Properties

Label 425.2.d
Level $425$
Weight $2$
Character orbit 425.d
Rep. character $\chi_{425}(101,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $4$
Sturm bound $90$
Trace bound $9$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(90\)
Trace bound: \(9\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).

Total New Old
Modular forms 50 32 18
Cusp forms 38 26 12
Eisenstein series 12 6 6

Trace form

\( 26 q + 2 q^{2} + 22 q^{4} + 6 q^{8} - 30 q^{9} - 8 q^{13} + 6 q^{16} + 2 q^{17} + 10 q^{18} + 8 q^{19} - 4 q^{21} - 6 q^{32} - 4 q^{33} + 10 q^{34} - 74 q^{36} - 8 q^{38} - 20 q^{42} - 28 q^{43} + 20 q^{47}+ \cdots - 86 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
425.2.d.a 425.d 17.b $6$ $3.394$ 6.0.93924352.2 None 425.2.d.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-\beta _{1}q^{3}+(-\beta _{2}+\beta _{3})q^{4}+\cdots\)
425.2.d.b 425.d 17.b $6$ $3.394$ 6.0.93924352.2 None 425.2.d.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-\beta _{1}q^{3}+(-\beta _{2}+\beta _{3})q^{4}+\cdots\)
425.2.d.c 425.d 17.b $6$ $3.394$ 6.0.350464.1 None 85.2.d.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}-\beta _{4}q^{3}+(\beta _{1}+\beta _{3})q^{4}-\beta _{5}q^{6}+\cdots\)
425.2.d.d 425.d 17.b $8$ $3.394$ 8.0.\(\cdots\).3 None 85.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{6}q^{3}+(2-\beta _{3})q^{4}+(\beta _{5}+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)