250\pi\)
0.861938 + 0.507013i \(0.169250\pi\)
\(644\) 6.00000i 0.236433i
\(645\) 0 0
\(646\) −24.0000 + 6.00000i −0.944267 + 0.236067i
\(647\) 46.0000 1.80845 0.904223 0.427060i \(-0.140451\pi\)
0.904223 + 0.427060i \(0.140451\pi\)
\(648\) 15.0000i 0.589256i
\(649\) −18.0000 + 18.0000i −0.706562 + 0.706562i
\(650\) 0 0
\(651\) −6.00000 + 6.00000i −0.235159 + 0.235159i
\(652\) 9.00000 + 9.00000i 0.352467 + 0.352467i
\(653\) −21.0000 21.0000i −0.821794 0.821794i 0.164572 0.986365i \(-0.447376\pi\)
−0.986365 + 0.164572i \(0.947376\pi\)
\(654\) 14.0000i 0.547443i
\(655\) 0 0
\(656\) 3.00000 + 3.00000i 0.117130 + 0.117130i
\(657\) −3.00000 3.00000i −0.117041 0.117041i
\(658\) 6.00000 6.00000i 0.233904 0.233904i
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 36.0000i 1.40024i −0.714026 0.700119i \(-0.753130\pi\)
0.714026 0.700119i \(-0.246870\pi\)
\(662\) 18.0000 0.699590
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −3.00000 + 3.00000i −0.116248 + 0.116248i
\(667\) 6.00000 0.232321
\(668\) 3.00000 3.00000i 0.116073 0.116073i
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000i 0.231627i
\(672\) 30.0000i 1.15728i
\(673\) 15.0000 + 15.0000i 0.578208 + 0.578208i 0.934409 0.356202i \(-0.115928\pi\)
−0.356202 + 0.934409i \(0.615928\pi\)
\(674\) 15.0000 + 15.0000i 0.577778 + 0.577778i
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) 11.0000 11.0000i 0.422764 0.422764i −0.463390 0.886154i \(-0.653367\pi\)
0.886154 + 0.463390i \(0.153367\pi\)
\(678\) 18.0000i 0.691286i
\(679\) 18.0000 0.690777
\(680\) 0 0
\(681\) 30.0000 1.14960
\(682\) 6.00000i 0.229752i
\(683\) −15.0000 + 15.0000i −0.573959 + 0.573959i −0.933232 0.359273i \(-0.883025\pi\)
0.359273 + 0.933232i \(0.383025\pi\)
\(684\) 6.00000 0.229416
\(685\) 0 0
\(686\) −12.0000 12.0000i −0.458162 0.458162i
\(687\) −24.0000 24.0000i −0.915657 0.915657i
\(688\) 12.0000i 0.457496i
\(689\) 0 0
\(690\) 0 0
\(691\) −19.0000 19.0000i −0.722794 0.722794i 0.246379 0.969173i \(-0.420759\pi\)
−0.969173 + 0.246379i \(0.920759\pi\)
\(692\) −15.0000 + 15.0000i −0.570214 + 0.570214i
\(693\) 18.0000 0.683763
\(694\) 9.00000 9.00000i 0.341635 0.341635i
\(695\) 0 0
\(696\) 18.0000 0.682288
\(697\) 15.0000 + 9.00000i 0.568166 + 0.340899i
\(698\) 28.0000 1.05982
\(699\) 10.0000i 0.378235i
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) −18.0000 18.0000i −0.678883 0.678883i
\(704\) 21.0000 + 21.0000i 0.791467 + 0.791467i
\(705\) 0 0
\(706\) 16.0000i 0.602168i
\(707\) −18.0000 18.0000i −0.676960 0.676960i
\(708\) −6.00000 6.00000i −0.225494 0.225494i
\(709\) −5.00000 + 5.00000i −0.187779 + 0.187779i −0.794735 0.606956i \(-0.792390\pi\)
0.606956 + 0.794735i \(0.292390\pi\)
\(710\) 0 0
\(711\) −7.00000 + 7.00000i −0.262521 + 0.262521i
\(712\) 18.0000i 0.674579i
\(713\) −2.00000 −0.0749006
\(714\) −6.00000 24.0000i −0.224544 0.898177i
\(715\) 0 0
\(716\) 6.00000i 0.224231i
\(717\) 24.0000 24.0000i 0.896296 0.896296i
\(718\) −30.0000 −1.11959
\(719\) 21.0000 21.0000i 0.783168 0.783168i −0.197196 0.980364i \(-0.563184\pi\)
0.980364 + 0.197196i \(0.0631836\pi\)
\(720\) 0 0
\(721\) −18.0000 18.0000i −0.670355 0.670355i
\(722\) 17.0000i 0.632674i
\(723\) 38.0000i 1.41324i
\(724\) −11.0000 11.0000i −0.408812 0.408812i
\(725\) 0 0
\(726\) −7.00000 + 7.00000i −0.259794 + 0.259794i
\(727\) −18.0000 −0.667583 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 12.0000 + 48.0000i 0.443836 + 1.77534i
\(732\) 2.00000 0.0739221
\(733\) 42.0000i 1.55131i 0.631160 + 0.775653i \(0.282579\pi\)
−0.631160 + 0.775653i \(0.717421\pi\)
\(734\) −3.00000 + 3.00000i −0.110732 + 0.110732i
\(735\) 0 0
\(736\) −5.00000 + 5.00000i −0.184302 + 0.184302i
\(737\) 18.0000 + 18.0000i 0.663039 + 0.663039i
\(738\) 3.00000 + 3.00000i 0.110432 + 0.110432i
\(739\) 34.0000i 1.25071i 0.780340 + 0.625355i \(0.215046\pi\)
−0.780340 + 0.625355i \(0.784954\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −6.00000 6.00000i −0.220267 0.220267i
\(743\) 9.00000 9.00000i 0.330178 0.330178i −0.522476 0.852654i \(-0.674992\pi\)
0.852654 + 0.522476i \(0.174992\pi\)
\(744\) −6.00000 −0.219971
\(745\) 0 0
\(746\) 24.0000i 0.878702i
\(747\) 4.00000 0.146352
\(748\) 15.0000 + 9.00000i 0.548454 + 0.329073i
\(749\) −54.0000 −1.97312
\(750\) 0 0
\(751\) 19.0000 19.0000i 0.693320 0.693320i −0.269641 0.962961i \(-0.586905\pi\)
0.962961 + 0.269641i \(0.0869050\pi\)
\(752\) 2.00000 0.0729325
\(753\) −12.0000 + 12.0000i −0.437304 + 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) 24.0000i 0.872872i
\(757\) 42.0000i 1.52652i 0.646094 + 0.763258i \(0.276401\pi\)
−0.646094 + 0.763258i \(0.723599\pi\)
\(758\) −11.0000 11.0000i −0.399538 0.399538i
\(759\) −6.00000 6.00000i −0.217786 0.217786i
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) 42.0000i 1.52050i
\(764\) 0 0
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 0 0
\(768\) −17.0000 + 17.0000i −0.613435 + 0.613435i
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 14.0000 + 14.0000i 0.504198 + 0.504198i
\(772\) 3.00000 + 3.00000i 0.107972 + 0.107972i
\(773\) 26.0000i 0.935155i −0.883952 0.467578i \(-0.845127\pi\)
0.883952 0.467578i \(-0.154873\pi\)
\(774\) 12.0000i 0.431331i
\(775\) 0 0
\(776\) 9.00000 + 9.00000i 0.323081 + 0.323081i
\(777\) 18.0000 18.0000i 0.645746 0.645746i
\(778\) 0 0
\(779\) −18.0000 + 18.0000i −0.644917 + 0.644917i
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 3.00000 5.00000i 0.107280 0.178800i
\(783\) 24.0000 0.857690
\(784\) 11.0000i 0.392857i