Properties

Label 425.2.d.a.101.5
Level $425$
Weight $2$
Character 425.101
Analytic conductor $3.394$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(101,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.93924352.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} + 73x^{2} + 67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.5
Root \(3.29112i\) of defining polynomial
Character \(\chi\) \(=\) 425.101
Dual form 425.2.d.a.101.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} -3.29112i q^{3} +0.193937 q^{4} -4.87478i q^{6} -2.22194i q^{7} -2.67513 q^{8} -7.83146 q^{9} +2.86020i q^{11} -0.638268i q^{12} +2.28726 q^{13} -3.29112i q^{14} -4.35026 q^{16} +(3.15633 - 2.65285i) q^{17} -11.5999 q^{18} +5.76845 q^{19} -7.31265 q^{21} +4.23652i q^{22} -1.58367i q^{23} +8.80417i q^{24} +3.38787 q^{26} +15.9009i q^{27} -0.430914i q^{28} -9.23509i q^{29} +1.15275i q^{31} -1.09332 q^{32} +9.41327 q^{33} +(4.67513 - 3.92939i) q^{34} -1.51881 q^{36} -0.514485i q^{37} +8.54420 q^{38} -7.52763i q^{39} -7.09672i q^{41} -10.8315 q^{42} -7.89446 q^{43} +0.554698i q^{44} -2.34572i q^{46} +3.03761 q^{47} +14.3172i q^{48} +2.06300 q^{49} +(-8.73084 - 10.3878i) q^{51} +0.443583 q^{52} +5.73084 q^{53} +23.5523i q^{54} +5.94397i q^{56} -18.9847i q^{57} -13.6790i q^{58} -7.50659 q^{59} +11.8879i q^{61} +1.70745i q^{62} +17.4010i q^{63} +7.08110 q^{64} +13.9429 q^{66} +7.35026 q^{67} +(0.612127 - 0.514485i) q^{68} -5.21203 q^{69} +8.80417i q^{71} +20.9502 q^{72} +2.65285i q^{73} -0.762052i q^{74} +1.11871 q^{76} +6.35519 q^{77} -11.1499i q^{78} +11.4570i q^{79} +28.8373 q^{81} -10.5116i q^{82} +3.08840 q^{83} -1.41819 q^{84} -11.6932 q^{86} -30.3938 q^{87} -7.65142i q^{88} +2.15633 q^{89} -5.08214i q^{91} -0.307131i q^{92} +3.79384 q^{93} +4.49929 q^{94} +3.59825i q^{96} -8.72060i q^{97} +3.05571 q^{98} -22.3996i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} - 16 q^{9} + 2 q^{13} - 6 q^{16} - 2 q^{17} - 16 q^{18} + 12 q^{19} - 2 q^{21} + 22 q^{26} + 6 q^{32} + 28 q^{33} + 18 q^{34} - 20 q^{36} + 32 q^{38} - 34 q^{42} - 8 q^{43}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) 3.29112i 1.90013i −0.312056 0.950064i \(-0.601018\pi\)
0.312056 0.950064i \(-0.398982\pi\)
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) 4.87478i 1.99012i
\(7\) 2.22194i 0.839813i −0.907567 0.419906i \(-0.862063\pi\)
0.907567 0.419906i \(-0.137937\pi\)
\(8\) −2.67513 −0.945802
\(9\) −7.83146 −2.61049
\(10\) 0 0
\(11\) 2.86020i 0.862384i 0.902260 + 0.431192i \(0.141907\pi\)
−0.902260 + 0.431192i \(0.858093\pi\)
\(12\) 0.638268i 0.184252i
\(13\) 2.28726 0.634371 0.317186 0.948363i \(-0.397262\pi\)
0.317186 + 0.948363i \(0.397262\pi\)
\(14\) 3.29112i 0.879588i
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) 3.15633 2.65285i 0.765521 0.643411i
\(18\) −11.5999 −2.73412
\(19\) 5.76845 1.32337 0.661687 0.749780i \(-0.269841\pi\)
0.661687 + 0.749780i \(0.269841\pi\)
\(20\) 0 0
\(21\) −7.31265 −1.59575
\(22\) 4.23652i 0.903228i
\(23\) 1.58367i 0.330217i −0.986275 0.165109i \(-0.947203\pi\)
0.986275 0.165109i \(-0.0527975\pi\)
\(24\) 8.80417i 1.79714i
\(25\) 0 0
\(26\) 3.38787 0.664417
\(27\) 15.9009i 3.06013i
\(28\) 0.430914i 0.0814352i
\(29\) 9.23509i 1.71491i −0.514557 0.857456i \(-0.672044\pi\)
0.514557 0.857456i \(-0.327956\pi\)
\(30\) 0 0
\(31\) 1.15275i 0.207040i 0.994627 + 0.103520i \(0.0330107\pi\)
−0.994627 + 0.103520i \(0.966989\pi\)
\(32\) −1.09332 −0.193274
\(33\) 9.41327 1.63864
\(34\) 4.67513 3.92939i 0.801778 0.673884i
\(35\) 0 0
\(36\) −1.51881 −0.253134
\(37\) 0.514485i 0.0845807i −0.999105 0.0422904i \(-0.986535\pi\)
0.999105 0.0422904i \(-0.0134655\pi\)
\(38\) 8.54420 1.38605
\(39\) 7.52763i 1.20539i
\(40\) 0 0
\(41\) 7.09672i 1.10832i −0.832410 0.554161i \(-0.813039\pi\)
0.832410 0.554161i \(-0.186961\pi\)
\(42\) −10.8315 −1.67133
\(43\) −7.89446 −1.20389 −0.601947 0.798536i \(-0.705608\pi\)
−0.601947 + 0.798536i \(0.705608\pi\)
\(44\) 0.554698i 0.0836239i
\(45\) 0 0
\(46\) 2.34572i 0.345857i
\(47\) 3.03761 0.443081 0.221541 0.975151i \(-0.428891\pi\)
0.221541 + 0.975151i \(0.428891\pi\)
\(48\) 14.3172i 2.06651i
\(49\) 2.06300 0.294715
\(50\) 0 0
\(51\) −8.73084 10.3878i −1.22256 1.45459i
\(52\) 0.443583 0.0615139
\(53\) 5.73084 0.787192 0.393596 0.919284i \(-0.371231\pi\)
0.393596 + 0.919284i \(0.371231\pi\)
\(54\) 23.5523i 3.20506i
\(55\) 0 0
\(56\) 5.94397i 0.794296i
\(57\) 18.9847i 2.51458i
\(58\) 13.6790i 1.79613i
\(59\) −7.50659 −0.977274 −0.488637 0.872487i \(-0.662506\pi\)
−0.488637 + 0.872487i \(0.662506\pi\)
\(60\) 0 0
\(61\) 11.8879i 1.52209i 0.648697 + 0.761047i \(0.275314\pi\)
−0.648697 + 0.761047i \(0.724686\pi\)
\(62\) 1.70745i 0.216846i
\(63\) 17.4010i 2.19232i
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) 13.9429 1.71625
\(67\) 7.35026 0.897977 0.448989 0.893537i \(-0.351784\pi\)
0.448989 + 0.893537i \(0.351784\pi\)
\(68\) 0.612127 0.514485i 0.0742313 0.0623904i
\(69\) −5.21203 −0.627455
\(70\) 0 0
\(71\) 8.80417i 1.04486i 0.852681 + 0.522431i \(0.174975\pi\)
−0.852681 + 0.522431i \(0.825025\pi\)
\(72\) 20.9502 2.46900
\(73\) 2.65285i 0.310493i 0.987876 + 0.155246i \(0.0496171\pi\)
−0.987876 + 0.155246i \(0.950383\pi\)
\(74\) 0.762052i 0.0885867i
\(75\) 0 0
\(76\) 1.11871 0.128325
\(77\) 6.35519 0.724241
\(78\) 11.1499i 1.26248i
\(79\) 11.4570i 1.28902i 0.764598 + 0.644508i \(0.222938\pi\)
−0.764598 + 0.644508i \(0.777062\pi\)
\(80\) 0 0
\(81\) 28.8373 3.20415
\(82\) 10.5116i 1.16081i
\(83\) 3.08840 0.338996 0.169498 0.985531i \(-0.445785\pi\)
0.169498 + 0.985531i \(0.445785\pi\)
\(84\) −1.41819 −0.154737
\(85\) 0 0
\(86\) −11.6932 −1.26091
\(87\) −30.3938 −3.25855
\(88\) 7.65142i 0.815644i
\(89\) 2.15633 0.228570 0.114285 0.993448i \(-0.463542\pi\)
0.114285 + 0.993448i \(0.463542\pi\)
\(90\) 0 0
\(91\) 5.08214i 0.532753i
\(92\) 0.307131i 0.0320206i
\(93\) 3.79384 0.393403
\(94\) 4.49929 0.464067
\(95\) 0 0
\(96\) 3.59825i 0.367245i
\(97\) 8.72060i 0.885443i −0.896659 0.442721i \(-0.854013\pi\)
0.896659 0.442721i \(-0.145987\pi\)
\(98\) 3.05571 0.308673
\(99\) 22.3996i 2.25124i
\(100\) 0 0
\(101\) 7.24965 0.721367 0.360683 0.932688i \(-0.382543\pi\)
0.360683 + 0.932688i \(0.382543\pi\)
\(102\) −12.9321 15.3864i −1.28047 1.52348i
\(103\) 7.73813 0.762461 0.381231 0.924480i \(-0.375500\pi\)
0.381231 + 0.924480i \(0.375500\pi\)
\(104\) −6.11871 −0.599989
\(105\) 0 0
\(106\) 8.48849 0.824475
\(107\) 10.5952i 1.02428i 0.858903 + 0.512138i \(0.171146\pi\)
−0.858903 + 0.512138i \(0.828854\pi\)
\(108\) 3.08376i 0.296735i
\(109\) 14.5408i 1.39275i 0.717676 + 0.696377i \(0.245206\pi\)
−0.717676 + 0.696377i \(0.754794\pi\)
\(110\) 0 0
\(111\) −1.69323 −0.160714
\(112\) 9.66600i 0.913351i
\(113\) 4.02916i 0.379032i 0.981878 + 0.189516i \(0.0606919\pi\)
−0.981878 + 0.189516i \(0.939308\pi\)
\(114\) 28.1200i 2.63368i
\(115\) 0 0
\(116\) 1.79102i 0.166292i
\(117\) −17.9126 −1.65602
\(118\) −11.1187 −1.02356
\(119\) −5.89446 7.01315i −0.540344 0.642894i
\(120\) 0 0
\(121\) 2.81924 0.256294
\(122\) 17.6083i 1.59418i
\(123\) −23.3561 −2.10595
\(124\) 0.223561i 0.0200764i
\(125\) 0 0
\(126\) 25.7742i 2.29615i
\(127\) −3.06793 −0.272235 −0.136117 0.990693i \(-0.543462\pi\)
−0.136117 + 0.990693i \(0.543462\pi\)
\(128\) 12.6751 1.12033
\(129\) 25.9816i 2.28755i
\(130\) 0 0
\(131\) 7.42786i 0.648975i 0.945890 + 0.324487i \(0.105192\pi\)
−0.945890 + 0.324487i \(0.894808\pi\)
\(132\) 1.82558 0.158896
\(133\) 12.8171i 1.11139i
\(134\) 10.8872 0.940508
\(135\) 0 0
\(136\) −8.44358 + 7.09672i −0.724031 + 0.608539i
\(137\) 5.37565 0.459273 0.229637 0.973276i \(-0.426246\pi\)
0.229637 + 0.973276i \(0.426246\pi\)
\(138\) −7.72004 −0.657173
\(139\) 4.91500i 0.416885i 0.978035 + 0.208442i \(0.0668394\pi\)
−0.978035 + 0.208442i \(0.933161\pi\)
\(140\) 0 0
\(141\) 9.99714i 0.841911i
\(142\) 13.0407i 1.09435i
\(143\) 6.54202i 0.547071i
\(144\) 34.0689 2.83907
\(145\) 0 0
\(146\) 3.92939i 0.325198i
\(147\) 6.78959i 0.559996i
\(148\) 0.0997774i 0.00820165i
\(149\) −16.7381 −1.37124 −0.685621 0.727959i \(-0.740469\pi\)
−0.685621 + 0.727959i \(0.740469\pi\)
\(150\) 0 0
\(151\) −1.81336 −0.147569 −0.0737845 0.997274i \(-0.523508\pi\)
−0.0737845 + 0.997274i \(0.523508\pi\)
\(152\) −15.4314 −1.25165
\(153\) −24.7186 + 20.7757i −1.99838 + 1.67961i
\(154\) 9.41327 0.758543
\(155\) 0 0
\(156\) 1.45988i 0.116884i
\(157\) −4.31994 −0.344769 −0.172385 0.985030i \(-0.555147\pi\)
−0.172385 + 0.985030i \(0.555147\pi\)
\(158\) 16.9701i 1.35007i
\(159\) 18.8609i 1.49576i
\(160\) 0 0
\(161\) −3.51881 −0.277321
\(162\) 42.7137 3.35591
\(163\) 4.66743i 0.365581i −0.983152 0.182791i \(-0.941487\pi\)
0.983152 0.182791i \(-0.0585131\pi\)
\(164\) 1.37631i 0.107472i
\(165\) 0 0
\(166\) 4.57452 0.355051
\(167\) 8.16590i 0.631897i −0.948776 0.315948i \(-0.897677\pi\)
0.948776 0.315948i \(-0.102323\pi\)
\(168\) 19.5623 1.50926
\(169\) −7.76845 −0.597573
\(170\) 0 0
\(171\) −45.1754 −3.45465
\(172\) −1.53102 −0.116740
\(173\) 23.4285i 1.78124i −0.454750 0.890619i \(-0.650272\pi\)
0.454750 0.890619i \(-0.349728\pi\)
\(174\) −45.0191 −3.41289
\(175\) 0 0
\(176\) 12.4426i 0.937899i
\(177\) 24.7051i 1.85695i
\(178\) 3.19394 0.239396
\(179\) −14.5296 −1.08599 −0.542997 0.839735i \(-0.682711\pi\)
−0.542997 + 0.839735i \(0.682711\pi\)
\(180\) 0 0
\(181\) 9.40223i 0.698862i −0.936962 0.349431i \(-0.886375\pi\)
0.936962 0.349431i \(-0.113625\pi\)
\(182\) 7.52763i 0.557985i
\(183\) 39.1246 2.89217
\(184\) 4.23652i 0.312320i
\(185\) 0 0
\(186\) 5.61942 0.412036
\(187\) 7.58769 + 9.02773i 0.554867 + 0.660173i
\(188\) 0.589104 0.0429648
\(189\) 35.3307 2.56993
\(190\) 0 0
\(191\) −6.20711 −0.449131 −0.224565 0.974459i \(-0.572096\pi\)
−0.224565 + 0.974459i \(0.572096\pi\)
\(192\) 23.3047i 1.68187i
\(193\) 14.0937i 1.01448i 0.861804 + 0.507242i \(0.169335\pi\)
−0.861804 + 0.507242i \(0.830665\pi\)
\(194\) 12.9169i 0.927380i
\(195\) 0 0
\(196\) 0.400092 0.0285780
\(197\) 25.2195i 1.79682i −0.439159 0.898409i \(-0.644724\pi\)
0.439159 0.898409i \(-0.355276\pi\)
\(198\) 33.1781i 2.35786i
\(199\) 12.6098i 0.893883i 0.894563 + 0.446942i \(0.147487\pi\)
−0.894563 + 0.446942i \(0.852513\pi\)
\(200\) 0 0
\(201\) 24.1906i 1.70627i
\(202\) 10.7381 0.755533
\(203\) −20.5198 −1.44020
\(204\) −1.69323 2.01458i −0.118550 0.141049i
\(205\) 0 0
\(206\) 11.4617 0.798573
\(207\) 12.4024i 0.862028i
\(208\) −9.95017 −0.689920
\(209\) 16.4989i 1.14126i
\(210\) 0 0
\(211\) 13.5954i 0.935945i −0.883743 0.467972i \(-0.844985\pi\)
0.883743 0.467972i \(-0.155015\pi\)
\(212\) 1.11142 0.0763326
\(213\) 28.9756 1.98537
\(214\) 15.6935i 1.07279i
\(215\) 0 0
\(216\) 42.5370i 2.89427i
\(217\) 2.56134 0.173875
\(218\) 21.5377i 1.45872i
\(219\) 8.73084 0.589976
\(220\) 0 0
\(221\) 7.21933 6.06775i 0.485625 0.408161i
\(222\) −2.50800 −0.168326
\(223\) −18.8119 −1.25974 −0.629870 0.776700i \(-0.716892\pi\)
−0.629870 + 0.776700i \(0.716892\pi\)
\(224\) 2.42929i 0.162314i
\(225\) 0 0
\(226\) 5.96797i 0.396984i
\(227\) 3.39090i 0.225062i 0.993648 + 0.112531i \(0.0358957\pi\)
−0.993648 + 0.112531i \(0.964104\pi\)
\(228\) 3.68182i 0.243834i
\(229\) 20.1817 1.33365 0.666823 0.745216i \(-0.267654\pi\)
0.666823 + 0.745216i \(0.267654\pi\)
\(230\) 0 0
\(231\) 20.9157i 1.37615i
\(232\) 24.7051i 1.62197i
\(233\) 0.347344i 0.0227553i 0.999935 + 0.0113776i \(0.00362169\pi\)
−0.999935 + 0.0113776i \(0.996378\pi\)
\(234\) −26.5320 −1.73445
\(235\) 0 0
\(236\) −1.45580 −0.0947646
\(237\) 37.7064 2.44929
\(238\) −8.73084 10.3878i −0.565936 0.673344i
\(239\) 3.94921 0.255453 0.127727 0.991809i \(-0.459232\pi\)
0.127727 + 0.991809i \(0.459232\pi\)
\(240\) 0 0
\(241\) 8.47303i 0.545796i 0.962043 + 0.272898i \(0.0879822\pi\)
−0.962043 + 0.272898i \(0.912018\pi\)
\(242\) 4.17584 0.268433
\(243\) 47.2044i 3.02816i
\(244\) 2.30551i 0.147595i
\(245\) 0 0
\(246\) −34.5950 −2.20570
\(247\) 13.1939 0.839510
\(248\) 3.08376i 0.195819i
\(249\) 10.1643i 0.644135i
\(250\) 0 0
\(251\) 9.22425 0.582230 0.291115 0.956688i \(-0.405974\pi\)
0.291115 + 0.956688i \(0.405974\pi\)
\(252\) 3.37469i 0.212585i
\(253\) 4.52961 0.284774
\(254\) −4.54420 −0.285128
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) −6.78067 −0.422967 −0.211483 0.977382i \(-0.567829\pi\)
−0.211483 + 0.977382i \(0.567829\pi\)
\(258\) 38.4838i 2.39590i
\(259\) −1.14315 −0.0710320
\(260\) 0 0
\(261\) 72.3242i 4.47675i
\(262\) 11.0021i 0.679712i
\(263\) −16.7757 −1.03444 −0.517218 0.855853i \(-0.673033\pi\)
−0.517218 + 0.855853i \(0.673033\pi\)
\(264\) −25.1817 −1.54983
\(265\) 0 0
\(266\) 18.9847i 1.16402i
\(267\) 7.09672i 0.434312i
\(268\) 1.42548 0.0870753
\(269\) 1.02897i 0.0627374i −0.999508 0.0313687i \(-0.990013\pi\)
0.999508 0.0313687i \(-0.00998660\pi\)
\(270\) 0 0
\(271\) 6.93207 0.421093 0.210547 0.977584i \(-0.432476\pi\)
0.210547 + 0.977584i \(0.432476\pi\)
\(272\) −13.7308 + 11.5406i −0.832555 + 0.699751i
\(273\) −16.7259 −1.01230
\(274\) 7.96239 0.481025
\(275\) 0 0
\(276\) −1.01080 −0.0608433
\(277\) 23.8432i 1.43260i −0.697792 0.716300i \(-0.745834\pi\)
0.697792 0.716300i \(-0.254166\pi\)
\(278\) 7.28007i 0.436629i
\(279\) 9.02773i 0.540476i
\(280\) 0 0
\(281\) −9.75131 −0.581714 −0.290857 0.956766i \(-0.593940\pi\)
−0.290857 + 0.956766i \(0.593940\pi\)
\(282\) 14.8077i 0.881786i
\(283\) 30.2181i 1.79628i 0.439709 + 0.898140i \(0.355082\pi\)
−0.439709 + 0.898140i \(0.644918\pi\)
\(284\) 1.70745i 0.101319i
\(285\) 0 0
\(286\) 9.69001i 0.572982i
\(287\) −15.7685 −0.930782
\(288\) 8.56230 0.504538
\(289\) 2.92478 16.7465i 0.172046 0.985089i
\(290\) 0 0
\(291\) −28.7005 −1.68245
\(292\) 0.514485i 0.0301079i
\(293\) 4.26187 0.248981 0.124490 0.992221i \(-0.460270\pi\)
0.124490 + 0.992221i \(0.460270\pi\)
\(294\) 10.0567i 0.586519i
\(295\) 0 0
\(296\) 1.37631i 0.0799966i
\(297\) −45.4798 −2.63900
\(298\) −24.7924 −1.43619
\(299\) 3.62225i 0.209480i
\(300\) 0 0
\(301\) 17.5410i 1.01105i
\(302\) −2.68594 −0.154558
\(303\) 23.8594i 1.37069i
\(304\) −25.0943 −1.43926
\(305\) 0 0
\(306\) −36.6131 + 30.7728i −2.09303 + 1.75916i
\(307\) −6.96239 −0.397365 −0.198682 0.980064i \(-0.563666\pi\)
−0.198682 + 0.980064i \(0.563666\pi\)
\(308\) 1.23250 0.0702284
\(309\) 25.4671i 1.44877i
\(310\) 0 0
\(311\) 14.4170i 0.817513i −0.912643 0.408757i \(-0.865963\pi\)
0.912643 0.408757i \(-0.134037\pi\)
\(312\) 20.1374i 1.14006i
\(313\) 11.1259i 0.628872i 0.949279 + 0.314436i \(0.101815\pi\)
−0.949279 + 0.314436i \(0.898185\pi\)
\(314\) −6.39868 −0.361098
\(315\) 0 0
\(316\) 2.22194i 0.124994i
\(317\) 4.09653i 0.230084i 0.993361 + 0.115042i \(0.0367002\pi\)
−0.993361 + 0.115042i \(0.963300\pi\)
\(318\) 27.9366i 1.56661i
\(319\) 26.4142 1.47891
\(320\) 0 0
\(321\) 34.8700 1.94625
\(322\) −5.21203 −0.290455
\(323\) 18.2071 15.3028i 1.01307 0.851473i
\(324\) 5.59261 0.310701
\(325\) 0 0
\(326\) 6.91337i 0.382896i
\(327\) 47.8554 2.64641
\(328\) 18.9847i 1.04825i
\(329\) 6.74938i 0.372105i
\(330\) 0 0
\(331\) 30.4894 1.67585 0.837926 0.545784i \(-0.183768\pi\)
0.837926 + 0.545784i \(0.183768\pi\)
\(332\) 0.598953 0.0328718
\(333\) 4.02916i 0.220797i
\(334\) 12.0953i 0.661825i
\(335\) 0 0
\(336\) 31.8119 1.73548
\(337\) 27.6055i 1.50377i 0.659296 + 0.751883i \(0.270854\pi\)
−0.659296 + 0.751883i \(0.729146\pi\)
\(338\) −11.5066 −0.625876
\(339\) 13.2605 0.720209
\(340\) 0 0
\(341\) −3.29711 −0.178548
\(342\) −66.9135 −3.61827
\(343\) 20.1374i 1.08732i
\(344\) 21.1187 1.13864
\(345\) 0 0
\(346\) 34.7022i 1.86560i
\(347\) 1.77481i 0.0952770i −0.998865 0.0476385i \(-0.984830\pi\)
0.998865 0.0476385i \(-0.0151695\pi\)
\(348\) −5.89446 −0.315976
\(349\) 11.1319 0.595876 0.297938 0.954585i \(-0.403701\pi\)
0.297938 + 0.954585i \(0.403701\pi\)
\(350\) 0 0
\(351\) 36.3694i 1.94126i
\(352\) 3.12712i 0.166676i
\(353\) −27.4241 −1.45964 −0.729818 0.683642i \(-0.760395\pi\)
−0.729818 + 0.683642i \(0.760395\pi\)
\(354\) 36.5930i 1.94490i
\(355\) 0 0
\(356\) 0.418190 0.0221640
\(357\) −23.0811 + 19.3994i −1.22158 + 1.02672i
\(358\) −21.5212 −1.13743
\(359\) 1.65703 0.0874548 0.0437274 0.999043i \(-0.486077\pi\)
0.0437274 + 0.999043i \(0.486077\pi\)
\(360\) 0 0
\(361\) 14.2750 0.751318
\(362\) 13.9265i 0.731962i
\(363\) 9.27844i 0.486992i
\(364\) 0.985612i 0.0516601i
\(365\) 0 0
\(366\) 57.9511 3.02915
\(367\) 20.8321i 1.08743i −0.839271 0.543713i \(-0.817018\pi\)
0.839271 0.543713i \(-0.182982\pi\)
\(368\) 6.88937i 0.359133i
\(369\) 55.5777i 2.89326i
\(370\) 0 0
\(371\) 12.7336i 0.661093i
\(372\) 0.735765 0.0381476
\(373\) 36.6810 1.89927 0.949635 0.313357i \(-0.101454\pi\)
0.949635 + 0.313357i \(0.101454\pi\)
\(374\) 11.2388 + 13.3718i 0.581147 + 0.691441i
\(375\) 0 0
\(376\) −8.12601 −0.419067
\(377\) 21.1230i 1.08789i
\(378\) 52.3317 2.69165
\(379\) 17.6245i 0.905312i 0.891685 + 0.452656i \(0.149523\pi\)
−0.891685 + 0.452656i \(0.850477\pi\)
\(380\) 0 0
\(381\) 10.0969i 0.517281i
\(382\) −9.19394 −0.470403
\(383\) −11.5066 −0.587959 −0.293980 0.955812i \(-0.594980\pi\)
−0.293980 + 0.955812i \(0.594980\pi\)
\(384\) 41.7153i 2.12878i
\(385\) 0 0
\(386\) 20.8755i 1.06253i
\(387\) 61.8251 3.14275
\(388\) 1.69124i 0.0858599i
\(389\) −10.6194 −0.538426 −0.269213 0.963081i \(-0.586764\pi\)
−0.269213 + 0.963081i \(0.586764\pi\)
\(390\) 0 0
\(391\) −4.20123 4.99857i −0.212465 0.252788i
\(392\) −5.51881 −0.278742
\(393\) 24.4460 1.23314
\(394\) 37.3550i 1.88192i
\(395\) 0 0
\(396\) 4.34409i 0.218299i
\(397\) 12.3026i 0.617452i 0.951151 + 0.308726i \(0.0999026\pi\)
−0.951151 + 0.308726i \(0.900097\pi\)
\(398\) 18.6775i 0.936220i
\(399\) −42.1827 −2.11178
\(400\) 0 0
\(401\) 16.6791i 0.832917i 0.909155 + 0.416458i \(0.136729\pi\)
−0.909155 + 0.416458i \(0.863271\pi\)
\(402\) 35.8309i 1.78709i
\(403\) 2.63664i 0.131341i
\(404\) 1.40597 0.0699497
\(405\) 0 0
\(406\) −30.3938 −1.50842
\(407\) 1.47153 0.0729411
\(408\) 23.3561 + 27.7888i 1.15630 + 1.37575i
\(409\) −35.9438 −1.77731 −0.888654 0.458578i \(-0.848359\pi\)
−0.888654 + 0.458578i \(0.848359\pi\)
\(410\) 0 0
\(411\) 17.6919i 0.872678i
\(412\) 1.50071 0.0739345
\(413\) 16.6791i 0.820727i
\(414\) 18.3704i 0.902856i
\(415\) 0 0
\(416\) −2.50071 −0.122607
\(417\) 16.1758 0.792134
\(418\) 24.4381i 1.19531i
\(419\) 26.8032i 1.30942i 0.755879 + 0.654711i \(0.227210\pi\)
−0.755879 + 0.654711i \(0.772790\pi\)
\(420\) 0 0
\(421\) 7.24965 0.353326 0.176663 0.984271i \(-0.443470\pi\)
0.176663 + 0.984271i \(0.443470\pi\)
\(422\) 20.1374i 0.980274i
\(423\) −23.7889 −1.15666
\(424\) −15.3307 −0.744527
\(425\) 0 0
\(426\) 42.9184 2.07941
\(427\) 26.4142 1.27827
\(428\) 2.05480i 0.0993223i
\(429\) 21.5306 1.03951
\(430\) 0 0
\(431\) 17.6517i 0.850252i −0.905134 0.425126i \(-0.860230\pi\)
0.905134 0.425126i \(-0.139770\pi\)
\(432\) 69.1730i 3.32809i
\(433\) 3.37073 0.161987 0.0809935 0.996715i \(-0.474191\pi\)
0.0809935 + 0.996715i \(0.474191\pi\)
\(434\) 3.79384 0.182110
\(435\) 0 0
\(436\) 2.81999i 0.135053i
\(437\) 9.13531i 0.437001i
\(438\) 12.9321 0.617918
\(439\) 0.945399i 0.0451214i 0.999745 + 0.0225607i \(0.00718191\pi\)
−0.999745 + 0.0225607i \(0.992818\pi\)
\(440\) 0 0
\(441\) −16.1563 −0.769349
\(442\) 10.6932 8.98752i 0.508625 0.427493i
\(443\) 5.71767 0.271655 0.135827 0.990733i \(-0.456631\pi\)
0.135827 + 0.990733i \(0.456631\pi\)
\(444\) −0.328379 −0.0155842
\(445\) 0 0
\(446\) −27.8641 −1.31941
\(447\) 55.0872i 2.60553i
\(448\) 15.7338i 0.743350i
\(449\) 20.6759i 0.975756i −0.872912 0.487878i \(-0.837771\pi\)
0.872912 0.487878i \(-0.162229\pi\)
\(450\) 0 0
\(451\) 20.2981 0.955798
\(452\) 0.781402i 0.0367541i
\(453\) 5.96797i 0.280400i
\(454\) 5.02257i 0.235721i
\(455\) 0 0
\(456\) 50.7864i 2.37829i
\(457\) −15.0689 −0.704893 −0.352446 0.935832i \(-0.614650\pi\)
−0.352446 + 0.935832i \(0.614650\pi\)
\(458\) 29.8930 1.39681
\(459\) 42.1827 + 50.1884i 1.96892 + 2.34259i
\(460\) 0 0
\(461\) −22.3127 −1.03920 −0.519602 0.854409i \(-0.673920\pi\)
−0.519602 + 0.854409i \(0.673920\pi\)
\(462\) 30.9802i 1.44133i
\(463\) 19.5574 0.908908 0.454454 0.890770i \(-0.349834\pi\)
0.454454 + 0.890770i \(0.349834\pi\)
\(464\) 40.1750i 1.86508i
\(465\) 0 0
\(466\) 0.514485i 0.0238330i
\(467\) −16.1260 −0.746223 −0.373111 0.927787i \(-0.621709\pi\)
−0.373111 + 0.927787i \(0.621709\pi\)
\(468\) −3.47390 −0.160581
\(469\) 16.3318i 0.754133i
\(470\) 0 0
\(471\) 14.2174i 0.655105i
\(472\) 20.0811 0.924308
\(473\) 22.5798i 1.03822i
\(474\) 55.8505 2.56530
\(475\) 0 0
\(476\) −1.14315 1.36011i −0.0523963 0.0623404i
\(477\) −44.8808 −2.05495
\(478\) 5.84955 0.267552
\(479\) 5.44569i 0.248820i −0.992231 0.124410i \(-0.960296\pi\)
0.992231 0.124410i \(-0.0397038\pi\)
\(480\) 0 0
\(481\) 1.17676i 0.0536556i
\(482\) 12.5502i 0.571646i
\(483\) 11.5808i 0.526945i
\(484\) 0.546753 0.0248524
\(485\) 0 0
\(486\) 69.9189i 3.17158i
\(487\) 1.41653i 0.0641890i 0.999485 + 0.0320945i \(0.0102177\pi\)
−0.999485 + 0.0320945i \(0.989782\pi\)
\(488\) 31.8018i 1.43960i
\(489\) −15.3611 −0.694651
\(490\) 0 0
\(491\) 21.1636 0.955101 0.477550 0.878604i \(-0.341525\pi\)
0.477550 + 0.878604i \(0.341525\pi\)
\(492\) −4.52961 −0.204211
\(493\) −24.4993 29.1489i −1.10339 1.31280i
\(494\) 19.5428 0.879271
\(495\) 0 0
\(496\) 5.01478i 0.225170i
\(497\) 19.5623 0.877489
\(498\) 15.0553i 0.674643i
\(499\) 34.6782i 1.55241i 0.630481 + 0.776205i \(0.282858\pi\)
−0.630481 + 0.776205i \(0.717142\pi\)
\(500\) 0 0
\(501\) −26.8749 −1.20068
\(502\) 13.6629 0.609806
\(503\) 25.6071i 1.14176i 0.821032 + 0.570882i \(0.193399\pi\)
−0.821032 + 0.570882i \(0.806601\pi\)
\(504\) 46.5499i 2.07350i
\(505\) 0 0
\(506\) 6.70923 0.298262
\(507\) 25.5669i 1.13547i
\(508\) −0.594984 −0.0263981
\(509\) 39.3390 1.74367 0.871835 0.489799i \(-0.162930\pi\)
0.871835 + 0.489799i \(0.162930\pi\)
\(510\) 0 0
\(511\) 5.89446 0.260756
\(512\) −18.5188 −0.818423
\(513\) 91.7235i 4.04969i
\(514\) −10.0435 −0.442999
\(515\) 0 0
\(516\) 5.03878i 0.221820i
\(517\) 8.68819i 0.382106i
\(518\) −1.69323 −0.0743962
\(519\) −77.1060 −3.38458
\(520\) 0 0
\(521\) 5.72041i 0.250616i −0.992118 0.125308i \(-0.960008\pi\)
0.992118 0.125308i \(-0.0399918\pi\)
\(522\) 107.126i 4.68878i
\(523\) 21.6873 0.948322 0.474161 0.880438i \(-0.342752\pi\)
0.474161 + 0.880438i \(0.342752\pi\)
\(524\) 1.44053i 0.0629300i
\(525\) 0 0
\(526\) −24.8481 −1.08343
\(527\) 3.05808 + 3.63846i 0.133212 + 0.158494i
\(528\) −40.9502 −1.78213
\(529\) 20.4920 0.890956
\(530\) 0 0
\(531\) 58.7875 2.55116
\(532\) 2.48571i 0.107769i
\(533\) 16.2320i 0.703087i
\(534\) 10.5116i 0.454882i
\(535\) 0 0
\(536\) −19.6629 −0.849308
\(537\) 47.8187i 2.06353i
\(538\) 1.52410i 0.0657088i
\(539\) 5.90061i 0.254157i
\(540\) 0 0
\(541\) 35.4836i 1.52556i 0.646659 + 0.762780i \(0.276166\pi\)
−0.646659 + 0.762780i \(0.723834\pi\)
\(542\) 10.2677 0.441037
\(543\) −30.9438 −1.32793
\(544\) −3.45088 + 2.90042i −0.147955 + 0.124354i
\(545\) 0 0
\(546\) −24.7743 −1.06024
\(547\) 23.5121i 1.00530i −0.864489 0.502652i \(-0.832358\pi\)
0.864489 0.502652i \(-0.167642\pi\)
\(548\) 1.04254 0.0445349
\(549\) 93.0998i 3.97340i
\(550\) 0 0
\(551\) 53.2721i 2.26947i
\(552\) 13.9429 0.593448
\(553\) 25.4568 1.08253
\(554\) 35.3165i 1.50045i
\(555\) 0 0
\(556\) 0.953198i 0.0404246i
\(557\) −22.2120 −0.941154 −0.470577 0.882359i \(-0.655954\pi\)
−0.470577 + 0.882359i \(0.655954\pi\)
\(558\) 13.3718i 0.566074i
\(559\) −18.0567 −0.763716
\(560\) 0 0
\(561\) 29.7113 24.9720i 1.25441 1.05432i
\(562\) −14.4436 −0.609266
\(563\) −6.85685 −0.288982 −0.144491 0.989506i \(-0.546154\pi\)
−0.144491 + 0.989506i \(0.546154\pi\)
\(564\) 1.93881i 0.0816386i
\(565\) 0 0
\(566\) 44.7589i 1.88136i
\(567\) 64.0747i 2.69088i
\(568\) 23.5523i 0.988233i
\(569\) 26.7513 1.12147 0.560737 0.827994i \(-0.310518\pi\)
0.560737 + 0.827994i \(0.310518\pi\)
\(570\) 0 0
\(571\) 34.0639i 1.42553i 0.701402 + 0.712766i \(0.252558\pi\)
−0.701402 + 0.712766i \(0.747442\pi\)
\(572\) 1.26874i 0.0530486i
\(573\) 20.4283i 0.853406i
\(574\) −23.3561 −0.974867
\(575\) 0 0
\(576\) −55.4553 −2.31064
\(577\) −29.0797 −1.21060 −0.605302 0.795996i \(-0.706947\pi\)
−0.605302 + 0.795996i \(0.706947\pi\)
\(578\) 4.33216 24.8048i 0.180194 1.03175i
\(579\) 46.3839 1.92765
\(580\) 0 0
\(581\) 6.86222i 0.284693i
\(582\) −42.5111 −1.76214
\(583\) 16.3914i 0.678861i
\(584\) 7.09672i 0.293664i
\(585\) 0 0
\(586\) 6.31265 0.260773
\(587\) −35.2506 −1.45495 −0.727474 0.686135i \(-0.759306\pi\)
−0.727474 + 0.686135i \(0.759306\pi\)
\(588\) 1.31675i 0.0543018i
\(589\) 6.64960i 0.273992i
\(590\) 0 0
\(591\) −83.0005 −3.41418
\(592\) 2.23814i 0.0919871i
\(593\) −29.0811 −1.19422 −0.597109 0.802160i \(-0.703684\pi\)
−0.597109 + 0.802160i \(0.703684\pi\)
\(594\) −67.3644 −2.76399
\(595\) 0 0
\(596\) −3.24614 −0.132967
\(597\) 41.5002 1.69849
\(598\) 5.36526i 0.219402i
\(599\) −30.2823 −1.23730 −0.618651 0.785666i \(-0.712321\pi\)
−0.618651 + 0.785666i \(0.712321\pi\)
\(600\) 0 0
\(601\) 6.16753i 0.251579i −0.992057 0.125789i \(-0.959854\pi\)
0.992057 0.125789i \(-0.0401463\pi\)
\(602\) 25.9816i 1.05893i
\(603\) −57.5633 −2.34416
\(604\) −0.351676 −0.0143095
\(605\) 0 0
\(606\) 35.3405i 1.43561i
\(607\) 10.0405i 0.407531i 0.979020 + 0.203766i \(0.0653180\pi\)
−0.979020 + 0.203766i \(0.934682\pi\)
\(608\) −6.30677 −0.255773
\(609\) 67.5329i 2.73657i
\(610\) 0 0
\(611\) 6.94780 0.281078
\(612\) −4.79384 + 4.02916i −0.193780 + 0.162869i
\(613\) 28.0494 1.13290 0.566452 0.824095i \(-0.308316\pi\)
0.566452 + 0.824095i \(0.308316\pi\)
\(614\) −10.3127 −0.416185
\(615\) 0 0
\(616\) −17.0010 −0.684988
\(617\) 24.4575i 0.984622i 0.870419 + 0.492311i \(0.163848\pi\)
−0.870419 + 0.492311i \(0.836152\pi\)
\(618\) 37.7217i 1.51739i
\(619\) 35.6042i 1.43106i −0.698584 0.715528i \(-0.746186\pi\)
0.698584 0.715528i \(-0.253814\pi\)
\(620\) 0 0
\(621\) 25.1817 1.01051
\(622\) 21.3544i 0.856233i
\(623\) 4.79121i 0.191956i
\(624\) 32.7472i 1.31094i
\(625\) 0 0
\(626\) 16.4796i 0.658657i
\(627\) 54.3000 2.16853
\(628\) −0.837795 −0.0334317
\(629\) −1.36485 1.62388i −0.0544201 0.0647484i
\(630\) 0 0
\(631\) 8.67021 0.345155 0.172578 0.984996i \(-0.444790\pi\)
0.172578 + 0.984996i \(0.444790\pi\)
\(632\) 30.6490i 1.21915i
\(633\) −44.7440 −1.77841
\(634\) 6.06775i 0.240981i
\(635\) 0 0
\(636\) 3.65781i 0.145042i
\(637\) 4.71862 0.186959
\(638\) 39.1246 1.54896
\(639\) 68.9495i 2.72760i
\(640\) 0 0
\(641\) 40.0079i 1.58022i 0.612967 + 0.790108i \(0.289976\pi\)
−0.612967 + 0.790108i \(0.710024\pi\)
\(642\) 51.6493 2.03843
\(643\) 20.5923i 0.812082i 0.913855 + 0.406041i \(0.133091\pi\)
−0.913855 + 0.406041i \(0.866909\pi\)
\(644\) −0.682425 −0.0268913
\(645\) 0 0
\(646\) 26.9683 22.6665i 1.06105 0.891800i
\(647\) 34.0205 1.33748 0.668741 0.743495i \(-0.266833\pi\)
0.668741 + 0.743495i \(0.266833\pi\)
\(648\) −77.1436 −3.03049
\(649\) 21.4704i 0.842786i
\(650\) 0 0
\(651\) 8.42968i 0.330385i
\(652\) 0.905186i 0.0354498i
\(653\) 43.7895i 1.71362i −0.515636 0.856808i \(-0.672444\pi\)
0.515636 0.856808i \(-0.327556\pi\)
\(654\) 70.8832 2.77175
\(655\) 0 0
\(656\) 30.8726i 1.20537i
\(657\) 20.7757i 0.810536i
\(658\) 9.99714i 0.389729i
\(659\) −21.8192 −0.849957 −0.424978 0.905203i \(-0.639718\pi\)
−0.424978 + 0.905203i \(0.639718\pi\)
\(660\) 0 0
\(661\) −36.1002 −1.40413 −0.702067 0.712111i \(-0.747739\pi\)
−0.702067 + 0.712111i \(0.747739\pi\)
\(662\) 45.1608 1.75522
\(663\) −19.9697 23.7597i −0.775558 0.922749i
\(664\) −8.26187 −0.320623
\(665\) 0 0
\(666\) 5.96797i 0.231254i
\(667\) −14.6253 −0.566294
\(668\) 1.58367i 0.0612739i
\(669\) 61.9123i 2.39367i
\(670\) 0 0
\(671\) −34.0019 −1.31263
\(672\) 7.99508 0.308417
\(673\) 15.8847i 0.612310i −0.951982 0.306155i \(-0.900957\pi\)
0.951982 0.306155i \(-0.0990425\pi\)
\(674\) 40.8891i 1.57499i
\(675\) 0 0
\(676\) −1.50659 −0.0579457
\(677\) 22.3322i 0.858296i 0.903234 + 0.429148i \(0.141186\pi\)
−0.903234 + 0.429148i \(0.858814\pi\)
\(678\) 19.6413 0.754320
\(679\) −19.3766 −0.743606
\(680\) 0 0
\(681\) 11.1598 0.427646
\(682\) −4.88366 −0.187005
\(683\) 35.6476i 1.36402i −0.731344 0.682009i \(-0.761107\pi\)
0.731344 0.682009i \(-0.238893\pi\)
\(684\) −8.76116 −0.334991
\(685\) 0 0
\(686\) 29.8274i 1.13882i
\(687\) 66.4204i 2.53410i
\(688\) 34.3430 1.30931
\(689\) 13.1079 0.499372
\(690\) 0 0
\(691\) 8.80417i 0.334926i −0.985878 0.167463i \(-0.946442\pi\)
0.985878 0.167463i \(-0.0535575\pi\)
\(692\) 4.54365i 0.172724i
\(693\) −49.7704 −1.89062
\(694\) 2.62884i 0.0997895i
\(695\) 0 0
\(696\) 81.3073 3.08194
\(697\) −18.8265 22.3996i −0.713106 0.848444i
\(698\) 16.4885 0.624098
\(699\) 1.14315 0.0432380
\(700\) 0 0
\(701\) 34.8832 1.31752 0.658760 0.752353i \(-0.271081\pi\)
0.658760 + 0.752353i \(0.271081\pi\)
\(702\) 53.8702i 2.03320i
\(703\) 2.96778i 0.111932i
\(704\) 20.2534i 0.763328i
\(705\) 0 0
\(706\) −40.6204 −1.52877
\(707\) 16.1082i 0.605813i
\(708\) 4.79121i 0.180065i
\(709\) 41.3038i 1.55120i −0.631227 0.775598i \(-0.717448\pi\)
0.631227 0.775598i \(-0.282552\pi\)
\(710\) 0 0
\(711\) 89.7252i 3.36496i
\(712\) −5.76845 −0.216182
\(713\) 1.82558 0.0683684
\(714\) −34.1876 + 28.7342i −1.27944 + 1.07535i
\(715\) 0 0
\(716\) −2.81782 −0.105307
\(717\) 12.9973i 0.485394i
\(718\) 2.45439 0.0915969
\(719\) 8.32990i 0.310653i 0.987863 + 0.155326i \(0.0496429\pi\)
−0.987863 + 0.155326i \(0.950357\pi\)
\(720\) 0 0
\(721\) 17.1936i 0.640324i
\(722\) 21.1441 0.786902
\(723\) 27.8858 1.03708
\(724\) 1.82344i 0.0677674i
\(725\) 0 0
\(726\) 13.7432i 0.510057i
\(727\) −28.8470 −1.06988 −0.534938 0.844891i \(-0.679665\pi\)
−0.534938 + 0.844891i \(0.679665\pi\)
\(728\) 13.5954i 0.503879i
\(729\) −68.8432 −2.54975
\(730\) 0 0
\(731\) −24.9175 + 20.9428i −0.921606 + 0.774598i
\(732\) 7.58769 0.280449
\(733\) 14.1128 0.521269 0.260635 0.965437i \(-0.416068\pi\)
0.260635 + 0.965437i \(0.416068\pi\)
\(734\) 30.8564i 1.13893i
\(735\) 0 0
\(736\) 1.73146i 0.0638223i
\(737\) 21.0232i 0.774401i
\(738\) 82.3213i 3.03029i
\(739\) −30.2981 −1.11453 −0.557266 0.830334i \(-0.688150\pi\)
−0.557266 + 0.830334i \(0.688150\pi\)
\(740\) 0 0
\(741\) 43.4228i 1.59518i
\(742\) 18.8609i 0.692404i
\(743\) 9.45865i 0.347004i −0.984834 0.173502i \(-0.944492\pi\)
0.984834 0.173502i \(-0.0555083\pi\)
\(744\) −10.1490 −0.372082
\(745\) 0 0
\(746\) 54.3317 1.98923
\(747\) −24.1866 −0.884943
\(748\) 1.47153 + 1.75081i 0.0538045 + 0.0640159i
\(749\) 23.5418 0.860200
\(750\) 0 0
\(751\) 42.6879i 1.55770i −0.627208 0.778852i \(-0.715802\pi\)
0.627208 0.778852i \(-0.284198\pi\)
\(752\) −13.2144 −0.481880
\(753\) 30.3581i 1.10631i
\(754\) 31.2873i 1.13942i
\(755\) 0 0
\(756\) 6.85192 0.249202
\(757\) 36.3938 1.32275 0.661377 0.750054i \(-0.269972\pi\)
0.661377 + 0.750054i \(0.269972\pi\)
\(758\) 26.1054i 0.948190i
\(759\) 14.9075i 0.541107i
\(760\) 0 0
\(761\) −0.555002 −0.0201188 −0.0100594 0.999949i \(-0.503202\pi\)
−0.0100594 + 0.999949i \(0.503202\pi\)
\(762\) 14.9555i 0.541780i
\(763\) 32.3087 1.16965
\(764\) −1.20379 −0.0435514
\(765\) 0 0
\(766\) −17.0435 −0.615806
\(767\) −17.1695 −0.619955
\(768\) 15.1791i 0.547727i
\(769\) −6.56959 −0.236906 −0.118453 0.992960i \(-0.537793\pi\)
−0.118453 + 0.992960i \(0.537793\pi\)
\(770\) 0 0
\(771\) 22.3160i 0.803691i
\(772\) 2.73328i 0.0983728i
\(773\) 28.9995 1.04304 0.521520 0.853239i \(-0.325365\pi\)
0.521520 + 0.853239i \(0.325365\pi\)
\(774\) 91.5750 3.29160
\(775\) 0 0
\(776\) 23.3287i 0.837453i
\(777\) 3.76225i 0.134970i
\(778\) −15.7294 −0.563927
\(779\) 40.9371i 1.46672i
\(780\) 0 0
\(781\) −25.1817 −0.901073
\(782\) −6.22284 7.40385i −0.222528 0.264761i
\(783\) 146.846 5.24785
\(784\) −8.97461 −0.320522
\(785\) 0 0
\(786\) 36.2092 1.29154
\(787\) 5.08214i 0.181159i −0.995889 0.0905793i \(-0.971128\pi\)
0.995889 0.0905793i \(-0.0288719\pi\)
\(788\) 4.89099i 0.174234i
\(789\) 55.2110i 1.96556i
\(790\) 0 0
\(791\) 8.95254 0.318316