Defining parameters
Level: | \( N \) | \(=\) | \( 425 = 5^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 425.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 50 | 32 | 18 |
Cusp forms | 38 | 26 | 12 |
Eisenstein series | 12 | 6 | 6 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
425.2.d.a | $6$ | $3.394$ | 6.0.93924352.2 | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}-\beta _{1}q^{3}+(-\beta _{2}+\beta _{3})q^{4}+\cdots\) |
425.2.d.b | $6$ | $3.394$ | 6.0.93924352.2 | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}-\beta _{1}q^{3}+(-\beta _{2}+\beta _{3})q^{4}+\cdots\) |
425.2.d.c | $6$ | $3.394$ | 6.0.350464.1 | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{3}q^{2}-\beta _{4}q^{3}+(\beta _{1}+\beta _{3})q^{4}-\beta _{5}q^{6}+\cdots\) |
425.2.d.d | $8$ | $3.394$ | 8.0.\(\cdots\).3 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+\beta _{6}q^{3}+(2-\beta _{3})q^{4}+(\beta _{5}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)