Properties

Label 425.2.d.a
Level $425$
Weight $2$
Character orbit 425.d
Analytic conductor $3.394$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(101,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.93924352.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} + 73x^{2} + 67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - \beta_1 q^{3} + (\beta_{3} - \beta_{2}) q^{4} + ( - \beta_{5} + \beta_{4}) q^{6} + \beta_{4} q^{7} + ( - \beta_{3} - 1) q^{8} + ( - 2 \beta_{3} - \beta_{2} - 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{2} - \beta_1 q^{3} + (\beta_{3} - \beta_{2}) q^{4} + ( - \beta_{5} + \beta_{4}) q^{6} + \beta_{4} q^{7} + ( - \beta_{3} - 1) q^{8} + ( - 2 \beta_{3} - \beta_{2} - 3) q^{9} + ( - \beta_{5} - \beta_{4} + \beta_1) q^{11} + (\beta_{5} - \beta_1) q^{12} + ( - \beta_{3} + 2 \beta_{2} + 1) q^{13} - \beta_1 q^{14} + ( - 2 \beta_{3} - 1) q^{16} + ( - \beta_{5} + \beta_{3} + \beta_{2}) q^{17} + ( - \beta_{3} - 4 \beta_{2} - 4) q^{18} + ( - \beta_{3} + 3 \beta_{2} + 3) q^{19} + ( - 2 \beta_{3} - 2 \beta_{2} - 1) q^{21} + (2 \beta_{5} - \beta_{4} - \beta_1) q^{22} + ( - \beta_{5} + \beta_{4} + \beta_1) q^{23} + ( - \beta_{4} + 2 \beta_1) q^{24} + (2 \beta_{3} - 2 \beta_{2} + 3) q^{26} + (\beta_{5} - 3 \beta_{4} + 2 \beta_1) q^{27} + ( - \beta_{5} - \beta_{4}) q^{28} + ( - \beta_{5} - 2 \beta_1) q^{29} + ( - 2 \beta_{4} - \beta_1) q^{31} + (2 \beta_{3} - 3 \beta_{2}) q^{32} + (5 \beta_{3} - 2 \beta_{2} + 4) q^{33} + (\beta_{5} + \beta_{3} - 2 \beta_1 + 3) q^{34} + (\beta_{2} - 3) q^{36} + ( - \beta_{5} + 2 \beta_{4} + 2 \beta_1) q^{37} + (3 \beta_{3} - \beta_{2} + 5) q^{38} + ( - 2 \beta_{5} + \beta_{4}) q^{39} + ( - \beta_{5} + 2 \beta_{4}) q^{41} + ( - 2 \beta_{3} - \beta_{2} - 6) q^{42} + ( - 5 \beta_{3} + \beta_{2} - 1) q^{43} + ( - \beta_{5} + 3 \beta_{4} + 3 \beta_1) q^{44} + (2 \beta_{5} - \beta_{4} - 3 \beta_1) q^{46} + ( - 2 \beta_{2} + 6) q^{47} + ( - 2 \beta_{4} + 3 \beta_1) q^{48} + (3 \beta_{3} - 2 \beta_{2}) q^{49} + ( - \beta_{5} + 2 \beta_{4} + \beta_{3} + \cdots - 3) q^{51}+ \cdots + ( - \beta_{5} - 6 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} - 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 2 q^{2} + 2 q^{4} - 6 q^{8} - 16 q^{9} + 2 q^{13} - 6 q^{16} - 2 q^{17} - 16 q^{18} + 12 q^{19} - 2 q^{21} + 22 q^{26} + 6 q^{32} + 28 q^{33} + 18 q^{34} - 20 q^{36} + 32 q^{38} - 34 q^{42} - 8 q^{43} + 40 q^{47} + 4 q^{49} - 8 q^{51} - 30 q^{52} - 10 q^{53} - 4 q^{59} - 22 q^{64} - 16 q^{66} + 24 q^{67} + 2 q^{68} + 24 q^{69} + 52 q^{72} - 36 q^{76} + 44 q^{77} + 34 q^{81} - 20 q^{83} - 6 q^{84} - 4 q^{86} - 76 q^{87} - 8 q^{89} - 30 q^{93} - 40 q^{94} - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 17x^{4} + 73x^{2} + 67 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{4} + 21\nu^{2} + 18 ) / 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} - 19\nu^{2} - 60 ) / 17 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 19\nu^{3} + 77\nu ) / 17 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{5} + 40\nu^{3} + 95\nu ) / 17 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -2\beta_{3} - \beta_{2} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + 3\beta_{4} - 8\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 21\beta_{3} + 19\beta_{2} + 54 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 19\beta_{5} - 40\beta_{4} + 75\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
101.1
2.21547i
2.21547i
1.12261i
1.12261i
3.29112i
3.29112i
−2.17009 2.21547i 2.70928 0 4.80775i 1.02091i −1.53919 −1.90829 0
101.2 −2.17009 2.21547i 2.70928 0 4.80775i 1.02091i −1.53919 −1.90829 0
101.3 −0.311108 1.12261i −1.90321 0 0.349253i 3.60843i 1.21432 1.73975 0
101.4 −0.311108 1.12261i −1.90321 0 0.349253i 3.60843i 1.21432 1.73975 0
101.5 1.48119 3.29112i 0.193937 0 4.87478i 2.22194i −2.67513 −7.83146 0
101.6 1.48119 3.29112i 0.193937 0 4.87478i 2.22194i −2.67513 −7.83146 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 101.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.2.d.a 6
5.b even 2 1 425.2.d.b yes 6
5.c odd 4 2 425.2.c.c 12
17.b even 2 1 inner 425.2.d.a 6
17.c even 4 2 7225.2.a.bg 6
85.c even 2 1 425.2.d.b yes 6
85.g odd 4 2 425.2.c.c 12
85.j even 4 2 7225.2.a.ba 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.2.c.c 12 5.c odd 4 2
425.2.c.c 12 85.g odd 4 2
425.2.d.a 6 1.a even 1 1 trivial
425.2.d.a 6 17.b even 2 1 inner
425.2.d.b yes 6 5.b even 2 1
425.2.d.b yes 6 85.c even 2 1
7225.2.a.ba 6 85.j even 4 2
7225.2.a.bg 6 17.c even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(425, [\chi])\):

\( T_{2}^{3} + T_{2}^{2} - 3T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{6} + 17T_{3}^{4} + 73T_{3}^{2} + 67 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{3} + T^{2} - 3 T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{6} + 17 T^{4} + \cdots + 67 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 19 T^{4} + \cdots + 67 \) Copy content Toggle raw display
$11$ \( T^{6} + 66 T^{4} + \cdots + 6700 \) Copy content Toggle raw display
$13$ \( (T^{3} - T^{2} - 13 T + 23)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + 2 T^{5} + \cdots + 4913 \) Copy content Toggle raw display
$19$ \( (T^{3} - 6 T^{2} + \cdots + 100)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 54 T^{4} + \cdots + 268 \) Copy content Toggle raw display
$29$ \( T^{6} + 116 T^{4} + \cdots + 1072 \) Copy content Toggle raw display
$31$ \( T^{6} + 89 T^{4} + \cdots + 1675 \) Copy content Toggle raw display
$37$ \( T^{6} + 144 T^{4} + \cdots + 1072 \) Copy content Toggle raw display
$41$ \( T^{6} + 100 T^{4} + \cdots + 26800 \) Copy content Toggle raw display
$43$ \( (T^{3} + 4 T^{2} + \cdots - 452)^{2} \) Copy content Toggle raw display
$47$ \( (T^{3} - 20 T^{2} + \cdots - 208)^{2} \) Copy content Toggle raw display
$53$ \( (T^{3} + 5 T^{2} - 69 T + 43)^{2} \) Copy content Toggle raw display
$59$ \( (T^{3} + 2 T^{2} - 44 T - 20)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + 228 T^{4} + \cdots + 107200 \) Copy content Toggle raw display
$67$ \( (T^{3} - 12 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + 91 T^{4} + \cdots + 1675 \) Copy content Toggle raw display
$73$ \( T^{6} + 32 T^{4} + \cdots + 1072 \) Copy content Toggle raw display
$79$ \( T^{6} + 135 T^{4} + \cdots + 67 \) Copy content Toggle raw display
$83$ \( (T^{3} + 10 T^{2} + \cdots + 184)^{2} \) Copy content Toggle raw display
$89$ \( (T^{3} + 4 T^{2} - 4 T - 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 332 T^{4} + \cdots + 1239232 \) Copy content Toggle raw display
show more
show less