Properties

Label 425.2.d.a.101.1
Level $425$
Weight $2$
Character 425.101
Analytic conductor $3.394$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(101,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.93924352.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} + 73x^{2} + 67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.1
Root \(2.21547i\) of defining polynomial
Character \(\chi\) \(=\) 425.101
Dual form 425.2.d.a.101.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.17009 q^{2} -2.21547i q^{3} +2.70928 q^{4} +4.80775i q^{6} +1.02091i q^{7} -1.53919 q^{8} -1.90829 q^{9} +4.98140i q^{11} -6.00231i q^{12} -3.87936 q^{13} -2.21547i q^{14} -2.07838 q^{16} +(-1.63090 + 3.78684i) q^{17} +4.14116 q^{18} -4.04945 q^{19} +2.26180 q^{21} -10.8101i q^{22} +7.02322i q^{23} +3.41002i q^{24} +8.41855 q^{26} -2.41864i q^{27} +2.76593i q^{28} -0.644091i q^{29} -4.25729i q^{31} +7.58864 q^{32} +11.0361 q^{33} +(3.53919 - 8.21777i) q^{34} -5.17009 q^{36} +10.2596i q^{37} +8.78765 q^{38} +8.59460i q^{39} +5.82867i q^{41} -4.90829 q^{42} -5.86603 q^{43} +13.4960i q^{44} -15.2410i q^{46} +10.3402 q^{47} +4.60458i q^{48} +5.95774 q^{49} +(8.38962 + 3.61320i) q^{51} -10.5103 q^{52} -11.3896 q^{53} +5.24867i q^{54} -1.57138i q^{56} +8.97142i q^{57} +1.39773i q^{58} -0.447480 q^{59} -3.14275i q^{61} +9.23869i q^{62} -1.94820i q^{63} -12.3112 q^{64} -23.9493 q^{66} +5.07838 q^{67} +(-4.41855 + 10.2596i) q^{68} +15.5597 q^{69} +3.41002i q^{71} +2.93722 q^{72} -3.78684i q^{73} -22.2642i q^{74} -10.9711 q^{76} -5.08557 q^{77} -18.6510i q^{78} -0.376821i q^{79} -11.0833 q^{81} -12.6487i q^{82} +3.57531 q^{83} +6.12783 q^{84} +12.7298 q^{86} -1.42696 q^{87} -7.66731i q^{88} -2.63090 q^{89} -3.96049i q^{91} +19.0278i q^{92} -9.43188 q^{93} -22.4391 q^{94} -16.8124i q^{96} -10.9037i q^{97} -12.9288 q^{98} -9.50596i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} - 16 q^{9} + 2 q^{13} - 6 q^{16} - 2 q^{17} - 16 q^{18} + 12 q^{19} - 2 q^{21} + 22 q^{26} + 6 q^{32} + 28 q^{33} + 18 q^{34} - 20 q^{36} + 32 q^{38} - 34 q^{42} - 8 q^{43}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17009 −1.53448 −0.767241 0.641358i \(-0.778371\pi\)
−0.767241 + 0.641358i \(0.778371\pi\)
\(3\) 2.21547i 1.27910i −0.768749 0.639550i \(-0.779121\pi\)
0.768749 0.639550i \(-0.220879\pi\)
\(4\) 2.70928 1.35464
\(5\) 0 0
\(6\) 4.80775i 1.96276i
\(7\) 1.02091i 0.385868i 0.981212 + 0.192934i \(0.0618004\pi\)
−0.981212 + 0.192934i \(0.938200\pi\)
\(8\) −1.53919 −0.544185
\(9\) −1.90829 −0.636097
\(10\) 0 0
\(11\) 4.98140i 1.50195i 0.660332 + 0.750974i \(0.270416\pi\)
−0.660332 + 0.750974i \(0.729584\pi\)
\(12\) 6.00231i 1.73272i
\(13\) −3.87936 −1.07594 −0.537971 0.842964i \(-0.680809\pi\)
−0.537971 + 0.842964i \(0.680809\pi\)
\(14\) 2.21547i 0.592108i
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) −1.63090 + 3.78684i −0.395551 + 0.918444i
\(18\) 4.14116 0.976080
\(19\) −4.04945 −0.929007 −0.464504 0.885571i \(-0.653767\pi\)
−0.464504 + 0.885571i \(0.653767\pi\)
\(20\) 0 0
\(21\) 2.26180 0.493564
\(22\) 10.8101i 2.30471i
\(23\) 7.02322i 1.46444i 0.681067 + 0.732221i \(0.261516\pi\)
−0.681067 + 0.732221i \(0.738484\pi\)
\(24\) 3.41002i 0.696068i
\(25\) 0 0
\(26\) 8.41855 1.65101
\(27\) 2.41864i 0.465468i
\(28\) 2.76593i 0.522712i
\(29\) 0.644091i 0.119605i −0.998210 0.0598023i \(-0.980953\pi\)
0.998210 0.0598023i \(-0.0190470\pi\)
\(30\) 0 0
\(31\) 4.25729i 0.764632i −0.924032 0.382316i \(-0.875127\pi\)
0.924032 0.382316i \(-0.124873\pi\)
\(32\) 7.58864 1.34149
\(33\) 11.0361 1.92114
\(34\) 3.53919 8.21777i 0.606966 1.40934i
\(35\) 0 0
\(36\) −5.17009 −0.861681
\(37\) 10.2596i 1.68667i 0.537390 + 0.843334i \(0.319410\pi\)
−0.537390 + 0.843334i \(0.680590\pi\)
\(38\) 8.78765 1.42555
\(39\) 8.59460i 1.37624i
\(40\) 0 0
\(41\) 5.82867i 0.910285i 0.890419 + 0.455142i \(0.150412\pi\)
−0.890419 + 0.455142i \(0.849588\pi\)
\(42\) −4.90829 −0.757366
\(43\) −5.86603 −0.894561 −0.447281 0.894394i \(-0.647607\pi\)
−0.447281 + 0.894394i \(0.647607\pi\)
\(44\) 13.4960i 2.03459i
\(45\) 0 0
\(46\) 15.2410i 2.24716i
\(47\) 10.3402 1.50827 0.754135 0.656720i \(-0.228057\pi\)
0.754135 + 0.656720i \(0.228057\pi\)
\(48\) 4.60458i 0.664613i
\(49\) 5.95774 0.851106
\(50\) 0 0
\(51\) 8.38962 + 3.61320i 1.17478 + 0.505949i
\(52\) −10.5103 −1.45751
\(53\) −11.3896 −1.56448 −0.782242 0.622974i \(-0.785924\pi\)
−0.782242 + 0.622974i \(0.785924\pi\)
\(54\) 5.24867i 0.714253i
\(55\) 0 0
\(56\) 1.57138i 0.209984i
\(57\) 8.97142i 1.18829i
\(58\) 1.39773i 0.183531i
\(59\) −0.447480 −0.0582570 −0.0291285 0.999576i \(-0.509273\pi\)
−0.0291285 + 0.999576i \(0.509273\pi\)
\(60\) 0 0
\(61\) 3.14275i 0.402388i −0.979551 0.201194i \(-0.935518\pi\)
0.979551 0.201194i \(-0.0644822\pi\)
\(62\) 9.23869i 1.17331i
\(63\) 1.94820i 0.245450i
\(64\) −12.3112 −1.53891
\(65\) 0 0
\(66\) −23.9493 −2.94796
\(67\) 5.07838 0.620423 0.310211 0.950668i \(-0.399600\pi\)
0.310211 + 0.950668i \(0.399600\pi\)
\(68\) −4.41855 + 10.2596i −0.535828 + 1.24416i
\(69\) 15.5597 1.87317
\(70\) 0 0
\(71\) 3.41002i 0.404695i 0.979314 + 0.202348i \(0.0648571\pi\)
−0.979314 + 0.202348i \(0.935143\pi\)
\(72\) 2.93722 0.346155
\(73\) 3.78684i 0.443216i −0.975136 0.221608i \(-0.928869\pi\)
0.975136 0.221608i \(-0.0711306\pi\)
\(74\) 22.2642i 2.58816i
\(75\) 0 0
\(76\) −10.9711 −1.25847
\(77\) −5.08557 −0.579554
\(78\) 18.6510i 2.11181i
\(79\) 0.376821i 0.0423957i −0.999775 0.0211978i \(-0.993252\pi\)
0.999775 0.0211978i \(-0.00674798\pi\)
\(80\) 0 0
\(81\) −11.0833 −1.23148
\(82\) 12.6487i 1.39682i
\(83\) 3.57531 0.392441 0.196220 0.980560i \(-0.437133\pi\)
0.196220 + 0.980560i \(0.437133\pi\)
\(84\) 6.12783 0.668601
\(85\) 0 0
\(86\) 12.7298 1.37269
\(87\) −1.42696 −0.152986
\(88\) 7.66731i 0.817338i
\(89\) −2.63090 −0.278875 −0.139437 0.990231i \(-0.544529\pi\)
−0.139437 + 0.990231i \(0.544529\pi\)
\(90\) 0 0
\(91\) 3.96049i 0.415172i
\(92\) 19.0278i 1.98379i
\(93\) −9.43188 −0.978041
\(94\) −22.4391 −2.31441
\(95\) 0 0
\(96\) 16.8124i 1.71591i
\(97\) 10.9037i 1.10710i −0.832815 0.553551i \(-0.813272\pi\)
0.832815 0.553551i \(-0.186728\pi\)
\(98\) −12.9288 −1.30601
\(99\) 9.50596i 0.955385i
\(100\) 0 0
\(101\) −6.21953 −0.618867 −0.309433 0.950921i \(-0.600139\pi\)
−0.309433 + 0.950921i \(0.600139\pi\)
\(102\) −18.2062 7.84095i −1.80268 0.776370i
\(103\) 10.4969 1.03429 0.517147 0.855897i \(-0.326994\pi\)
0.517147 + 0.855897i \(0.326994\pi\)
\(104\) 5.97107 0.585512
\(105\) 0 0
\(106\) 24.7165 2.40068
\(107\) 5.15504i 0.498357i 0.968458 + 0.249178i \(0.0801605\pi\)
−0.968458 + 0.249178i \(0.919839\pi\)
\(108\) 6.55277i 0.630541i
\(109\) 6.92959i 0.663735i −0.943326 0.331867i \(-0.892321\pi\)
0.943326 0.331867i \(-0.107679\pi\)
\(110\) 0 0
\(111\) 22.7298 2.15742
\(112\) 2.12184i 0.200495i
\(113\) 19.5783i 1.84177i −0.389832 0.920886i \(-0.627467\pi\)
0.389832 0.920886i \(-0.372533\pi\)
\(114\) 19.4687i 1.82342i
\(115\) 0 0
\(116\) 1.74502i 0.162021i
\(117\) 7.40295 0.684403
\(118\) 0.971071 0.0893943
\(119\) −3.86603 1.66500i −0.354398 0.152631i
\(120\) 0 0
\(121\) −13.8143 −1.25585
\(122\) 6.82004i 0.617458i
\(123\) 12.9132 1.16435
\(124\) 11.5342i 1.03580i
\(125\) 0 0
\(126\) 4.22776i 0.376638i
\(127\) 2.20620 0.195769 0.0978845 0.995198i \(-0.468792\pi\)
0.0978845 + 0.995198i \(0.468792\pi\)
\(128\) 11.5392 1.01993
\(129\) 12.9960i 1.14423i
\(130\) 0 0
\(131\) 19.2015i 1.67764i 0.544408 + 0.838821i \(0.316754\pi\)
−0.544408 + 0.838821i \(0.683246\pi\)
\(132\) 29.8999 2.60245
\(133\) 4.13413i 0.358474i
\(134\) −11.0205 −0.952028
\(135\) 0 0
\(136\) 2.51026 5.82867i 0.215253 0.499804i
\(137\) −0.304056 −0.0259772 −0.0129886 0.999916i \(-0.504135\pi\)
−0.0129886 + 0.999916i \(0.504135\pi\)
\(138\) −33.7659 −2.87435
\(139\) 18.9478i 1.60713i 0.595215 + 0.803567i \(0.297067\pi\)
−0.595215 + 0.803567i \(0.702933\pi\)
\(140\) 0 0
\(141\) 22.9083i 1.92923i
\(142\) 7.40004i 0.620998i
\(143\) 19.3246i 1.61601i
\(144\) 3.96615 0.330513
\(145\) 0 0
\(146\) 8.21777i 0.680108i
\(147\) 13.1992i 1.08865i
\(148\) 27.7961i 2.28482i
\(149\) −19.4969 −1.59725 −0.798625 0.601829i \(-0.794439\pi\)
−0.798625 + 0.601829i \(0.794439\pi\)
\(150\) 0 0
\(151\) −19.1773 −1.56062 −0.780312 0.625390i \(-0.784940\pi\)
−0.780312 + 0.625390i \(0.784940\pi\)
\(152\) 6.23287 0.505552
\(153\) 3.11223 7.22640i 0.251609 0.584220i
\(154\) 11.0361 0.889316
\(155\) 0 0
\(156\) 23.2851i 1.86430i
\(157\) −14.6248 −1.16718 −0.583591 0.812048i \(-0.698353\pi\)
−0.583591 + 0.812048i \(0.698353\pi\)
\(158\) 0.817734i 0.0650554i
\(159\) 25.2333i 2.00113i
\(160\) 0 0
\(161\) −7.17009 −0.565082
\(162\) 24.0517 1.88968
\(163\) 13.5760i 1.06335i 0.846947 + 0.531677i \(0.178438\pi\)
−0.846947 + 0.531677i \(0.821562\pi\)
\(164\) 15.7915i 1.23311i
\(165\) 0 0
\(166\) −7.75872 −0.602194
\(167\) 2.59229i 0.200597i 0.994957 + 0.100299i \(0.0319798\pi\)
−0.994957 + 0.100299i \(0.968020\pi\)
\(168\) −3.48133 −0.268590
\(169\) 2.04945 0.157650
\(170\) 0 0
\(171\) 7.72753 0.590939
\(172\) −15.8927 −1.21181
\(173\) 11.0132i 0.837321i 0.908143 + 0.418661i \(0.137500\pi\)
−0.908143 + 0.418661i \(0.862500\pi\)
\(174\) 3.09663 0.234755
\(175\) 0 0
\(176\) 10.3532i 0.780404i
\(177\) 0.991377i 0.0745165i
\(178\) 5.70928 0.427928
\(179\) 24.9854 1.86750 0.933750 0.357926i \(-0.116516\pi\)
0.933750 + 0.357926i \(0.116516\pi\)
\(180\) 0 0
\(181\) 14.3432i 1.06612i 0.846076 + 0.533062i \(0.178959\pi\)
−0.846076 + 0.533062i \(0.821041\pi\)
\(182\) 8.59460i 0.637074i
\(183\) −6.96266 −0.514695
\(184\) 10.8101i 0.796928i
\(185\) 0 0
\(186\) 20.4680 1.50079
\(187\) −18.8638 8.12415i −1.37946 0.594097i
\(188\) 28.0144 2.04316
\(189\) 2.46922 0.179609
\(190\) 0 0
\(191\) 5.39576 0.390424 0.195212 0.980761i \(-0.437461\pi\)
0.195212 + 0.980761i \(0.437461\pi\)
\(192\) 27.2751i 1.96841i
\(193\) 16.1387i 1.16169i 0.814013 + 0.580846i \(0.197278\pi\)
−0.814013 + 0.580846i \(0.802722\pi\)
\(194\) 23.6619i 1.69883i
\(195\) 0 0
\(196\) 16.1412 1.15294
\(197\) 9.26822i 0.660333i 0.943923 + 0.330167i \(0.107105\pi\)
−0.943923 + 0.330167i \(0.892895\pi\)
\(198\) 20.6287i 1.46602i
\(199\) 4.63411i 0.328503i −0.986418 0.164252i \(-0.947479\pi\)
0.986418 0.164252i \(-0.0525209\pi\)
\(200\) 0 0
\(201\) 11.2510i 0.793583i
\(202\) 13.4969 0.949641
\(203\) 0.657560 0.0461516
\(204\) 22.7298 + 9.78915i 1.59140 + 0.685378i
\(205\) 0 0
\(206\) −22.7792 −1.58711
\(207\) 13.4023i 0.931528i
\(208\) 8.06278 0.559053
\(209\) 20.1719i 1.39532i
\(210\) 0 0
\(211\) 6.09593i 0.419661i −0.977738 0.209831i \(-0.932709\pi\)
0.977738 0.209831i \(-0.0672913\pi\)
\(212\) −30.8576 −2.11931
\(213\) 7.55479 0.517645
\(214\) 11.1869i 0.764720i
\(215\) 0 0
\(216\) 3.72275i 0.253301i
\(217\) 4.34632 0.295047
\(218\) 15.0378i 1.01849i
\(219\) −8.38962 −0.566918
\(220\) 0 0
\(221\) 6.32684 14.6905i 0.425589 0.988192i
\(222\) −49.3256 −3.31052
\(223\) 17.7009 1.18534 0.592669 0.805446i \(-0.298074\pi\)
0.592669 + 0.805446i \(0.298074\pi\)
\(224\) 7.74733i 0.517640i
\(225\) 0 0
\(226\) 42.4866i 2.82617i
\(227\) 25.5806i 1.69784i −0.528518 0.848922i \(-0.677252\pi\)
0.528518 0.848922i \(-0.322748\pi\)
\(228\) 24.3060i 1.60971i
\(229\) 11.9867 0.792101 0.396051 0.918229i \(-0.370380\pi\)
0.396051 + 0.918229i \(0.370380\pi\)
\(230\) 0 0
\(231\) 11.2669i 0.741308i
\(232\) 0.991377i 0.0650871i
\(233\) 4.72774i 0.309724i 0.987936 + 0.154862i \(0.0494933\pi\)
−0.987936 + 0.154862i \(0.950507\pi\)
\(234\) −16.0650 −1.05020
\(235\) 0 0
\(236\) −1.21235 −0.0789171
\(237\) −0.834834 −0.0542283
\(238\) 8.38962 + 3.61320i 0.543818 + 0.234209i
\(239\) 10.7649 0.696321 0.348161 0.937435i \(-0.386806\pi\)
0.348161 + 0.937435i \(0.386806\pi\)
\(240\) 0 0
\(241\) 21.6201i 1.39267i −0.717715 0.696337i \(-0.754812\pi\)
0.717715 0.696337i \(-0.245188\pi\)
\(242\) 29.9783 1.92708
\(243\) 17.2987i 1.10971i
\(244\) 8.51458i 0.545090i
\(245\) 0 0
\(246\) −28.0228 −1.78667
\(247\) 15.7093 0.999557
\(248\) 6.55277i 0.416101i
\(249\) 7.92097i 0.501971i
\(250\) 0 0
\(251\) −0.837101 −0.0528374 −0.0264187 0.999651i \(-0.508410\pi\)
−0.0264187 + 0.999651i \(0.508410\pi\)
\(252\) 5.27820i 0.332495i
\(253\) −34.9854 −2.19952
\(254\) −4.78765 −0.300404
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) −7.67316 −0.478638 −0.239319 0.970941i \(-0.576924\pi\)
−0.239319 + 0.970941i \(0.576924\pi\)
\(258\) 28.2024i 1.75581i
\(259\) −10.4741 −0.650832
\(260\) 0 0
\(261\) 1.22911i 0.0760802i
\(262\) 41.6689i 2.57431i
\(263\) −26.8371 −1.65485 −0.827423 0.561579i \(-0.810194\pi\)
−0.827423 + 0.561579i \(0.810194\pi\)
\(264\) −16.9867 −1.04546
\(265\) 0 0
\(266\) 8.97142i 0.550073i
\(267\) 5.82867i 0.356709i
\(268\) 13.7587 0.840448
\(269\) 20.5192i 1.25108i 0.780193 + 0.625539i \(0.215121\pi\)
−0.780193 + 0.625539i \(0.784879\pi\)
\(270\) 0 0
\(271\) 12.2062 0.741474 0.370737 0.928738i \(-0.379105\pi\)
0.370737 + 0.928738i \(0.379105\pi\)
\(272\) 3.38962 7.87049i 0.205526 0.477218i
\(273\) −8.77432 −0.531046
\(274\) 0.659827 0.0398616
\(275\) 0 0
\(276\) 42.1555 2.53746
\(277\) 6.52324i 0.391943i −0.980610 0.195972i \(-0.937214\pi\)
0.980610 0.195972i \(-0.0627861\pi\)
\(278\) 41.1184i 2.46612i
\(279\) 8.12415i 0.486380i
\(280\) 0 0
\(281\) 1.60811 0.0959319 0.0479659 0.998849i \(-0.484726\pi\)
0.0479659 + 0.998849i \(0.484726\pi\)
\(282\) 49.7130i 2.96037i
\(283\) 2.18593i 0.129940i 0.997887 + 0.0649701i \(0.0206952\pi\)
−0.997887 + 0.0649701i \(0.979305\pi\)
\(284\) 9.23869i 0.548215i
\(285\) 0 0
\(286\) 41.9361i 2.47974i
\(287\) −5.95055 −0.351250
\(288\) −14.4813 −0.853321
\(289\) −11.6803 12.3519i −0.687079 0.726583i
\(290\) 0 0
\(291\) −24.1568 −1.41609
\(292\) 10.2596i 0.600398i
\(293\) 1.50307 0.0878104 0.0439052 0.999036i \(-0.486020\pi\)
0.0439052 + 0.999036i \(0.486020\pi\)
\(294\) 28.6433i 1.67051i
\(295\) 0 0
\(296\) 15.7915i 0.917860i
\(297\) 12.0482 0.699109
\(298\) 42.3100 2.45095
\(299\) 27.2456i 1.57565i
\(300\) 0 0
\(301\) 5.98870i 0.345183i
\(302\) 41.6163 2.39475
\(303\) 13.7792i 0.791593i
\(304\) 8.41628 0.482707
\(305\) 0 0
\(306\) −6.75380 + 15.6819i −0.386089 + 0.896475i
\(307\) 0.340173 0.0194147 0.00970735 0.999953i \(-0.496910\pi\)
0.00970735 + 0.999953i \(0.496910\pi\)
\(308\) −13.7782 −0.785086
\(309\) 23.2556i 1.32296i
\(310\) 0 0
\(311\) 23.1915i 1.31507i 0.753424 + 0.657535i \(0.228401\pi\)
−0.753424 + 0.657535i \(0.771599\pi\)
\(312\) 13.2287i 0.748928i
\(313\) 25.4070i 1.43609i −0.695998 0.718043i \(-0.745038\pi\)
0.695998 0.718043i \(-0.254962\pi\)
\(314\) 31.7370 1.79102
\(315\) 0 0
\(316\) 1.02091i 0.0574308i
\(317\) 6.76956i 0.380216i −0.981763 0.190108i \(-0.939116\pi\)
0.981763 0.190108i \(-0.0608839\pi\)
\(318\) 54.7585i 3.07070i
\(319\) 3.20847 0.179640
\(320\) 0 0
\(321\) 11.4208 0.637448
\(322\) 15.5597 0.867109
\(323\) 6.60424 15.3346i 0.367469 0.853241i
\(324\) −30.0277 −1.66821
\(325\) 0 0
\(326\) 29.4611i 1.63170i
\(327\) −15.3523 −0.848983
\(328\) 8.97142i 0.495364i
\(329\) 10.5564i 0.581993i
\(330\) 0 0
\(331\) 21.8888 1.20312 0.601559 0.798828i \(-0.294546\pi\)
0.601559 + 0.798828i \(0.294546\pi\)
\(332\) 9.68649 0.531615
\(333\) 19.5783i 1.07288i
\(334\) 5.62549i 0.307813i
\(335\) 0 0
\(336\) −4.70086 −0.256453
\(337\) 29.7283i 1.61941i 0.586840 + 0.809703i \(0.300372\pi\)
−0.586840 + 0.809703i \(0.699628\pi\)
\(338\) −4.44748 −0.241911
\(339\) −43.3751 −2.35581
\(340\) 0 0
\(341\) 21.2072 1.14844
\(342\) −16.7694 −0.906785
\(343\) 13.2287i 0.714283i
\(344\) 9.02893 0.486807
\(345\) 0 0
\(346\) 23.8997i 1.28485i
\(347\) 22.0474i 1.18357i −0.806097 0.591784i \(-0.798424\pi\)
0.806097 0.591784i \(-0.201576\pi\)
\(348\) −3.86603 −0.207241
\(349\) −15.0761 −0.807006 −0.403503 0.914978i \(-0.632207\pi\)
−0.403503 + 0.914978i \(0.632207\pi\)
\(350\) 0 0
\(351\) 9.38280i 0.500817i
\(352\) 37.8020i 2.01485i
\(353\) 14.1194 0.751501 0.375750 0.926721i \(-0.377385\pi\)
0.375750 + 0.926721i \(0.377385\pi\)
\(354\) 2.15137i 0.114344i
\(355\) 0 0
\(356\) −7.12783 −0.377774
\(357\) −3.68876 + 8.56506i −0.195230 + 0.453311i
\(358\) −54.2206 −2.86565
\(359\) 23.8082 1.25655 0.628274 0.777992i \(-0.283762\pi\)
0.628274 + 0.777992i \(0.283762\pi\)
\(360\) 0 0
\(361\) −2.60197 −0.136946
\(362\) 31.1261i 1.63595i
\(363\) 30.6052i 1.60635i
\(364\) 10.7300i 0.562407i
\(365\) 0 0
\(366\) 15.1096 0.789790
\(367\) 3.77323i 0.196961i 0.995139 + 0.0984806i \(0.0313982\pi\)
−0.995139 + 0.0984806i \(0.968602\pi\)
\(368\) 14.5969i 0.760916i
\(369\) 11.1228i 0.579029i
\(370\) 0 0
\(371\) 11.6278i 0.603685i
\(372\) −25.5536 −1.32489
\(373\) 1.54760 0.0801317 0.0400658 0.999197i \(-0.487243\pi\)
0.0400658 + 0.999197i \(0.487243\pi\)
\(374\) 40.9360 + 17.6301i 2.11675 + 0.911631i
\(375\) 0 0
\(376\) −15.9155 −0.820778
\(377\) 2.49866i 0.128688i
\(378\) −5.35842 −0.275608
\(379\) 13.4824i 0.692543i −0.938134 0.346271i \(-0.887448\pi\)
0.938134 0.346271i \(-0.112552\pi\)
\(380\) 0 0
\(381\) 4.88777i 0.250408i
\(382\) −11.7093 −0.599099
\(383\) −4.44748 −0.227256 −0.113628 0.993523i \(-0.536247\pi\)
−0.113628 + 0.993523i \(0.536247\pi\)
\(384\) 25.5647i 1.30459i
\(385\) 0 0
\(386\) 35.0225i 1.78260i
\(387\) 11.1941 0.569028
\(388\) 29.5411i 1.49972i
\(389\) −25.4680 −1.29128 −0.645639 0.763642i \(-0.723409\pi\)
−0.645639 + 0.763642i \(0.723409\pi\)
\(390\) 0 0
\(391\) −26.5958 11.4542i −1.34501 0.579261i
\(392\) −9.17009 −0.463159
\(393\) 42.5402 2.14587
\(394\) 20.1128i 1.01327i
\(395\) 0 0
\(396\) 25.7543i 1.29420i
\(397\) 14.3937i 0.722400i 0.932488 + 0.361200i \(0.117633\pi\)
−0.932488 + 0.361200i \(0.882367\pi\)
\(398\) 10.0564i 0.504083i
\(399\) −9.15902 −0.458525
\(400\) 0 0
\(401\) 0.456838i 0.0228134i −0.999935 0.0114067i \(-0.996369\pi\)
0.999935 0.0114067i \(-0.00363094\pi\)
\(402\) 24.4156i 1.21774i
\(403\) 16.5156i 0.822699i
\(404\) −16.8504 −0.838340
\(405\) 0 0
\(406\) −1.42696 −0.0708189
\(407\) −51.1071 −2.53329
\(408\) −12.9132 5.56140i −0.639299 0.275330i
\(409\) 26.7770 1.32404 0.662018 0.749488i \(-0.269700\pi\)
0.662018 + 0.749488i \(0.269700\pi\)
\(410\) 0 0
\(411\) 0.673625i 0.0332275i
\(412\) 28.4391 1.40109
\(413\) 0.456838i 0.0224795i
\(414\) 29.0843i 1.42941i
\(415\) 0 0
\(416\) −29.4391 −1.44337
\(417\) 41.9783 2.05568
\(418\) 43.7748i 2.14109i
\(419\) 16.2914i 0.795889i −0.917409 0.397944i \(-0.869724\pi\)
0.917409 0.397944i \(-0.130276\pi\)
\(420\) 0 0
\(421\) −6.21953 −0.303122 −0.151561 0.988448i \(-0.548430\pi\)
−0.151561 + 0.988448i \(0.548430\pi\)
\(422\) 13.2287i 0.643963i
\(423\) −19.7321 −0.959406
\(424\) 17.5308 0.851370
\(425\) 0 0
\(426\) −16.3945 −0.794318
\(427\) 3.20847 0.155269
\(428\) 13.9664i 0.675093i
\(429\) −42.8131 −2.06704
\(430\) 0 0
\(431\) 24.4292i 1.17671i 0.808602 + 0.588357i \(0.200225\pi\)
−0.808602 + 0.588357i \(0.799775\pi\)
\(432\) 5.02686i 0.241855i
\(433\) 6.85989 0.329665 0.164833 0.986322i \(-0.447292\pi\)
0.164833 + 0.986322i \(0.447292\pi\)
\(434\) −9.43188 −0.452745
\(435\) 0 0
\(436\) 18.7742i 0.899120i
\(437\) 28.4402i 1.36048i
\(438\) 18.2062 0.869926
\(439\) 13.0255i 0.621675i −0.950463 0.310837i \(-0.899391\pi\)
0.950463 0.310837i \(-0.100609\pi\)
\(440\) 0 0
\(441\) −11.3691 −0.541386
\(442\) −13.7298 + 31.8797i −0.653060 + 1.51636i
\(443\) 2.71542 0.129013 0.0645067 0.997917i \(-0.479453\pi\)
0.0645067 + 0.997917i \(0.479453\pi\)
\(444\) 61.5813 2.92252
\(445\) 0 0
\(446\) −38.4124 −1.81888
\(447\) 43.1948i 2.04304i
\(448\) 12.5687i 0.593815i
\(449\) 20.5697i 0.970743i −0.874308 0.485372i \(-0.838684\pi\)
0.874308 0.485372i \(-0.161316\pi\)
\(450\) 0 0
\(451\) −29.0349 −1.36720
\(452\) 53.0430i 2.49493i
\(453\) 42.4866i 1.99619i
\(454\) 55.5121i 2.60531i
\(455\) 0 0
\(456\) 13.8087i 0.646652i
\(457\) 15.0338 0.703254 0.351627 0.936140i \(-0.385629\pi\)
0.351627 + 0.936140i \(0.385629\pi\)
\(458\) −26.0121 −1.21547
\(459\) 9.15902 + 3.94456i 0.427507 + 0.184116i
\(460\) 0 0
\(461\) −12.7382 −0.593277 −0.296639 0.954990i \(-0.595866\pi\)
−0.296639 + 0.954990i \(0.595866\pi\)
\(462\) 24.4501i 1.13752i
\(463\) 5.68261 0.264093 0.132047 0.991243i \(-0.457845\pi\)
0.132047 + 0.991243i \(0.457845\pi\)
\(464\) 1.33866i 0.0621459i
\(465\) 0 0
\(466\) 10.2596i 0.475267i
\(467\) −23.9155 −1.10668 −0.553338 0.832957i \(-0.686646\pi\)
−0.553338 + 0.832957i \(0.686646\pi\)
\(468\) 20.0566 0.927118
\(469\) 5.18457i 0.239401i
\(470\) 0 0
\(471\) 32.4007i 1.49294i
\(472\) 0.688756 0.0317026
\(473\) 29.2210i 1.34358i
\(474\) 1.81166 0.0832124
\(475\) 0 0
\(476\) −10.4741 4.51095i −0.480082 0.206759i
\(477\) 21.7347 0.995164
\(478\) −23.3607 −1.06849
\(479\) 11.6142i 0.530666i 0.964157 + 0.265333i \(0.0854818\pi\)
−0.964157 + 0.265333i \(0.914518\pi\)
\(480\) 0 0
\(481\) 39.8007i 1.81476i
\(482\) 46.9175i 2.13704i
\(483\) 15.8851i 0.722796i
\(484\) −37.4268 −1.70122
\(485\) 0 0
\(486\) 37.5398i 1.70284i
\(487\) 7.96411i 0.360888i 0.983585 + 0.180444i \(0.0577535\pi\)
−0.983585 + 0.180444i \(0.942246\pi\)
\(488\) 4.83729i 0.218974i
\(489\) 30.0772 1.36014
\(490\) 0 0
\(491\) 36.2557 1.63619 0.818097 0.575080i \(-0.195029\pi\)
0.818097 + 0.575080i \(0.195029\pi\)
\(492\) 34.9854 1.57727
\(493\) 2.43907 + 1.05045i 0.109850 + 0.0473097i
\(494\) −34.0905 −1.53380
\(495\) 0 0
\(496\) 8.84826i 0.397298i
\(497\) −3.48133 −0.156159
\(498\) 17.1892i 0.770266i
\(499\) 20.1583i 0.902409i −0.892420 0.451205i \(-0.850994\pi\)
0.892420 0.451205i \(-0.149006\pi\)
\(500\) 0 0
\(501\) 5.74313 0.256584
\(502\) 1.81658 0.0810780
\(503\) 19.2151i 0.856759i 0.903599 + 0.428379i \(0.140915\pi\)
−0.903599 + 0.428379i \(0.859085\pi\)
\(504\) 2.99864i 0.133570i
\(505\) 0 0
\(506\) 75.9214 3.37512
\(507\) 4.54048i 0.201650i
\(508\) 5.97721 0.265196
\(509\) 1.52813 0.0677330 0.0338665 0.999426i \(-0.489218\pi\)
0.0338665 + 0.999426i \(0.489218\pi\)
\(510\) 0 0
\(511\) 3.86603 0.171023
\(512\) −22.1701 −0.979789
\(513\) 9.79417i 0.432423i
\(514\) 16.6514 0.734462
\(515\) 0 0
\(516\) 35.2097i 1.55002i
\(517\) 51.5085i 2.26534i
\(518\) 22.7298 0.998690
\(519\) 24.3995 1.07102
\(520\) 0 0
\(521\) 9.96279i 0.436478i −0.975895 0.218239i \(-0.929969\pi\)
0.975895 0.218239i \(-0.0700312\pi\)
\(522\) 2.66728i 0.116744i
\(523\) 31.2618 1.36698 0.683491 0.729959i \(-0.260461\pi\)
0.683491 + 0.729959i \(0.260461\pi\)
\(524\) 52.0221i 2.27260i
\(525\) 0 0
\(526\) 58.2388 2.53933
\(527\) 16.1217 + 6.94320i 0.702272 + 0.302451i
\(528\) −22.9372 −0.998214
\(529\) −26.3256 −1.14459
\(530\) 0 0
\(531\) 0.853922 0.0370571
\(532\) 11.2005i 0.485603i
\(533\) 22.6115i 0.979413i
\(534\) 12.6487i 0.547363i
\(535\) 0 0
\(536\) −7.81658 −0.337625
\(537\) 55.3544i 2.38872i
\(538\) 44.5284i 1.91976i
\(539\) 29.6779i 1.27832i
\(540\) 0 0
\(541\) 29.1433i 1.25297i −0.779434 0.626485i \(-0.784493\pi\)
0.779434 0.626485i \(-0.215507\pi\)
\(542\) −26.4885 −1.13778
\(543\) 31.7770 1.36368
\(544\) −12.3763 + 28.7370i −0.530629 + 1.23209i
\(545\) 0 0
\(546\) 19.0410 0.814881
\(547\) 18.5069i 0.791298i 0.918402 + 0.395649i \(0.129480\pi\)
−0.918402 + 0.395649i \(0.870520\pi\)
\(548\) −0.823770 −0.0351897
\(549\) 5.99729i 0.255958i
\(550\) 0 0
\(551\) 2.60821i 0.111114i
\(552\) −23.9493 −1.01935
\(553\) 0.384701 0.0163591
\(554\) 14.1560i 0.601430i
\(555\) 0 0
\(556\) 51.3349i 2.17708i
\(557\) −1.44029 −0.0610271 −0.0305136 0.999534i \(-0.509714\pi\)
−0.0305136 + 0.999534i \(0.509714\pi\)
\(558\) 17.6301i 0.746342i
\(559\) 22.7565 0.962496
\(560\) 0 0
\(561\) −17.9988 + 41.7920i −0.759909 + 1.76446i
\(562\) −3.48974 −0.147206
\(563\) 2.47414 0.104273 0.0521363 0.998640i \(-0.483397\pi\)
0.0521363 + 0.998640i \(0.483397\pi\)
\(564\) 62.0649i 2.61340i
\(565\) 0 0
\(566\) 4.74366i 0.199391i
\(567\) 11.3151i 0.475188i
\(568\) 5.24867i 0.220229i
\(569\) 15.3919 0.645262 0.322631 0.946525i \(-0.395433\pi\)
0.322631 + 0.946525i \(0.395433\pi\)
\(570\) 0 0
\(571\) 17.8974i 0.748982i 0.927231 + 0.374491i \(0.122183\pi\)
−0.927231 + 0.374491i \(0.877817\pi\)
\(572\) 52.3558i 2.18910i
\(573\) 11.9541i 0.499391i
\(574\) 12.9132 0.538987
\(575\) 0 0
\(576\) 23.4934 0.978893
\(577\) 44.1894 1.83963 0.919814 0.392355i \(-0.128339\pi\)
0.919814 + 0.392355i \(0.128339\pi\)
\(578\) 25.3474 + 26.8047i 1.05431 + 1.11493i
\(579\) 35.7548 1.48592
\(580\) 0 0
\(581\) 3.65007i 0.151430i
\(582\) 52.4222 2.17297
\(583\) 56.7362i 2.34977i
\(584\) 5.82867i 0.241192i
\(585\) 0 0
\(586\) −3.26180 −0.134744
\(587\) 3.04718 0.125771 0.0628853 0.998021i \(-0.479970\pi\)
0.0628853 + 0.998021i \(0.479970\pi\)
\(588\) 35.7602i 1.47473i
\(589\) 17.2397i 0.710348i
\(590\) 0 0
\(591\) 20.5334 0.844633
\(592\) 21.3233i 0.876383i
\(593\) −9.68876 −0.397870 −0.198935 0.980013i \(-0.563748\pi\)
−0.198935 + 0.980013i \(0.563748\pi\)
\(594\) −26.1457 −1.07277
\(595\) 0 0
\(596\) −52.8225 −2.16370
\(597\) −10.2667 −0.420189
\(598\) 59.1253i 2.41781i
\(599\) −33.2846 −1.35997 −0.679986 0.733225i \(-0.738014\pi\)
−0.679986 + 0.733225i \(0.738014\pi\)
\(600\) 0 0
\(601\) 13.1055i 0.534586i 0.963615 + 0.267293i \(0.0861292\pi\)
−0.963615 + 0.267293i \(0.913871\pi\)
\(602\) 12.9960i 0.529677i
\(603\) −9.69102 −0.394649
\(604\) −51.9565 −2.11408
\(605\) 0 0
\(606\) 29.9020i 1.21469i
\(607\) 8.34094i 0.338548i −0.985569 0.169274i \(-0.945858\pi\)
0.985569 0.169274i \(-0.0541423\pi\)
\(608\) −30.7298 −1.24626
\(609\) 1.45680i 0.0590326i
\(610\) 0 0
\(611\) −40.1133 −1.62281
\(612\) 8.43188 19.5783i 0.340839 0.791406i
\(613\) −32.6430 −1.31844 −0.659219 0.751951i \(-0.729113\pi\)
−0.659219 + 0.751951i \(0.729113\pi\)
\(614\) −0.738205 −0.0297915
\(615\) 0 0
\(616\) 7.82765 0.315385
\(617\) 31.5324i 1.26945i −0.772739 0.634724i \(-0.781114\pi\)
0.772739 0.634724i \(-0.218886\pi\)
\(618\) 50.4666i 2.03007i
\(619\) 42.1234i 1.69308i −0.532323 0.846541i \(-0.678681\pi\)
0.532323 0.846541i \(-0.321319\pi\)
\(620\) 0 0
\(621\) 16.9867 0.681652
\(622\) 50.3276i 2.01795i
\(623\) 2.68591i 0.107609i
\(624\) 17.8628i 0.715085i
\(625\) 0 0
\(626\) 55.1353i 2.20365i
\(627\) −44.6902 −1.78475
\(628\) −39.6225 −1.58111
\(629\) −38.8515 16.7324i −1.54911 0.667163i
\(630\) 0 0
\(631\) 16.7031 0.664941 0.332471 0.943114i \(-0.392118\pi\)
0.332471 + 0.943114i \(0.392118\pi\)
\(632\) 0.579999i 0.0230711i
\(633\) −13.5053 −0.536789
\(634\) 14.6905i 0.583436i
\(635\) 0 0
\(636\) 68.3640i 2.71081i
\(637\) −23.1122 −0.915740
\(638\) −6.96266 −0.275654
\(639\) 6.50731i 0.257425i
\(640\) 0 0
\(641\) 16.3260i 0.644838i 0.946597 + 0.322419i \(0.104496\pi\)
−0.946597 + 0.322419i \(0.895504\pi\)
\(642\) −24.7842 −0.978153
\(643\) 28.0633i 1.10671i 0.832945 + 0.553355i \(0.186653\pi\)
−0.832945 + 0.553355i \(0.813347\pi\)
\(644\) −19.4257 −0.765481
\(645\) 0 0
\(646\) −14.3318 + 33.2775i −0.563876 + 1.30928i
\(647\) 39.7815 1.56397 0.781986 0.623296i \(-0.214207\pi\)
0.781986 + 0.623296i \(0.214207\pi\)
\(648\) 17.0593 0.670152
\(649\) 2.22908i 0.0874989i
\(650\) 0 0
\(651\) 9.62912i 0.377395i
\(652\) 36.7811i 1.44046i
\(653\) 35.7761i 1.40003i 0.714129 + 0.700014i \(0.246823\pi\)
−0.714129 + 0.700014i \(0.753177\pi\)
\(654\) 33.3158 1.30275
\(655\) 0 0
\(656\) 12.1142i 0.472979i
\(657\) 7.22640i 0.281929i
\(658\) 22.9083i 0.893059i
\(659\) −5.18568 −0.202006 −0.101003 0.994886i \(-0.532205\pi\)
−0.101003 + 0.994886i \(0.532205\pi\)
\(660\) 0 0
\(661\) 31.4079 1.22162 0.610812 0.791775i \(-0.290843\pi\)
0.610812 + 0.791775i \(0.290843\pi\)
\(662\) −47.5006 −1.84616
\(663\) −32.5464 14.0169i −1.26400 0.544372i
\(664\) −5.50307 −0.213561
\(665\) 0 0
\(666\) 42.4866i 1.64632i
\(667\) 4.52359 0.175154
\(668\) 7.02322i 0.271737i
\(669\) 39.2157i 1.51617i
\(670\) 0 0
\(671\) 15.6553 0.604366
\(672\) 17.1639 0.662113
\(673\) 17.8838i 0.689368i −0.938719 0.344684i \(-0.887986\pi\)
0.938719 0.344684i \(-0.112014\pi\)
\(674\) 64.5131i 2.48495i
\(675\) 0 0
\(676\) 5.55252 0.213558
\(677\) 3.30278i 0.126936i −0.997984 0.0634682i \(-0.979784\pi\)
0.997984 0.0634682i \(-0.0202161\pi\)
\(678\) 94.1276 3.61495
\(679\) 11.1317 0.427196
\(680\) 0 0
\(681\) −56.6730 −2.17171
\(682\) −46.0216 −1.76226
\(683\) 10.8742i 0.416088i −0.978119 0.208044i \(-0.933290\pi\)
0.978119 0.208044i \(-0.0667097\pi\)
\(684\) 20.9360 0.800508
\(685\) 0 0
\(686\) 28.7074i 1.09606i
\(687\) 26.5561i 1.01318i
\(688\) 12.1918 0.464809
\(689\) 44.1845 1.68329
\(690\) 0 0
\(691\) 3.41002i 0.129723i −0.997894 0.0648617i \(-0.979339\pi\)
0.997894 0.0648617i \(-0.0206606\pi\)
\(692\) 29.8379i 1.13427i
\(693\) 9.70474 0.368653
\(694\) 47.8448i 1.81616i
\(695\) 0 0
\(696\) 2.19636 0.0832529
\(697\) −22.0722 9.50596i −0.836046 0.360064i
\(698\) 32.7165 1.23834
\(699\) 10.4741 0.396168
\(700\) 0 0
\(701\) −2.68422 −0.101382 −0.0506908 0.998714i \(-0.516142\pi\)
−0.0506908 + 0.998714i \(0.516142\pi\)
\(702\) 20.3615i 0.768494i
\(703\) 41.5457i 1.56693i
\(704\) 61.3272i 2.31136i
\(705\) 0 0
\(706\) −30.6404 −1.15316
\(707\) 6.34959i 0.238801i
\(708\) 2.68591i 0.100943i
\(709\) 46.9766i 1.76424i 0.471021 + 0.882122i \(0.343885\pi\)
−0.471021 + 0.882122i \(0.656115\pi\)
\(710\) 0 0
\(711\) 0.719084i 0.0269678i
\(712\) 4.04945 0.151759
\(713\) 29.8999 1.11976
\(714\) 8.00492 18.5869i 0.299577 0.695598i
\(715\) 0 0
\(716\) 67.6925 2.52979
\(717\) 23.8492i 0.890665i
\(718\) −51.6658 −1.92815
\(719\) 37.4252i 1.39572i 0.716232 + 0.697862i \(0.245865\pi\)
−0.716232 + 0.697862i \(0.754135\pi\)
\(720\) 0 0
\(721\) 10.7164i 0.399101i
\(722\) 5.64650 0.210141
\(723\) −47.8987 −1.78137
\(724\) 38.8598i 1.44421i
\(725\) 0 0
\(726\) 66.4158i 2.46492i
\(727\) −37.8537 −1.40392 −0.701959 0.712218i \(-0.747691\pi\)
−0.701959 + 0.712218i \(0.747691\pi\)
\(728\) 6.09593i 0.225930i
\(729\) 5.07489 0.187959
\(730\) 0 0
\(731\) 9.56690 22.2137i 0.353844 0.821605i
\(732\) −18.8638 −0.697225
\(733\) 36.0205 1.33045 0.665224 0.746644i \(-0.268336\pi\)
0.665224 + 0.746644i \(0.268336\pi\)
\(734\) 8.18824i 0.302233i
\(735\) 0 0
\(736\) 53.2967i 1.96454i
\(737\) 25.2974i 0.931842i
\(738\) 24.1374i 0.888511i
\(739\) 19.0349 0.700210 0.350105 0.936710i \(-0.386146\pi\)
0.350105 + 0.936710i \(0.386146\pi\)
\(740\) 0 0
\(741\) 34.8034i 1.27853i
\(742\) 25.2333i 0.926344i
\(743\) 10.8901i 0.399518i 0.979845 + 0.199759i \(0.0640160\pi\)
−0.979845 + 0.199759i \(0.935984\pi\)
\(744\) 14.5174 0.532235
\(745\) 0 0
\(746\) −3.35842 −0.122961
\(747\) −6.82273 −0.249630
\(748\) −51.1071 22.0106i −1.86866 0.804786i
\(749\) −5.26284 −0.192300
\(750\) 0 0
\(751\) 1.59232i 0.0581047i −0.999578 0.0290524i \(-0.990751\pi\)
0.999578 0.0290524i \(-0.00924895\pi\)
\(752\) −21.4908 −0.783688
\(753\) 1.85457i 0.0675843i
\(754\) 5.42231i 0.197469i
\(755\) 0 0
\(756\) 6.68980 0.243306
\(757\) 7.42696 0.269937 0.134969 0.990850i \(-0.456907\pi\)
0.134969 + 0.990850i \(0.456907\pi\)
\(758\) 29.2579i 1.06269i
\(759\) 77.5091i 2.81340i
\(760\) 0 0
\(761\) 42.3679 1.53583 0.767917 0.640549i \(-0.221293\pi\)
0.767917 + 0.640549i \(0.221293\pi\)
\(762\) 10.6069i 0.384247i
\(763\) 7.07450 0.256114
\(764\) 14.6186 0.528883
\(765\) 0 0
\(766\) 9.65142 0.348720
\(767\) 1.73594 0.0626811
\(768\) 0.927285i 0.0334605i
\(769\) −3.40522 −0.122795 −0.0613977 0.998113i \(-0.519556\pi\)
−0.0613977 + 0.998113i \(0.519556\pi\)
\(770\) 0 0
\(771\) 16.9996i 0.612226i
\(772\) 43.7243i 1.57367i
\(773\) −49.7058 −1.78779 −0.893896 0.448274i \(-0.852039\pi\)
−0.893896 + 0.448274i \(0.852039\pi\)
\(774\) −24.2922 −0.873163
\(775\) 0 0
\(776\) 16.7828i 0.602469i
\(777\) 23.2051i 0.832479i
\(778\) 55.2678 1.98145
\(779\) 23.6029i 0.845661i
\(780\) 0 0
\(781\) −16.9867 −0.607831
\(782\) 57.7152 + 24.8565i 2.06389 + 0.888867i
\(783\) −1.55783 −0.0556722
\(784\) −12.3824 −0.442230
\(785\) 0 0
\(786\) −92.3160 −3.29280
\(787\) 3.96049i 0.141176i −0.997506 0.0705880i \(-0.977512\pi\)
0.997506 0.0705880i \(-0.0224876\pi\)
\(788\) 25.1102i 0.894512i
\(789\) 59.4567i 2.11671i
\(790\) 0 0
\(791\) 19.9877 0.710681