Properties

Label 425.2.d.a.101.4
Level $425$
Weight $2$
Character 425.101
Analytic conductor $3.394$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(101,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.93924352.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} + 73x^{2} + 67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.4
Root \(-1.12261i\) of defining polynomial
Character \(\chi\) \(=\) 425.101
Dual form 425.2.d.a.101.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.311108 q^{2} +1.12261i q^{3} -1.90321 q^{4} -0.349253i q^{6} -3.60843i q^{7} +1.21432 q^{8} +1.73975 q^{9} +5.74499i q^{11} -2.13656i q^{12} +2.59210 q^{13} +1.12261i q^{14} +3.42864 q^{16} +(-2.52543 + 3.25917i) q^{17} -0.541249 q^{18} +4.28100 q^{19} +4.05086 q^{21} -1.78731i q^{22} -1.47186i q^{23} +1.36321i q^{24} -0.806424 q^{26} +5.32089i q^{27} +6.86760i q^{28} +5.50439i q^{29} +8.33946i q^{31} -3.49532 q^{32} -6.44938 q^{33} +(0.785680 - 1.01395i) q^{34} -3.31111 q^{36} -6.20290i q^{37} -1.33185 q^{38} +2.90992i q^{39} -3.95768i q^{41} -1.26025 q^{42} +9.76049 q^{43} -10.9339i q^{44} +0.457908i q^{46} +6.62222 q^{47} +3.84902i q^{48} -6.02074 q^{49} +(-3.65878 - 2.83507i) q^{51} -4.93332 q^{52} +0.658781 q^{53} -1.65537i q^{54} -4.38178i q^{56} +4.80589i q^{57} -1.71246i q^{58} +5.95407 q^{59} -8.76357i q^{61} -2.59447i q^{62} -6.27775i q^{63} -5.76986 q^{64} +2.00645 q^{66} -0.428639 q^{67} +(4.80642 - 6.20290i) q^{68} +1.65233 q^{69} +1.36321i q^{71} +2.11261 q^{72} -3.25917i q^{73} +1.92977i q^{74} -8.14764 q^{76} +20.7304 q^{77} -0.905299i q^{78} -1.89597i q^{79} -0.754037 q^{81} +1.23127i q^{82} -16.6637 q^{83} -7.70964 q^{84} -3.03657 q^{86} -6.17929 q^{87} +6.97626i q^{88} -3.52543 q^{89} -9.35342i q^{91} +2.80127i q^{92} -9.36196 q^{93} -2.06022 q^{94} -3.92388i q^{96} +11.7073i q^{97} +1.87310 q^{98} +9.99483i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} - 16 q^{9} + 2 q^{13} - 6 q^{16} - 2 q^{17} - 16 q^{18} + 12 q^{19} - 2 q^{21} + 22 q^{26} + 6 q^{32} + 28 q^{33} + 18 q^{34} - 20 q^{36} + 32 q^{38} - 34 q^{42} - 8 q^{43}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.311108 −0.219986 −0.109993 0.993932i \(-0.535083\pi\)
−0.109993 + 0.993932i \(0.535083\pi\)
\(3\) 1.12261i 0.648139i 0.946033 + 0.324070i \(0.105051\pi\)
−0.946033 + 0.324070i \(0.894949\pi\)
\(4\) −1.90321 −0.951606
\(5\) 0 0
\(6\) 0.349253i 0.142582i
\(7\) 3.60843i 1.36386i −0.731419 0.681929i \(-0.761141\pi\)
0.731419 0.681929i \(-0.238859\pi\)
\(8\) 1.21432 0.429327
\(9\) 1.73975 0.579916
\(10\) 0 0
\(11\) 5.74499i 1.73218i 0.499888 + 0.866090i \(0.333374\pi\)
−0.499888 + 0.866090i \(0.666626\pi\)
\(12\) 2.13656i 0.616773i
\(13\) 2.59210 0.718920 0.359460 0.933160i \(-0.382961\pi\)
0.359460 + 0.933160i \(0.382961\pi\)
\(14\) 1.12261i 0.300030i
\(15\) 0 0
\(16\) 3.42864 0.857160
\(17\) −2.52543 + 3.25917i −0.612506 + 0.790466i
\(18\) −0.541249 −0.127574
\(19\) 4.28100 0.982128 0.491064 0.871124i \(-0.336608\pi\)
0.491064 + 0.871124i \(0.336608\pi\)
\(20\) 0 0
\(21\) 4.05086 0.883969
\(22\) 1.78731i 0.381056i
\(23\) 1.47186i 0.306905i −0.988156 0.153452i \(-0.950961\pi\)
0.988156 0.153452i \(-0.0490391\pi\)
\(24\) 1.36321i 0.278264i
\(25\) 0 0
\(26\) −0.806424 −0.158153
\(27\) 5.32089i 1.02401i
\(28\) 6.86760i 1.29785i
\(29\) 5.50439i 1.02214i 0.859539 + 0.511070i \(0.170751\pi\)
−0.859539 + 0.511070i \(0.829249\pi\)
\(30\) 0 0
\(31\) 8.33946i 1.49781i 0.662676 + 0.748906i \(0.269421\pi\)
−0.662676 + 0.748906i \(0.730579\pi\)
\(32\) −3.49532 −0.617890
\(33\) −6.44938 −1.12269
\(34\) 0.785680 1.01395i 0.134743 0.173892i
\(35\) 0 0
\(36\) −3.31111 −0.551851
\(37\) 6.20290i 1.01975i −0.860248 0.509875i \(-0.829692\pi\)
0.860248 0.509875i \(-0.170308\pi\)
\(38\) −1.33185 −0.216055
\(39\) 2.90992i 0.465960i
\(40\) 0 0
\(41\) 3.95768i 0.618086i −0.951048 0.309043i \(-0.899991\pi\)
0.951048 0.309043i \(-0.100009\pi\)
\(42\) −1.26025 −0.194461
\(43\) 9.76049 1.48846 0.744230 0.667923i \(-0.232816\pi\)
0.744230 + 0.667923i \(0.232816\pi\)
\(44\) 10.9339i 1.64835i
\(45\) 0 0
\(46\) 0.457908i 0.0675148i
\(47\) 6.62222 0.965949 0.482975 0.875634i \(-0.339556\pi\)
0.482975 + 0.875634i \(0.339556\pi\)
\(48\) 3.84902i 0.555559i
\(49\) −6.02074 −0.860106
\(50\) 0 0
\(51\) −3.65878 2.83507i −0.512332 0.396989i
\(52\) −4.93332 −0.684129
\(53\) 0.658781 0.0904905 0.0452452 0.998976i \(-0.485593\pi\)
0.0452452 + 0.998976i \(0.485593\pi\)
\(54\) 1.65537i 0.225267i
\(55\) 0 0
\(56\) 4.38178i 0.585540i
\(57\) 4.80589i 0.636555i
\(58\) 1.71246i 0.224857i
\(59\) 5.95407 0.775154 0.387577 0.921837i \(-0.373312\pi\)
0.387577 + 0.921837i \(0.373312\pi\)
\(60\) 0 0
\(61\) 8.76357i 1.12206i −0.827796 0.561030i \(-0.810405\pi\)
0.827796 0.561030i \(-0.189595\pi\)
\(62\) 2.59447i 0.329498i
\(63\) 6.27775i 0.790922i
\(64\) −5.76986 −0.721232
\(65\) 0 0
\(66\) 2.00645 0.246977
\(67\) −0.428639 −0.0523666 −0.0261833 0.999657i \(-0.508335\pi\)
−0.0261833 + 0.999657i \(0.508335\pi\)
\(68\) 4.80642 6.20290i 0.582865 0.752212i
\(69\) 1.65233 0.198917
\(70\) 0 0
\(71\) 1.36321i 0.161783i 0.996723 + 0.0808915i \(0.0257767\pi\)
−0.996723 + 0.0808915i \(0.974223\pi\)
\(72\) 2.11261 0.248973
\(73\) 3.25917i 0.381457i −0.981643 0.190729i \(-0.938915\pi\)
0.981643 0.190729i \(-0.0610851\pi\)
\(74\) 1.92977i 0.224331i
\(75\) 0 0
\(76\) −8.14764 −0.934599
\(77\) 20.7304 2.36245
\(78\) 0.905299i 0.102505i
\(79\) 1.89597i 0.213313i −0.994296 0.106656i \(-0.965985\pi\)
0.994296 0.106656i \(-0.0340145\pi\)
\(80\) 0 0
\(81\) −0.754037 −0.0837819
\(82\) 1.23127i 0.135970i
\(83\) −16.6637 −1.82908 −0.914540 0.404497i \(-0.867447\pi\)
−0.914540 + 0.404497i \(0.867447\pi\)
\(84\) −7.70964 −0.841190
\(85\) 0 0
\(86\) −3.03657 −0.327441
\(87\) −6.17929 −0.662489
\(88\) 6.97626i 0.743671i
\(89\) −3.52543 −0.373695 −0.186847 0.982389i \(-0.559827\pi\)
−0.186847 + 0.982389i \(0.559827\pi\)
\(90\) 0 0
\(91\) 9.35342i 0.980505i
\(92\) 2.80127i 0.292052i
\(93\) −9.36196 −0.970790
\(94\) −2.06022 −0.212496
\(95\) 0 0
\(96\) 3.92388i 0.400479i
\(97\) 11.7073i 1.18870i 0.804208 + 0.594348i \(0.202590\pi\)
−0.804208 + 0.594348i \(0.797410\pi\)
\(98\) 1.87310 0.189212
\(99\) 9.99483i 1.00452i
\(100\) 0 0
\(101\) 3.96989 0.395019 0.197509 0.980301i \(-0.436715\pi\)
0.197509 + 0.980301i \(0.436715\pi\)
\(102\) 1.13828 + 0.882012i 0.112706 + 0.0873322i
\(103\) −4.23506 −0.417293 −0.208647 0.977991i \(-0.566906\pi\)
−0.208647 + 0.977991i \(0.566906\pi\)
\(104\) 3.14764 0.308652
\(105\) 0 0
\(106\) −0.204952 −0.0199067
\(107\) 11.8392i 1.14454i 0.820065 + 0.572271i \(0.193937\pi\)
−0.820065 + 0.572271i \(0.806063\pi\)
\(108\) 10.1268i 0.974449i
\(109\) 12.0227i 1.15157i −0.817601 0.575785i \(-0.804697\pi\)
0.817601 0.575785i \(-0.195303\pi\)
\(110\) 0 0
\(111\) 6.96343 0.660940
\(112\) 12.3720i 1.16904i
\(113\) 10.7915i 1.01518i −0.861600 0.507588i \(-0.830537\pi\)
0.861600 0.507588i \(-0.169463\pi\)
\(114\) 1.49515i 0.140034i
\(115\) 0 0
\(116\) 10.4760i 0.972675i
\(117\) 4.50961 0.416913
\(118\) −1.85236 −0.170523
\(119\) 11.7605 + 9.11282i 1.07808 + 0.835371i
\(120\) 0 0
\(121\) −22.0049 −2.00045
\(122\) 2.72641i 0.246838i
\(123\) 4.44293 0.400605
\(124\) 15.8718i 1.42533i
\(125\) 0 0
\(126\) 1.95306i 0.173992i
\(127\) −17.1383 −1.52078 −0.760388 0.649469i \(-0.774991\pi\)
−0.760388 + 0.649469i \(0.774991\pi\)
\(128\) 8.78568 0.776552
\(129\) 10.9572i 0.964730i
\(130\) 0 0
\(131\) 8.89551i 0.777204i 0.921406 + 0.388602i \(0.127042\pi\)
−0.921406 + 0.388602i \(0.872958\pi\)
\(132\) 12.2745 1.06836
\(133\) 15.4477i 1.33948i
\(134\) 0.133353 0.0115200
\(135\) 0 0
\(136\) −3.06668 + 3.95768i −0.262965 + 0.339368i
\(137\) −14.0716 −1.20222 −0.601109 0.799167i \(-0.705274\pi\)
−0.601109 + 0.799167i \(0.705274\pi\)
\(138\) −0.514052 −0.0437590
\(139\) 16.7876i 1.42390i −0.702228 0.711952i \(-0.747811\pi\)
0.702228 0.711952i \(-0.252189\pi\)
\(140\) 0 0
\(141\) 7.43416i 0.626070i
\(142\) 0.424104i 0.0355901i
\(143\) 14.8916i 1.24530i
\(144\) 5.96497 0.497081
\(145\) 0 0
\(146\) 1.01395i 0.0839155i
\(147\) 6.75895i 0.557468i
\(148\) 11.8054i 0.970400i
\(149\) −4.76494 −0.390359 −0.195179 0.980768i \(-0.562529\pi\)
−0.195179 + 0.980768i \(0.562529\pi\)
\(150\) 0 0
\(151\) 2.99063 0.243374 0.121687 0.992569i \(-0.461170\pi\)
0.121687 + 0.992569i \(0.461170\pi\)
\(152\) 5.19850 0.421654
\(153\) −4.39361 + 5.67014i −0.355202 + 0.458404i
\(154\) −6.44938 −0.519706
\(155\) 0 0
\(156\) 5.53820i 0.443411i
\(157\) 13.9447 1.11291 0.556454 0.830878i \(-0.312162\pi\)
0.556454 + 0.830878i \(0.312162\pi\)
\(158\) 0.589850i 0.0469260i
\(159\) 0.739554i 0.0586504i
\(160\) 0 0
\(161\) −5.31111 −0.418574
\(162\) 0.234587 0.0184309
\(163\) 8.65491i 0.677905i 0.940803 + 0.338953i \(0.110073\pi\)
−0.940803 + 0.338953i \(0.889927\pi\)
\(164\) 7.53230i 0.588174i
\(165\) 0 0
\(166\) 5.18421 0.402373
\(167\) 0.773357i 0.0598442i 0.999552 + 0.0299221i \(0.00952592\pi\)
−0.999552 + 0.0299221i \(0.990474\pi\)
\(168\) 4.91903 0.379512
\(169\) −6.28100 −0.483154
\(170\) 0 0
\(171\) 7.44785 0.569551
\(172\) −18.5763 −1.41643
\(173\) 2.41097i 0.183302i −0.995791 0.0916511i \(-0.970786\pi\)
0.995791 0.0916511i \(-0.0292145\pi\)
\(174\) 1.92242 0.145739
\(175\) 0 0
\(176\) 19.6975i 1.48476i
\(177\) 6.68409i 0.502407i
\(178\) 1.09679 0.0822077
\(179\) −18.4558 −1.37945 −0.689727 0.724070i \(-0.742269\pi\)
−0.689727 + 0.724070i \(0.742269\pi\)
\(180\) 0 0
\(181\) 20.6366i 1.53391i −0.641703 0.766953i \(-0.721772\pi\)
0.641703 0.766953i \(-0.278228\pi\)
\(182\) 2.90992i 0.215698i
\(183\) 9.83807 0.727251
\(184\) 1.78731i 0.131762i
\(185\) 0 0
\(186\) 2.91258 0.213561
\(187\) −18.7239 14.5086i −1.36923 1.06097i
\(188\) −12.6035 −0.919203
\(189\) 19.2000 1.39660
\(190\) 0 0
\(191\) 22.8113 1.65057 0.825286 0.564716i \(-0.191014\pi\)
0.825286 + 0.564716i \(0.191014\pi\)
\(192\) 6.47730i 0.467459i
\(193\) 19.7208i 1.41953i 0.704437 + 0.709767i \(0.251200\pi\)
−0.704437 + 0.709767i \(0.748800\pi\)
\(194\) 3.64223i 0.261497i
\(195\) 0 0
\(196\) 11.4588 0.818482
\(197\) 12.8870i 0.918160i −0.888395 0.459080i \(-0.848179\pi\)
0.888395 0.459080i \(-0.151821\pi\)
\(198\) 3.10947i 0.220980i
\(199\) 6.44350i 0.456767i 0.973571 + 0.228384i \(0.0733441\pi\)
−0.973571 + 0.228384i \(0.926656\pi\)
\(200\) 0 0
\(201\) 0.481195i 0.0339409i
\(202\) −1.23506 −0.0868988
\(203\) 19.8622 1.39405
\(204\) 6.96343 + 5.39574i 0.487538 + 0.377777i
\(205\) 0 0
\(206\) 1.31756 0.0917988
\(207\) 2.56067i 0.177979i
\(208\) 8.88739 0.616230
\(209\) 24.5943i 1.70122i
\(210\) 0 0
\(211\) 11.3580i 0.781920i 0.920408 + 0.390960i \(0.127857\pi\)
−0.920408 + 0.390960i \(0.872143\pi\)
\(212\) −1.25380 −0.0861113
\(213\) −1.53035 −0.104858
\(214\) 3.68328i 0.251784i
\(215\) 0 0
\(216\) 6.46126i 0.439633i
\(217\) 30.0923 2.04280
\(218\) 3.74037i 0.253330i
\(219\) 3.65878 0.247237
\(220\) 0 0
\(221\) −6.54617 + 8.44812i −0.440343 + 0.568282i
\(222\) −2.16638 −0.145398
\(223\) −0.888922 −0.0595266 −0.0297633 0.999557i \(-0.509475\pi\)
−0.0297633 + 0.999557i \(0.509475\pi\)
\(224\) 12.6126i 0.842714i
\(225\) 0 0
\(226\) 3.35731i 0.223325i
\(227\) 12.9280i 0.858064i −0.903289 0.429032i \(-0.858855\pi\)
0.903289 0.429032i \(-0.141145\pi\)
\(228\) 9.14662i 0.605750i
\(229\) 2.83161 0.187118 0.0935591 0.995614i \(-0.470176\pi\)
0.0935591 + 0.995614i \(0.470176\pi\)
\(230\) 0 0
\(231\) 23.2721i 1.53119i
\(232\) 6.68409i 0.438832i
\(233\) 19.9381i 1.30619i −0.757277 0.653094i \(-0.773471\pi\)
0.757277 0.653094i \(-0.226529\pi\)
\(234\) −1.40297 −0.0917153
\(235\) 0 0
\(236\) −11.3319 −0.737641
\(237\) 2.12843 0.138256
\(238\) −3.65878 2.83507i −0.237164 0.183770i
\(239\) 27.2859 1.76498 0.882490 0.470332i \(-0.155866\pi\)
0.882490 + 0.470332i \(0.155866\pi\)
\(240\) 0 0
\(241\) 3.57462i 0.230262i −0.993350 0.115131i \(-0.963271\pi\)
0.993350 0.115131i \(-0.0367287\pi\)
\(242\) 6.84590 0.440071
\(243\) 15.1162i 0.969703i
\(244\) 16.6789i 1.06776i
\(245\) 0 0
\(246\) −1.38223 −0.0881278
\(247\) 11.0968 0.706072
\(248\) 10.1268i 0.643051i
\(249\) 18.7068i 1.18550i
\(250\) 0 0
\(251\) 17.6128 1.11171 0.555857 0.831278i \(-0.312390\pi\)
0.555857 + 0.831278i \(0.312390\pi\)
\(252\) 11.9479i 0.752646i
\(253\) 8.45584 0.531614
\(254\) 5.33185 0.334550
\(255\) 0 0
\(256\) 8.80642 0.550401
\(257\) −20.5462 −1.28163 −0.640817 0.767693i \(-0.721404\pi\)
−0.640817 + 0.767693i \(0.721404\pi\)
\(258\) 3.40888i 0.212227i
\(259\) −22.3827 −1.39079
\(260\) 0 0
\(261\) 9.57625i 0.592755i
\(262\) 2.76746i 0.170974i
\(263\) −8.38715 −0.517174 −0.258587 0.965988i \(-0.583257\pi\)
−0.258587 + 0.965988i \(0.583257\pi\)
\(264\) −7.83161 −0.482002
\(265\) 0 0
\(266\) 4.80589i 0.294668i
\(267\) 3.95768i 0.242206i
\(268\) 0.815792 0.0498324
\(269\) 12.4058i 0.756395i −0.925725 0.378197i \(-0.876544\pi\)
0.925725 0.378197i \(-0.123456\pi\)
\(270\) 0 0
\(271\) −7.13828 −0.433619 −0.216810 0.976214i \(-0.569565\pi\)
−0.216810 + 0.976214i \(0.569565\pi\)
\(272\) −8.65878 + 11.1745i −0.525016 + 0.677556i
\(273\) 10.5002 0.635503
\(274\) 4.37778 0.264472
\(275\) 0 0
\(276\) −3.14473 −0.189290
\(277\) 20.4193i 1.22688i −0.789743 0.613438i \(-0.789786\pi\)
0.789743 0.613438i \(-0.210214\pi\)
\(278\) 5.22275i 0.313240i
\(279\) 14.5086i 0.868605i
\(280\) 0 0
\(281\) 29.1432 1.73854 0.869269 0.494340i \(-0.164590\pi\)
0.869269 + 0.494340i \(0.164590\pi\)
\(282\) 2.31283i 0.137727i
\(283\) 9.16991i 0.545095i 0.962142 + 0.272547i \(0.0878661\pi\)
−0.962142 + 0.272547i \(0.912134\pi\)
\(284\) 2.59447i 0.153954i
\(285\) 0 0
\(286\) 4.63290i 0.273949i
\(287\) −14.2810 −0.842981
\(288\) −6.08097 −0.358324
\(289\) −4.24443 16.4616i −0.249672 0.968330i
\(290\) 0 0
\(291\) −13.1427 −0.770440
\(292\) 6.20290i 0.362997i
\(293\) 16.2351 0.948463 0.474231 0.880400i \(-0.342726\pi\)
0.474231 + 0.880400i \(0.342726\pi\)
\(294\) 2.10276i 0.122636i
\(295\) 0 0
\(296\) 7.53230i 0.437806i
\(297\) −30.5684 −1.77376
\(298\) 1.48241 0.0858737
\(299\) 3.81522i 0.220640i
\(300\) 0 0
\(301\) 35.2200i 2.03005i
\(302\) −0.930409 −0.0535390
\(303\) 4.45664i 0.256027i
\(304\) 14.6780 0.841841
\(305\) 0 0
\(306\) 1.36689 1.76402i 0.0781396 0.100843i
\(307\) −3.37778 −0.192780 −0.0963902 0.995344i \(-0.530730\pi\)
−0.0963902 + 0.995344i \(0.530730\pi\)
\(308\) −39.4543 −2.24812
\(309\) 4.75432i 0.270464i
\(310\) 0 0
\(311\) 7.95641i 0.451166i 0.974224 + 0.225583i \(0.0724288\pi\)
−0.974224 + 0.225583i \(0.927571\pi\)
\(312\) 3.53358i 0.200049i
\(313\) 6.83380i 0.386269i −0.981172 0.193135i \(-0.938135\pi\)
0.981172 0.193135i \(-0.0618654\pi\)
\(314\) −4.33830 −0.244825
\(315\) 0 0
\(316\) 3.60843i 0.202990i
\(317\) 27.1550i 1.52517i 0.646886 + 0.762587i \(0.276071\pi\)
−0.646886 + 0.762587i \(0.723929\pi\)
\(318\) 0.230081i 0.0129023i
\(319\) −31.6227 −1.77053
\(320\) 0 0
\(321\) −13.2908 −0.741822
\(322\) 1.65233 0.0920806
\(323\) −10.8113 + 13.9525i −0.601559 + 0.776339i
\(324\) 1.43509 0.0797274
\(325\) 0 0
\(326\) 2.69261i 0.149130i
\(327\) 13.4968 0.746377
\(328\) 4.80589i 0.265361i
\(329\) 23.8958i 1.31742i
\(330\) 0 0
\(331\) −20.3783 −1.12009 −0.560045 0.828462i \(-0.689216\pi\)
−0.560045 + 0.828462i \(0.689216\pi\)
\(332\) 31.7146 1.74056
\(333\) 10.7915i 0.591369i
\(334\) 0.240597i 0.0131649i
\(335\) 0 0
\(336\) 13.8889 0.757703
\(337\) 4.70775i 0.256447i −0.991745 0.128224i \(-0.959072\pi\)
0.991745 0.128224i \(-0.0409276\pi\)
\(338\) 1.95407 0.106287
\(339\) 12.1146 0.657976
\(340\) 0 0
\(341\) −47.9101 −2.59448
\(342\) −2.31708 −0.125294
\(343\) 3.53358i 0.190795i
\(344\) 11.8524 0.639036
\(345\) 0 0
\(346\) 0.750070i 0.0403240i
\(347\) 35.3520i 1.89779i −0.315588 0.948896i \(-0.602202\pi\)
0.315588 0.948896i \(-0.397798\pi\)
\(348\) 11.7605 0.630428
\(349\) −25.0558 −1.34121 −0.670603 0.741817i \(-0.733964\pi\)
−0.670603 + 0.741817i \(0.733964\pi\)
\(350\) 0 0
\(351\) 13.7923i 0.736178i
\(352\) 20.0806i 1.07030i
\(353\) −13.6953 −0.728930 −0.364465 0.931217i \(-0.618748\pi\)
−0.364465 + 0.931217i \(0.618748\pi\)
\(354\) 2.07947i 0.110523i
\(355\) 0 0
\(356\) 6.70964 0.355610
\(357\) −10.2301 + 13.2024i −0.541436 + 0.698747i
\(358\) 5.74176 0.303461
\(359\) 2.53480 0.133781 0.0668907 0.997760i \(-0.478692\pi\)
0.0668907 + 0.997760i \(0.478692\pi\)
\(360\) 0 0
\(361\) −0.673071 −0.0354248
\(362\) 6.42021i 0.337439i
\(363\) 24.7029i 1.29657i
\(364\) 17.8015i 0.933054i
\(365\) 0 0
\(366\) −3.06070 −0.159985
\(367\) 36.3426i 1.89707i 0.316673 + 0.948535i \(0.397434\pi\)
−0.316673 + 0.948535i \(0.602566\pi\)
\(368\) 5.04649i 0.263066i
\(369\) 6.88536i 0.358438i
\(370\) 0 0
\(371\) 2.37716i 0.123416i
\(372\) 17.8178 0.923810
\(373\) 12.7714 0.661278 0.330639 0.943757i \(-0.392736\pi\)
0.330639 + 0.943757i \(0.392736\pi\)
\(374\) 5.82516 + 4.51373i 0.301212 + 0.233399i
\(375\) 0 0
\(376\) 8.04149 0.414708
\(377\) 14.2680i 0.734837i
\(378\) −5.97328 −0.307232
\(379\) 22.1495i 1.13774i −0.822426 0.568872i \(-0.807380\pi\)
0.822426 0.568872i \(-0.192620\pi\)
\(380\) 0 0
\(381\) 19.2396i 0.985674i
\(382\) −7.09679 −0.363103
\(383\) 1.95407 0.0998482 0.0499241 0.998753i \(-0.484102\pi\)
0.0499241 + 0.998753i \(0.484102\pi\)
\(384\) 9.86289i 0.503314i
\(385\) 0 0
\(386\) 6.13529i 0.312278i
\(387\) 16.9808 0.863182
\(388\) 22.2815i 1.13117i
\(389\) −7.91258 −0.401184 −0.200592 0.979675i \(-0.564287\pi\)
−0.200592 + 0.979675i \(0.564287\pi\)
\(390\) 0 0
\(391\) 4.79706 + 3.71708i 0.242598 + 0.187981i
\(392\) −7.31111 −0.369267
\(393\) −9.98619 −0.503736
\(394\) 4.00924i 0.201983i
\(395\) 0 0
\(396\) 19.0223i 0.955906i
\(397\) 9.24476i 0.463981i 0.972718 + 0.231991i \(0.0745239\pi\)
−0.972718 + 0.231991i \(0.925476\pi\)
\(398\) 2.00462i 0.100483i
\(399\) 17.3417 0.868171
\(400\) 0 0
\(401\) 21.4848i 1.07290i −0.843932 0.536450i \(-0.819765\pi\)
0.843932 0.536450i \(-0.180235\pi\)
\(402\) 0.149703i 0.00746653i
\(403\) 21.6168i 1.07681i
\(404\) −7.55554 −0.375902
\(405\) 0 0
\(406\) −6.17929 −0.306673
\(407\) 35.6356 1.76639
\(408\) −4.44293 3.44268i −0.219958 0.170438i
\(409\) 18.1669 0.898293 0.449147 0.893458i \(-0.351728\pi\)
0.449147 + 0.893458i \(0.351728\pi\)
\(410\) 0 0
\(411\) 15.7969i 0.779204i
\(412\) 8.06022 0.397099
\(413\) 21.4848i 1.05720i
\(414\) 0.796644i 0.0391529i
\(415\) 0 0
\(416\) −9.06022 −0.444214
\(417\) 18.8459 0.922888
\(418\) 7.65147i 0.374246i
\(419\) 14.3589i 0.701476i 0.936474 + 0.350738i \(0.114069\pi\)
−0.936474 + 0.350738i \(0.885931\pi\)
\(420\) 0 0
\(421\) 3.96989 0.193481 0.0967403 0.995310i \(-0.469158\pi\)
0.0967403 + 0.995310i \(0.469158\pi\)
\(422\) 3.53358i 0.172012i
\(423\) 11.5210 0.560169
\(424\) 0.799970 0.0388500
\(425\) 0 0
\(426\) 0.476104 0.0230673
\(427\) −31.6227 −1.53033
\(428\) 22.5326i 1.08915i
\(429\) −16.7175 −0.807127
\(430\) 0 0
\(431\) 32.9337i 1.58636i −0.608985 0.793181i \(-0.708423\pi\)
0.608985 0.793181i \(-0.291577\pi\)
\(432\) 18.2434i 0.877736i
\(433\) −38.2306 −1.83725 −0.918623 0.395135i \(-0.870698\pi\)
−0.918623 + 0.395135i \(0.870698\pi\)
\(434\) −9.36196 −0.449389
\(435\) 0 0
\(436\) 22.8818i 1.09584i
\(437\) 6.30104i 0.301420i
\(438\) −1.13828 −0.0543889
\(439\) 0.664702i 0.0317245i −0.999874 0.0158622i \(-0.994951\pi\)
0.999874 0.0158622i \(-0.00504932\pi\)
\(440\) 0 0
\(441\) −10.4746 −0.498789
\(442\) 2.03657 2.62828i 0.0968695 0.125014i
\(443\) 27.5669 1.30974 0.654872 0.755740i \(-0.272723\pi\)
0.654872 + 0.755740i \(0.272723\pi\)
\(444\) −13.2529 −0.628954
\(445\) 0 0
\(446\) 0.276551 0.0130950
\(447\) 5.34916i 0.253007i
\(448\) 20.8201i 0.983658i
\(449\) 17.4756i 0.824723i −0.911020 0.412362i \(-0.864704\pi\)
0.911020 0.412362i \(-0.135296\pi\)
\(450\) 0 0
\(451\) 22.7368 1.07064
\(452\) 20.5385i 0.966048i
\(453\) 3.35731i 0.157740i
\(454\) 4.02201i 0.188762i
\(455\) 0 0
\(456\) 5.83589i 0.273290i
\(457\) 13.0350 0.609753 0.304877 0.952392i \(-0.401385\pi\)
0.304877 + 0.952392i \(0.401385\pi\)
\(458\) −0.880937 −0.0411635
\(459\) −17.3417 13.4375i −0.809441 0.627209i
\(460\) 0 0
\(461\) −10.9491 −0.509953 −0.254976 0.966947i \(-0.582068\pi\)
−0.254976 + 0.966947i \(0.582068\pi\)
\(462\) 7.24014i 0.336842i
\(463\) −17.2400 −0.801210 −0.400605 0.916251i \(-0.631200\pi\)
−0.400605 + 0.916251i \(0.631200\pi\)
\(464\) 18.8726i 0.876138i
\(465\) 0 0
\(466\) 6.20290i 0.287344i
\(467\) 0.0414872 0.00191980 0.000959899 1.00000i \(-0.499694\pi\)
0.000959899 1.00000i \(0.499694\pi\)
\(468\) −8.58274 −0.396737
\(469\) 1.54671i 0.0714206i
\(470\) 0 0
\(471\) 15.6545i 0.721319i
\(472\) 7.23014 0.332794
\(473\) 56.0739i 2.57828i
\(474\) −0.662171 −0.0304145
\(475\) 0 0
\(476\) −22.3827 17.3436i −1.02591 0.794944i
\(477\) 1.14611 0.0524769
\(478\) −8.48886 −0.388272
\(479\) 35.4606i 1.62024i 0.586266 + 0.810118i \(0.300597\pi\)
−0.586266 + 0.810118i \(0.699403\pi\)
\(480\) 0 0
\(481\) 16.0786i 0.733119i
\(482\) 1.11209i 0.0506545i
\(483\) 5.96230i 0.271294i
\(484\) 41.8800 1.90364
\(485\) 0 0
\(486\) 4.70276i 0.213321i
\(487\) 24.6691i 1.11787i −0.829213 0.558933i \(-0.811211\pi\)
0.829213 0.558933i \(-0.188789\pi\)
\(488\) 10.6418i 0.481730i
\(489\) −9.71609 −0.439377
\(490\) 0 0
\(491\) 8.58073 0.387243 0.193621 0.981076i \(-0.437977\pi\)
0.193621 + 0.981076i \(0.437977\pi\)
\(492\) −8.45584 −0.381219
\(493\) −17.9398 13.9009i −0.807967 0.626067i
\(494\) −3.45230 −0.155326
\(495\) 0 0
\(496\) 28.5930i 1.28386i
\(497\) 4.91903 0.220649
\(498\) 5.81984i 0.260793i
\(499\) 8.48917i 0.380027i −0.981781 0.190014i \(-0.939147\pi\)
0.981781 0.190014i \(-0.0608532\pi\)
\(500\) 0 0
\(501\) −0.868178 −0.0387873
\(502\) −5.47949 −0.244562
\(503\) 24.1879i 1.07849i −0.842150 0.539244i \(-0.818710\pi\)
0.842150 0.539244i \(-0.181290\pi\)
\(504\) 7.62320i 0.339564i
\(505\) 0 0
\(506\) −2.63068 −0.116948
\(507\) 7.05111i 0.313151i
\(508\) 32.6178 1.44718
\(509\) −25.8671 −1.14654 −0.573270 0.819366i \(-0.694325\pi\)
−0.573270 + 0.819366i \(0.694325\pi\)
\(510\) 0 0
\(511\) −11.7605 −0.520253
\(512\) −20.3111 −0.897633
\(513\) 22.7787i 1.00570i
\(514\) 6.39207 0.281942
\(515\) 0 0
\(516\) 20.8539i 0.918042i
\(517\) 38.0446i 1.67320i
\(518\) 6.96343 0.305956
\(519\) 2.70657 0.118805
\(520\) 0 0
\(521\) 11.4900i 0.503385i −0.967807 0.251693i \(-0.919013\pi\)
0.967807 0.251693i \(-0.0809872\pi\)
\(522\) 2.97925i 0.130398i
\(523\) 33.0509 1.44521 0.722606 0.691260i \(-0.242944\pi\)
0.722606 + 0.691260i \(0.242944\pi\)
\(524\) 16.9300i 0.739592i
\(525\) 0 0
\(526\) 2.60931 0.113771
\(527\) −27.1798 21.0607i −1.18397 0.917419i
\(528\) −22.1126 −0.962328
\(529\) 20.8336 0.905810
\(530\) 0 0
\(531\) 10.3586 0.449524
\(532\) 29.4002i 1.27466i
\(533\) 10.2587i 0.444354i
\(534\) 1.23127i 0.0532820i
\(535\) 0 0
\(536\) −0.520505 −0.0224824
\(537\) 20.7187i 0.894078i
\(538\) 3.85954i 0.166397i
\(539\) 34.5891i 1.48986i
\(540\) 0 0
\(541\) 19.7884i 0.850770i 0.905013 + 0.425385i \(0.139861\pi\)
−0.905013 + 0.425385i \(0.860139\pi\)
\(542\) 2.22077 0.0953904
\(543\) 23.1669 0.994185
\(544\) 8.82717 11.3918i 0.378462 0.488421i
\(545\) 0 0
\(546\) −3.26671 −0.139802
\(547\) 15.4815i 0.661940i −0.943641 0.330970i \(-0.892624\pi\)
0.943641 0.330970i \(-0.107376\pi\)
\(548\) 26.7812 1.14404
\(549\) 15.2464i 0.650700i
\(550\) 0 0
\(551\) 23.5643i 1.00387i
\(552\) 2.00645 0.0854003
\(553\) −6.84146 −0.290928
\(554\) 6.35260i 0.269896i
\(555\) 0 0
\(556\) 31.9503i 1.35500i
\(557\) −15.3477 −0.650302 −0.325151 0.945662i \(-0.605415\pi\)
−0.325151 + 0.945662i \(0.605415\pi\)
\(558\) 4.51373i 0.191081i
\(559\) 25.3002 1.07008
\(560\) 0 0
\(561\) 16.2874 21.0197i 0.687657 0.887451i
\(562\) −9.06668 −0.382455
\(563\) 14.3827 0.606159 0.303079 0.952965i \(-0.401985\pi\)
0.303079 + 0.952965i \(0.401985\pi\)
\(564\) 14.1488i 0.595772i
\(565\) 0 0
\(566\) 2.85283i 0.119913i
\(567\) 2.72089i 0.114267i
\(568\) 1.65537i 0.0694578i
\(569\) −12.1432 −0.509069 −0.254535 0.967064i \(-0.581922\pi\)
−0.254535 + 0.967064i \(0.581922\pi\)
\(570\) 0 0
\(571\) 2.88663i 0.120802i −0.998174 0.0604009i \(-0.980762\pi\)
0.998174 0.0604009i \(-0.0192379\pi\)
\(572\) 28.3419i 1.18503i
\(573\) 25.6082i 1.06980i
\(574\) 4.44293 0.185444
\(575\) 0 0
\(576\) −10.0381 −0.418254
\(577\) −3.10970 −0.129458 −0.0647291 0.997903i \(-0.520618\pi\)
−0.0647291 + 0.997903i \(0.520618\pi\)
\(578\) 1.32048 + 5.12134i 0.0549246 + 0.213020i
\(579\) −22.1388 −0.920055
\(580\) 0 0
\(581\) 60.1298i 2.49460i
\(582\) 4.08880 0.169486
\(583\) 3.78469i 0.156746i
\(584\) 3.95768i 0.163770i
\(585\) 0 0
\(586\) −5.05086 −0.208649
\(587\) 10.2034 0.421140 0.210570 0.977579i \(-0.432468\pi\)
0.210570 + 0.977579i \(0.432468\pi\)
\(588\) 12.8637i 0.530490i
\(589\) 35.7012i 1.47104i
\(590\) 0 0
\(591\) 14.4671 0.595095
\(592\) 21.2675i 0.874089i
\(593\) −16.2301 −0.666492 −0.333246 0.942840i \(-0.608144\pi\)
−0.333246 + 0.942840i \(0.608144\pi\)
\(594\) 9.51008 0.390203
\(595\) 0 0
\(596\) 9.06868 0.371468
\(597\) −7.23353 −0.296049
\(598\) 1.18694i 0.0485378i
\(599\) −8.43309 −0.344567 −0.172283 0.985047i \(-0.555114\pi\)
−0.172283 + 0.985047i \(0.555114\pi\)
\(600\) 0 0
\(601\) 20.2535i 0.826160i 0.910695 + 0.413080i \(0.135547\pi\)
−0.910695 + 0.413080i \(0.864453\pi\)
\(602\) 10.9572i 0.446583i
\(603\) −0.745724 −0.0303682
\(604\) −5.69181 −0.231596
\(605\) 0 0
\(606\) 1.38649i 0.0563225i
\(607\) 22.7732i 0.924334i 0.886793 + 0.462167i \(0.152928\pi\)
−0.886793 + 0.462167i \(0.847072\pi\)
\(608\) −14.9634 −0.606847
\(609\) 22.2975i 0.903540i
\(610\) 0 0
\(611\) 17.1655 0.694441
\(612\) 8.36196 10.7915i 0.338012 0.436220i
\(613\) −8.40636 −0.339530 −0.169765 0.985485i \(-0.554301\pi\)
−0.169765 + 0.985485i \(0.554301\pi\)
\(614\) 1.05086 0.0424091
\(615\) 0 0
\(616\) 25.1733 1.01426
\(617\) 14.8168i 0.596500i 0.954488 + 0.298250i \(0.0964030\pi\)
−0.954488 + 0.298250i \(0.903597\pi\)
\(618\) 1.47911i 0.0594984i
\(619\) 31.6221i 1.27100i 0.772101 + 0.635500i \(0.219206\pi\)
−0.772101 + 0.635500i \(0.780794\pi\)
\(620\) 0 0
\(621\) 7.83161 0.314272
\(622\) 2.47530i 0.0992505i
\(623\) 12.7212i 0.509666i
\(624\) 9.97707i 0.399403i
\(625\) 0 0
\(626\) 2.12605i 0.0849740i
\(627\) −27.6098 −1.10263
\(628\) −26.5397 −1.05905
\(629\) 20.2163 + 15.6650i 0.806078 + 0.624603i
\(630\) 0 0
\(631\) −17.3733 −0.691622 −0.345811 0.938304i \(-0.612396\pi\)
−0.345811 + 0.938304i \(0.612396\pi\)
\(632\) 2.30231i 0.0915810i
\(633\) −12.7506 −0.506793
\(634\) 8.44812i 0.335518i
\(635\) 0 0
\(636\) 1.40753i 0.0558121i
\(637\) −15.6064 −0.618348
\(638\) 9.83807 0.389493
\(639\) 2.37164i 0.0938205i
\(640\) 0 0
\(641\) 7.26842i 0.287085i −0.989644 0.143543i \(-0.954151\pi\)
0.989644 0.143543i \(-0.0458494\pi\)
\(642\) 4.13488 0.163191
\(643\) 4.40507i 0.173719i 0.996221 + 0.0868595i \(0.0276831\pi\)
−0.996221 + 0.0868595i \(0.972317\pi\)
\(644\) 10.1082 0.398317
\(645\) 0 0
\(646\) 3.36349 4.34074i 0.132335 0.170784i
\(647\) 0.198022 0.00778504 0.00389252 0.999992i \(-0.498761\pi\)
0.00389252 + 0.999992i \(0.498761\pi\)
\(648\) −0.915643 −0.0359698
\(649\) 34.2061i 1.34271i
\(650\) 0 0
\(651\) 33.7820i 1.32402i
\(652\) 16.4721i 0.645098i
\(653\) 9.92723i 0.388482i 0.980954 + 0.194241i \(0.0622244\pi\)
−0.980954 + 0.194241i \(0.937776\pi\)
\(654\) −4.19897 −0.164193
\(655\) 0 0
\(656\) 13.5695i 0.529798i
\(657\) 5.67014i 0.221213i
\(658\) 7.43416i 0.289814i
\(659\) 3.00492 0.117055 0.0585276 0.998286i \(-0.481359\pi\)
0.0585276 + 0.998286i \(0.481359\pi\)
\(660\) 0 0
\(661\) 23.6923 0.921523 0.460762 0.887524i \(-0.347576\pi\)
0.460762 + 0.887524i \(0.347576\pi\)
\(662\) 6.33984 0.246405
\(663\) −9.48394 7.34880i −0.368326 0.285404i
\(664\) −20.2351 −0.785273
\(665\) 0 0
\(666\) 3.35731i 0.130093i
\(667\) 8.10171 0.313699
\(668\) 1.47186i 0.0569481i
\(669\) 0.997912i 0.0385815i
\(670\) 0 0
\(671\) 50.3466 1.94361
\(672\) −14.1590 −0.546196
\(673\) 30.1968i 1.16400i −0.813188 0.582001i \(-0.802270\pi\)
0.813188 0.582001i \(-0.197730\pi\)
\(674\) 1.46462i 0.0564150i
\(675\) 0 0
\(676\) 11.9541 0.459772
\(677\) 47.9413i 1.84253i −0.388933 0.921266i \(-0.627156\pi\)
0.388933 0.921266i \(-0.372844\pi\)
\(678\) −3.76895 −0.144746
\(679\) 42.2449 1.62121
\(680\) 0 0
\(681\) 14.5131 0.556145
\(682\) 14.9052 0.570750
\(683\) 1.41477i 0.0541347i 0.999634 + 0.0270674i \(0.00861686\pi\)
−0.999634 + 0.0270674i \(0.991383\pi\)
\(684\) −14.1748 −0.541989
\(685\) 0 0
\(686\) 1.09932i 0.0419723i
\(687\) 3.17880i 0.121279i
\(688\) 33.4652 1.27585
\(689\) 1.70763 0.0650554
\(690\) 0 0
\(691\) 1.36321i 0.0518588i −0.999664 0.0259294i \(-0.991745\pi\)
0.999664 0.0259294i \(-0.00825452\pi\)
\(692\) 4.58858i 0.174432i
\(693\) 36.0656 1.37002
\(694\) 10.9983i 0.417489i
\(695\) 0 0
\(696\) −7.50363 −0.284424
\(697\) 12.8988 + 9.99483i 0.488576 + 0.378581i
\(698\) 7.79505 0.295047
\(699\) 22.3827 0.846592
\(700\) 0 0
\(701\) −40.1990 −1.51829 −0.759147 0.650919i \(-0.774384\pi\)
−0.759147 + 0.650919i \(0.774384\pi\)
\(702\) 4.29089i 0.161949i
\(703\) 26.5546i 1.00153i
\(704\) 33.1478i 1.24930i
\(705\) 0 0
\(706\) 4.26073 0.160355
\(707\) 14.3251i 0.538749i
\(708\) 12.7212i 0.478094i
\(709\) 19.4729i 0.731322i −0.930748 0.365661i \(-0.880843\pi\)
0.930748 0.365661i \(-0.119157\pi\)
\(710\) 0 0
\(711\) 3.29850i 0.123704i
\(712\) −4.28100 −0.160437
\(713\) 12.2745 0.459685
\(714\) 3.18268 4.10738i 0.119109 0.153715i
\(715\) 0 0
\(716\) 35.1254 1.31270
\(717\) 30.6314i 1.14395i
\(718\) −0.788595 −0.0294301
\(719\) 21.9765i 0.819586i −0.912179 0.409793i \(-0.865601\pi\)
0.912179 0.409793i \(-0.134399\pi\)
\(720\) 0 0
\(721\) 15.2819i 0.569128i
\(722\) 0.209398 0.00779297
\(723\) 4.01291 0.149242
\(724\) 39.2758i 1.45967i
\(725\) 0 0
\(726\) 7.68528i 0.285227i
\(727\) 36.7007 1.36116 0.680578 0.732676i \(-0.261729\pi\)
0.680578 + 0.732676i \(0.261729\pi\)
\(728\) 11.3580i 0.420957i
\(729\) −19.2317 −0.712284
\(730\) 0 0
\(731\) −24.6494 + 31.8111i −0.911691 + 1.17658i
\(732\) −18.7239 −0.692056
\(733\) 24.8666 0.918471 0.459235 0.888315i \(-0.348123\pi\)
0.459235 + 0.888315i \(0.348123\pi\)
\(734\) 11.3065i 0.417330i
\(735\) 0 0
\(736\) 5.14462i 0.189633i
\(737\) 2.46253i 0.0907085i
\(738\) 2.14209i 0.0788514i
\(739\) −32.7368 −1.20424 −0.602122 0.798404i \(-0.705678\pi\)
−0.602122 + 0.798404i \(0.705678\pi\)
\(740\) 0 0
\(741\) 12.4574i 0.457633i
\(742\) 0.739554i 0.0271499i
\(743\) 21.3762i 0.784215i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(744\) −11.3684 −0.416786
\(745\) 0 0
\(746\) −3.97328 −0.145472
\(747\) −28.9906 −1.06071
\(748\) 35.6356 + 27.6129i 1.30297 + 1.00963i
\(749\) 42.7210 1.56099
\(750\) 0 0
\(751\) 44.5557i 1.62586i −0.582362 0.812930i \(-0.697871\pi\)
0.582362 0.812930i \(-0.302129\pi\)
\(752\) 22.7052 0.827973
\(753\) 19.7724i 0.720545i
\(754\) 4.43887i 0.161654i
\(755\) 0 0
\(756\) −36.5417 −1.32901
\(757\) 12.1793 0.442664 0.221332 0.975199i \(-0.428960\pi\)
0.221332 + 0.975199i \(0.428960\pi\)
\(758\) 6.89089i 0.250288i
\(759\) 9.49260i 0.344560i
\(760\) 0 0
\(761\) 7.18712 0.260533 0.130266 0.991479i \(-0.458417\pi\)
0.130266 + 0.991479i \(0.458417\pi\)
\(762\) 5.98559i 0.216835i
\(763\) −43.3832 −1.57058
\(764\) −43.4148 −1.57069
\(765\) 0 0
\(766\) −0.607926 −0.0219652
\(767\) 15.4336 0.557274
\(768\) 9.88618i 0.356737i
\(769\) 14.9748 0.540005 0.270003 0.962860i \(-0.412975\pi\)
0.270003 + 0.962860i \(0.412975\pi\)
\(770\) 0 0
\(771\) 23.0653i 0.830678i
\(772\) 37.5328i 1.35084i
\(773\) −26.2938 −0.945721 −0.472860 0.881137i \(-0.656778\pi\)
−0.472860 + 0.881137i \(0.656778\pi\)
\(774\) −5.28286 −0.189888
\(775\) 0 0
\(776\) 14.2164i 0.510339i
\(777\) 25.1270i 0.901428i
\(778\) 2.46167 0.0882550
\(779\) 16.9428i 0.607039i
\(780\) 0 0
\(781\) −7.83161 −0.280237
\(782\) −1.49240 1.15641i −0.0533682 0.0413533i
\(783\) −29.2883 −1.04668
\(784\) −20.6430 −0.737249
\(785\) 0 0
\(786\) 3.10678 0.110815
\(787\) 9.35342i 0.333413i −0.986007 0.166707i \(-0.946687\pi\)
0.986007 0.166707i \(-0.0533133\pi\)
\(788\) 24.5267i 0.873727i
\(789\) 9.41550i 0.335201i
\(790\) 0 0
\(791\) −38.9403