Properties

Label 425.2.c.b.424.1
Level $425$
Weight $2$
Character 425.424
Analytic conductor $3.394$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(424,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.424");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.1
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 425.424
Dual form 425.2.c.b.424.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.17009i q^{2} -0.539189 q^{3} -2.70928 q^{4} +1.17009i q^{6} +4.87936 q^{7} +1.53919i q^{8} -2.70928 q^{9} -3.17009i q^{11} +1.46081 q^{12} -2.63090i q^{13} -10.5886i q^{14} -2.07838 q^{16} +(-2.53919 - 3.24846i) q^{17} +5.87936i q^{18} -1.07838 q^{19} -2.63090 q^{21} -6.87936 q^{22} +5.21953 q^{23} -0.829914i q^{24} -5.70928 q^{26} +3.07838 q^{27} -13.2195 q^{28} +2.92162i q^{29} +4.09171i q^{31} +7.58864i q^{32} +1.70928i q^{33} +(-7.04945 + 5.51026i) q^{34} +7.34017 q^{36} -5.26180 q^{37} +2.34017i q^{38} +1.41855i q^{39} -5.60197i q^{41} +5.70928i q^{42} -3.36910i q^{43} +8.58864i q^{44} -11.3268i q^{46} -6.78765i q^{47} +1.12064 q^{48} +16.8082 q^{49} +(1.36910 + 1.75154i) q^{51} +7.12783i q^{52} -3.75872i q^{53} -6.68035i q^{54} +7.51026i q^{56} +0.581449 q^{57} +6.34017 q^{58} +2.34017 q^{59} +12.2557i q^{61} +8.87936 q^{62} -13.2195 q^{63} +12.3112 q^{64} +3.70928 q^{66} +10.2062i q^{67} +(6.87936 + 8.80098i) q^{68} -2.81432 q^{69} +4.06505i q^{71} -4.17009i q^{72} +11.0784 q^{73} +11.4186i q^{74} +2.92162 q^{76} -15.4680i q^{77} +3.07838 q^{78} -6.92881i q^{79} +6.46800 q^{81} -12.1568 q^{82} -8.23287i q^{83} +7.12783 q^{84} -7.31124 q^{86} -1.57531i q^{87} +4.87936 q^{88} -7.15449 q^{89} -12.8371i q^{91} -14.1412 q^{92} -2.20620i q^{93} -14.7298 q^{94} -4.09171i q^{96} +8.18342 q^{97} -36.4752i q^{98} +8.58864i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} + 4 q^{7} - 2 q^{9} + 12 q^{12} - 6 q^{16} - 12 q^{17} - 8 q^{21} - 16 q^{22} - 16 q^{23} - 20 q^{26} + 12 q^{27} - 32 q^{28} - 6 q^{34} + 22 q^{36} - 16 q^{37} + 32 q^{48} + 14 q^{49} + 16 q^{51}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17009i 1.53448i −0.641358 0.767241i \(-0.721629\pi\)
0.641358 0.767241i \(-0.278371\pi\)
\(3\) −0.539189 −0.311301 −0.155650 0.987812i \(-0.549747\pi\)
−0.155650 + 0.987812i \(0.549747\pi\)
\(4\) −2.70928 −1.35464
\(5\) 0 0
\(6\) 1.17009i 0.477686i
\(7\) 4.87936 1.84423 0.922113 0.386921i \(-0.126462\pi\)
0.922113 + 0.386921i \(0.126462\pi\)
\(8\) 1.53919i 0.544185i
\(9\) −2.70928 −0.903092
\(10\) 0 0
\(11\) 3.17009i 0.955817i −0.878410 0.477909i \(-0.841395\pi\)
0.878410 0.477909i \(-0.158605\pi\)
\(12\) 1.46081 0.421700
\(13\) 2.63090i 0.729680i −0.931070 0.364840i \(-0.881124\pi\)
0.931070 0.364840i \(-0.118876\pi\)
\(14\) 10.5886i 2.82993i
\(15\) 0 0
\(16\) −2.07838 −0.519594
\(17\) −2.53919 3.24846i −0.615844 0.787868i
\(18\) 5.87936i 1.38578i
\(19\) −1.07838 −0.247397 −0.123698 0.992320i \(-0.539476\pi\)
−0.123698 + 0.992320i \(0.539476\pi\)
\(20\) 0 0
\(21\) −2.63090 −0.574109
\(22\) −6.87936 −1.46668
\(23\) 5.21953 1.08835 0.544174 0.838972i \(-0.316843\pi\)
0.544174 + 0.838972i \(0.316843\pi\)
\(24\) 0.829914i 0.169405i
\(25\) 0 0
\(26\) −5.70928 −1.11968
\(27\) 3.07838 0.592434
\(28\) −13.2195 −2.49826
\(29\) 2.92162i 0.542532i 0.962504 + 0.271266i \(0.0874422\pi\)
−0.962504 + 0.271266i \(0.912558\pi\)
\(30\) 0 0
\(31\) 4.09171i 0.734893i 0.930045 + 0.367446i \(0.119768\pi\)
−0.930045 + 0.367446i \(0.880232\pi\)
\(32\) 7.58864i 1.34149i
\(33\) 1.70928i 0.297547i
\(34\) −7.04945 + 5.51026i −1.20897 + 0.945002i
\(35\) 0 0
\(36\) 7.34017 1.22336
\(37\) −5.26180 −0.865034 −0.432517 0.901626i \(-0.642374\pi\)
−0.432517 + 0.901626i \(0.642374\pi\)
\(38\) 2.34017i 0.379626i
\(39\) 1.41855i 0.227150i
\(40\) 0 0
\(41\) 5.60197i 0.874880i −0.899247 0.437440i \(-0.855885\pi\)
0.899247 0.437440i \(-0.144115\pi\)
\(42\) 5.70928i 0.880960i
\(43\) 3.36910i 0.513783i −0.966440 0.256892i \(-0.917302\pi\)
0.966440 0.256892i \(-0.0826984\pi\)
\(44\) 8.58864i 1.29479i
\(45\) 0 0
\(46\) 11.3268i 1.67005i
\(47\) 6.78765i 0.990081i −0.868870 0.495040i \(-0.835153\pi\)
0.868870 0.495040i \(-0.164847\pi\)
\(48\) 1.12064 0.161750
\(49\) 16.8082 2.40117
\(50\) 0 0
\(51\) 1.36910 + 1.75154i 0.191713 + 0.245264i
\(52\) 7.12783i 0.988452i
\(53\) 3.75872i 0.516300i −0.966105 0.258150i \(-0.916887\pi\)
0.966105 0.258150i \(-0.0831129\pi\)
\(54\) 6.68035i 0.909080i
\(55\) 0 0
\(56\) 7.51026i 1.00360i
\(57\) 0.581449 0.0770148
\(58\) 6.34017 0.832505
\(59\) 2.34017 0.304665 0.152332 0.988329i \(-0.451322\pi\)
0.152332 + 0.988329i \(0.451322\pi\)
\(60\) 0 0
\(61\) 12.2557i 1.56918i 0.620018 + 0.784588i \(0.287125\pi\)
−0.620018 + 0.784588i \(0.712875\pi\)
\(62\) 8.87936 1.12768
\(63\) −13.2195 −1.66550
\(64\) 12.3112 1.53891
\(65\) 0 0
\(66\) 3.70928 0.456580
\(67\) 10.2062i 1.24689i 0.781869 + 0.623443i \(0.214267\pi\)
−0.781869 + 0.623443i \(0.785733\pi\)
\(68\) 6.87936 + 8.80098i 0.834245 + 1.06728i
\(69\) −2.81432 −0.338804
\(70\) 0 0
\(71\) 4.06505i 0.482432i 0.970471 + 0.241216i \(0.0775463\pi\)
−0.970471 + 0.241216i \(0.922454\pi\)
\(72\) 4.17009i 0.491449i
\(73\) 11.0784 1.29663 0.648313 0.761374i \(-0.275475\pi\)
0.648313 + 0.761374i \(0.275475\pi\)
\(74\) 11.4186i 1.32738i
\(75\) 0 0
\(76\) 2.92162 0.335133
\(77\) 15.4680i 1.76274i
\(78\) 3.07838 0.348558
\(79\) 6.92881i 0.779552i −0.920910 0.389776i \(-0.872552\pi\)
0.920910 0.389776i \(-0.127448\pi\)
\(80\) 0 0
\(81\) 6.46800 0.718667
\(82\) −12.1568 −1.34249
\(83\) 8.23287i 0.903674i −0.892100 0.451837i \(-0.850769\pi\)
0.892100 0.451837i \(-0.149231\pi\)
\(84\) 7.12783 0.777710
\(85\) 0 0
\(86\) −7.31124 −0.788392
\(87\) 1.57531i 0.168891i
\(88\) 4.87936 0.520142
\(89\) −7.15449 −0.758374 −0.379187 0.925320i \(-0.623796\pi\)
−0.379187 + 0.925320i \(0.623796\pi\)
\(90\) 0 0
\(91\) 12.8371i 1.34569i
\(92\) −14.1412 −1.47432
\(93\) 2.20620i 0.228773i
\(94\) −14.7298 −1.51926
\(95\) 0 0
\(96\) 4.09171i 0.417608i
\(97\) 8.18342 0.830900 0.415450 0.909616i \(-0.363624\pi\)
0.415450 + 0.909616i \(0.363624\pi\)
\(98\) 36.4752i 3.68455i
\(99\) 8.58864i 0.863191i
\(100\) 0 0
\(101\) −2.47414 −0.246186 −0.123093 0.992395i \(-0.539281\pi\)
−0.123093 + 0.992395i \(0.539281\pi\)
\(102\) 3.80098 2.97107i 0.376354 0.294180i
\(103\) 19.6514i 1.93631i 0.250348 + 0.968156i \(0.419455\pi\)
−0.250348 + 0.968156i \(0.580545\pi\)
\(104\) 4.04945 0.397081
\(105\) 0 0
\(106\) −8.15676 −0.792254
\(107\) 12.6381 1.22177 0.610885 0.791719i \(-0.290814\pi\)
0.610885 + 0.791719i \(0.290814\pi\)
\(108\) −8.34017 −0.802534
\(109\) 8.15676i 0.781275i 0.920544 + 0.390638i \(0.127745\pi\)
−0.920544 + 0.390638i \(0.872255\pi\)
\(110\) 0 0
\(111\) 2.83710 0.269286
\(112\) −10.1412 −0.958249
\(113\) 17.0205 1.60116 0.800578 0.599229i \(-0.204526\pi\)
0.800578 + 0.599229i \(0.204526\pi\)
\(114\) 1.26180i 0.118178i
\(115\) 0 0
\(116\) 7.91548i 0.734934i
\(117\) 7.12783i 0.658968i
\(118\) 5.07838i 0.467503i
\(119\) −12.3896 15.8504i −1.13575 1.45301i
\(120\) 0 0
\(121\) 0.950552 0.0864138
\(122\) 26.5958 2.40787
\(123\) 3.02052i 0.272351i
\(124\) 11.0856i 0.995513i
\(125\) 0 0
\(126\) 28.6875i 2.55569i
\(127\) 8.04945i 0.714273i −0.934052 0.357137i \(-0.883753\pi\)
0.934052 0.357137i \(-0.116247\pi\)
\(128\) 11.5392i 1.01993i
\(129\) 1.81658i 0.159941i
\(130\) 0 0
\(131\) 11.6937i 1.02168i 0.859675 + 0.510841i \(0.170666\pi\)
−0.859675 + 0.510841i \(0.829334\pi\)
\(132\) 4.63090i 0.403068i
\(133\) −5.26180 −0.456256
\(134\) 22.1483 1.91333
\(135\) 0 0
\(136\) 5.00000 3.90829i 0.428746 0.335133i
\(137\) 1.95055i 0.166647i 0.996523 + 0.0833234i \(0.0265535\pi\)
−0.996523 + 0.0833234i \(0.973447\pi\)
\(138\) 6.10731i 0.519889i
\(139\) 2.00719i 0.170247i 0.996370 + 0.0851237i \(0.0271286\pi\)
−0.996370 + 0.0851237i \(0.972871\pi\)
\(140\) 0 0
\(141\) 3.65983i 0.308213i
\(142\) 8.82150 0.740284
\(143\) −8.34017 −0.697440
\(144\) 5.63090 0.469241
\(145\) 0 0
\(146\) 24.0410i 1.98965i
\(147\) −9.06278 −0.747485
\(148\) 14.2557 1.17181
\(149\) 14.2823 1.17005 0.585026 0.811014i \(-0.301084\pi\)
0.585026 + 0.811014i \(0.301084\pi\)
\(150\) 0 0
\(151\) 12.8638 1.04684 0.523419 0.852075i \(-0.324656\pi\)
0.523419 + 0.852075i \(0.324656\pi\)
\(152\) 1.65983i 0.134630i
\(153\) 6.87936 + 8.80098i 0.556163 + 0.711517i
\(154\) −33.5669 −2.70490
\(155\) 0 0
\(156\) 3.84324i 0.307706i
\(157\) 3.75872i 0.299979i 0.988688 + 0.149989i \(0.0479240\pi\)
−0.988688 + 0.149989i \(0.952076\pi\)
\(158\) −15.0361 −1.19621
\(159\) 2.02666i 0.160725i
\(160\) 0 0
\(161\) 25.4680 2.00716
\(162\) 14.0361i 1.10278i
\(163\) −8.69594 −0.681119 −0.340559 0.940223i \(-0.610616\pi\)
−0.340559 + 0.940223i \(0.610616\pi\)
\(164\) 15.1773i 1.18515i
\(165\) 0 0
\(166\) −17.8660 −1.38667
\(167\) −1.37629 −0.106501 −0.0532503 0.998581i \(-0.516958\pi\)
−0.0532503 + 0.998581i \(0.516958\pi\)
\(168\) 4.04945i 0.312422i
\(169\) 6.07838 0.467568
\(170\) 0 0
\(171\) 2.92162 0.223422
\(172\) 9.12783i 0.695990i
\(173\) −17.3607 −1.31991 −0.659954 0.751306i \(-0.729424\pi\)
−0.659954 + 0.751306i \(0.729424\pi\)
\(174\) −3.41855 −0.259160
\(175\) 0 0
\(176\) 6.58864i 0.496637i
\(177\) −1.26180 −0.0948423
\(178\) 15.5259i 1.16371i
\(179\) −6.83710 −0.511029 −0.255514 0.966805i \(-0.582245\pi\)
−0.255514 + 0.966805i \(0.582245\pi\)
\(180\) 0 0
\(181\) 15.0205i 1.11647i 0.829684 + 0.558233i \(0.188521\pi\)
−0.829684 + 0.558233i \(0.811479\pi\)
\(182\) −27.8576 −2.06494
\(183\) 6.60811i 0.488486i
\(184\) 8.03385i 0.592263i
\(185\) 0 0
\(186\) −4.78765 −0.351048
\(187\) −10.2979 + 8.04945i −0.753058 + 0.588634i
\(188\) 18.3896i 1.34120i
\(189\) 15.0205 1.09258
\(190\) 0 0
\(191\) −24.2823 −1.75701 −0.878503 0.477736i \(-0.841457\pi\)
−0.878503 + 0.477736i \(0.841457\pi\)
\(192\) −6.63809 −0.479063
\(193\) −11.8576 −0.853530 −0.426765 0.904363i \(-0.640347\pi\)
−0.426765 + 0.904363i \(0.640347\pi\)
\(194\) 17.7587i 1.27500i
\(195\) 0 0
\(196\) −45.5380 −3.25271
\(197\) 18.2557 1.30066 0.650331 0.759651i \(-0.274630\pi\)
0.650331 + 0.759651i \(0.274630\pi\)
\(198\) 18.6381 1.32455
\(199\) 3.72487i 0.264049i −0.991246 0.132025i \(-0.957852\pi\)
0.991246 0.132025i \(-0.0421478\pi\)
\(200\) 0 0
\(201\) 5.50307i 0.388157i
\(202\) 5.36910i 0.377769i
\(203\) 14.2557i 1.00055i
\(204\) −3.70928 4.74539i −0.259701 0.332244i
\(205\) 0 0
\(206\) 42.6453 2.97124
\(207\) −14.1412 −0.982878
\(208\) 5.46800i 0.379138i
\(209\) 3.41855i 0.236466i
\(210\) 0 0
\(211\) 22.2485i 1.53165i −0.643051 0.765824i \(-0.722332\pi\)
0.643051 0.765824i \(-0.277668\pi\)
\(212\) 10.1834i 0.699400i
\(213\) 2.19183i 0.150182i
\(214\) 27.4257i 1.87478i
\(215\) 0 0
\(216\) 4.73820i 0.322394i
\(217\) 19.9649i 1.35531i
\(218\) 17.7009 1.19885
\(219\) −5.97334 −0.403641
\(220\) 0 0
\(221\) −8.54638 + 6.68035i −0.574892 + 0.449369i
\(222\) 6.15676i 0.413214i
\(223\) 2.19183i 0.146776i 0.997303 + 0.0733878i \(0.0233811\pi\)
−0.997303 + 0.0733878i \(0.976619\pi\)
\(224\) 37.0277i 2.47402i
\(225\) 0 0
\(226\) 36.9360i 2.45695i
\(227\) −9.55971 −0.634500 −0.317250 0.948342i \(-0.602759\pi\)
−0.317250 + 0.948342i \(0.602759\pi\)
\(228\) −1.57531 −0.104327
\(229\) −7.36910 −0.486964 −0.243482 0.969905i \(-0.578290\pi\)
−0.243482 + 0.969905i \(0.578290\pi\)
\(230\) 0 0
\(231\) 8.34017i 0.548743i
\(232\) −4.49693 −0.295238
\(233\) 9.44521 0.618776 0.309388 0.950936i \(-0.399876\pi\)
0.309388 + 0.950936i \(0.399876\pi\)
\(234\) 15.4680 1.01117
\(235\) 0 0
\(236\) −6.34017 −0.412710
\(237\) 3.73594i 0.242675i
\(238\) −34.3968 + 26.8865i −2.22961 + 1.74280i
\(239\) −6.25565 −0.404644 −0.202322 0.979319i \(-0.564849\pi\)
−0.202322 + 0.979319i \(0.564849\pi\)
\(240\) 0 0
\(241\) 2.49693i 0.160841i −0.996761 0.0804207i \(-0.974374\pi\)
0.996761 0.0804207i \(-0.0256264\pi\)
\(242\) 2.06278i 0.132600i
\(243\) −12.7226 −0.816156
\(244\) 33.2039i 2.12566i
\(245\) 0 0
\(246\) 6.55479 0.417918
\(247\) 2.83710i 0.180520i
\(248\) −6.29791 −0.399918
\(249\) 4.43907i 0.281315i
\(250\) 0 0
\(251\) −11.8166 −0.745856 −0.372928 0.927860i \(-0.621646\pi\)
−0.372928 + 0.927860i \(0.621646\pi\)
\(252\) 35.8154 2.25616
\(253\) 16.5464i 1.04026i
\(254\) −17.4680 −1.09604
\(255\) 0 0
\(256\) −0.418551 −0.0261594
\(257\) 14.9444i 0.932207i 0.884730 + 0.466103i \(0.154342\pi\)
−0.884730 + 0.466103i \(0.845658\pi\)
\(258\) 3.94214 0.245427
\(259\) −25.6742 −1.59532
\(260\) 0 0
\(261\) 7.91548i 0.489956i
\(262\) 25.3763 1.56775
\(263\) 12.9444i 0.798186i 0.916910 + 0.399093i \(0.130675\pi\)
−0.916910 + 0.399093i \(0.869325\pi\)
\(264\) −2.63090 −0.161921
\(265\) 0 0
\(266\) 11.4186i 0.700116i
\(267\) 3.85762 0.236083
\(268\) 27.6514i 1.68908i
\(269\) 7.47641i 0.455845i 0.973679 + 0.227922i \(0.0731932\pi\)
−0.973679 + 0.227922i \(0.926807\pi\)
\(270\) 0 0
\(271\) −2.15676 −0.131014 −0.0655068 0.997852i \(-0.520866\pi\)
−0.0655068 + 0.997852i \(0.520866\pi\)
\(272\) 5.27739 + 6.75154i 0.319989 + 0.409372i
\(273\) 6.92162i 0.418916i
\(274\) 4.23287 0.255717
\(275\) 0 0
\(276\) 7.62475 0.458956
\(277\) −12.1568 −0.730429 −0.365214 0.930923i \(-0.619004\pi\)
−0.365214 + 0.930923i \(0.619004\pi\)
\(278\) 4.35577 0.261242
\(279\) 11.0856i 0.663675i
\(280\) 0 0
\(281\) 13.1194 0.782639 0.391319 0.920255i \(-0.372019\pi\)
0.391319 + 0.920255i \(0.372019\pi\)
\(282\) 7.94214 0.472948
\(283\) −13.9577 −0.829701 −0.414851 0.909889i \(-0.636166\pi\)
−0.414851 + 0.909889i \(0.636166\pi\)
\(284\) 11.0133i 0.653521i
\(285\) 0 0
\(286\) 18.0989i 1.07021i
\(287\) 27.3340i 1.61348i
\(288\) 20.5597i 1.21149i
\(289\) −4.10504 + 16.4969i −0.241473 + 0.970408i
\(290\) 0 0
\(291\) −4.41241 −0.258660
\(292\) −30.0144 −1.75646
\(293\) 4.73820i 0.276809i −0.990376 0.138404i \(-0.955803\pi\)
0.990376 0.138404i \(-0.0441974\pi\)
\(294\) 19.6670i 1.14700i
\(295\) 0 0
\(296\) 8.09890i 0.470739i
\(297\) 9.75872i 0.566259i
\(298\) 30.9939i 1.79543i
\(299\) 13.7321i 0.794146i
\(300\) 0 0
\(301\) 16.4391i 0.947532i
\(302\) 27.9155i 1.60636i
\(303\) 1.33403 0.0766380
\(304\) 2.24128 0.128546
\(305\) 0 0
\(306\) 19.0989 14.9288i 1.09181 0.853423i
\(307\) 21.5936i 1.23241i −0.787586 0.616205i \(-0.788669\pi\)
0.787586 0.616205i \(-0.211331\pi\)
\(308\) 41.9071i 2.38788i
\(309\) 10.5958i 0.602775i
\(310\) 0 0
\(311\) 24.2628i 1.37582i 0.725796 + 0.687910i \(0.241472\pi\)
−0.725796 + 0.687910i \(0.758528\pi\)
\(312\) −2.18342 −0.123612
\(313\) 4.07223 0.230176 0.115088 0.993355i \(-0.463285\pi\)
0.115088 + 0.993355i \(0.463285\pi\)
\(314\) 8.15676 0.460312
\(315\) 0 0
\(316\) 18.7721i 1.05601i
\(317\) −8.05786 −0.452574 −0.226287 0.974061i \(-0.572659\pi\)
−0.226287 + 0.974061i \(0.572659\pi\)
\(318\) 4.39803 0.246629
\(319\) 9.26180 0.518561
\(320\) 0 0
\(321\) −6.81432 −0.380338
\(322\) 55.2678i 3.07995i
\(323\) 2.73820 + 3.50307i 0.152358 + 0.194916i
\(324\) −17.5236 −0.973533
\(325\) 0 0
\(326\) 18.8710i 1.04517i
\(327\) 4.39803i 0.243212i
\(328\) 8.62249 0.476097
\(329\) 33.1194i 1.82593i
\(330\) 0 0
\(331\) −10.0722 −0.553620 −0.276810 0.960925i \(-0.589277\pi\)
−0.276810 + 0.960925i \(0.589277\pi\)
\(332\) 22.3051i 1.22415i
\(333\) 14.2557 0.781205
\(334\) 2.98667i 0.163423i
\(335\) 0 0
\(336\) 5.46800 0.298304
\(337\) 11.2351 0.612017 0.306008 0.952029i \(-0.401006\pi\)
0.306008 + 0.952029i \(0.401006\pi\)
\(338\) 13.1906i 0.717474i
\(339\) −9.17727 −0.498441
\(340\) 0 0
\(341\) 12.9711 0.702423
\(342\) 6.34017i 0.342837i
\(343\) 47.8576 2.58407
\(344\) 5.18568 0.279593
\(345\) 0 0
\(346\) 37.6742i 2.02538i
\(347\) 8.74927 0.469685 0.234843 0.972033i \(-0.424543\pi\)
0.234843 + 0.972033i \(0.424543\pi\)
\(348\) 4.26794i 0.228786i
\(349\) 26.9093 1.44042 0.720212 0.693754i \(-0.244045\pi\)
0.720212 + 0.693754i \(0.244045\pi\)
\(350\) 0 0
\(351\) 8.09890i 0.432287i
\(352\) 24.0566 1.28222
\(353\) 18.3135i 0.974730i −0.873198 0.487365i \(-0.837958\pi\)
0.873198 0.487365i \(-0.162042\pi\)
\(354\) 2.73820i 0.145534i
\(355\) 0 0
\(356\) 19.3835 1.02732
\(357\) 6.68035 + 8.54638i 0.353561 + 0.452322i
\(358\) 14.8371i 0.784165i
\(359\) 9.57531 0.505365 0.252683 0.967549i \(-0.418687\pi\)
0.252683 + 0.967549i \(0.418687\pi\)
\(360\) 0 0
\(361\) −17.8371 −0.938795
\(362\) 32.5958 1.71320
\(363\) −0.512527 −0.0269007
\(364\) 34.7792i 1.82293i
\(365\) 0 0
\(366\) −14.3402 −0.749573
\(367\) −12.1145 −0.632371 −0.316186 0.948697i \(-0.602402\pi\)
−0.316186 + 0.948697i \(0.602402\pi\)
\(368\) −10.8482 −0.565500
\(369\) 15.1773i 0.790097i
\(370\) 0 0
\(371\) 18.3402i 0.952174i
\(372\) 5.97721i 0.309904i
\(373\) 30.4619i 1.57726i −0.614871 0.788628i \(-0.710792\pi\)
0.614871 0.788628i \(-0.289208\pi\)
\(374\) 17.4680 + 22.3474i 0.903249 + 1.15555i
\(375\) 0 0
\(376\) 10.4475 0.538788
\(377\) 7.68649 0.395874
\(378\) 32.5958i 1.67655i
\(379\) 0.986669i 0.0506818i 0.999679 + 0.0253409i \(0.00806712\pi\)
−0.999679 + 0.0253409i \(0.991933\pi\)
\(380\) 0 0
\(381\) 4.34017i 0.222354i
\(382\) 52.6947i 2.69610i
\(383\) 24.9588i 1.27533i 0.770312 + 0.637667i \(0.220100\pi\)
−0.770312 + 0.637667i \(0.779900\pi\)
\(384\) 6.22180i 0.317505i
\(385\) 0 0
\(386\) 25.7321i 1.30973i
\(387\) 9.12783i 0.463993i
\(388\) −22.1711 −1.12557
\(389\) −33.8082 −1.71414 −0.857071 0.515198i \(-0.827718\pi\)
−0.857071 + 0.515198i \(0.827718\pi\)
\(390\) 0 0
\(391\) −13.2534 16.9555i −0.670252 0.857475i
\(392\) 25.8710i 1.30668i
\(393\) 6.30510i 0.318050i
\(394\) 39.6163i 1.99584i
\(395\) 0 0
\(396\) 23.2690i 1.16931i
\(397\) −28.5236 −1.43156 −0.715779 0.698327i \(-0.753928\pi\)
−0.715779 + 0.698327i \(0.753928\pi\)
\(398\) −8.08330 −0.405179
\(399\) 2.83710 0.142033
\(400\) 0 0
\(401\) 33.0928i 1.65257i −0.563250 0.826287i \(-0.690449\pi\)
0.563250 0.826287i \(-0.309551\pi\)
\(402\) −11.9421 −0.595620
\(403\) 10.7649 0.536236
\(404\) 6.70313 0.333493
\(405\) 0 0
\(406\) 30.9360 1.53533
\(407\) 16.6803i 0.826814i
\(408\) −2.69594 + 2.10731i −0.133469 + 0.104327i
\(409\) 30.1978 1.49318 0.746592 0.665282i \(-0.231689\pi\)
0.746592 + 0.665282i \(0.231689\pi\)
\(410\) 0 0
\(411\) 1.05172i 0.0518773i
\(412\) 53.2411i 2.62300i
\(413\) 11.4186 0.561870
\(414\) 30.6875i 1.50821i
\(415\) 0 0
\(416\) 19.9649 0.978861
\(417\) 1.08225i 0.0529982i
\(418\) 7.41855 0.362853
\(419\) 18.1639i 0.887367i −0.896184 0.443683i \(-0.853671\pi\)
0.896184 0.443683i \(-0.146329\pi\)
\(420\) 0 0
\(421\) 0.760991 0.0370884 0.0185442 0.999828i \(-0.494097\pi\)
0.0185442 + 0.999828i \(0.494097\pi\)
\(422\) −48.2811 −2.35029
\(423\) 18.3896i 0.894134i
\(424\) 5.78539 0.280963
\(425\) 0 0
\(426\) −4.75646 −0.230451
\(427\) 59.7998i 2.89391i
\(428\) −34.2401 −1.65506
\(429\) 4.49693 0.217114
\(430\) 0 0
\(431\) 6.34736i 0.305742i 0.988246 + 0.152871i \(0.0488518\pi\)
−0.988246 + 0.152871i \(0.951148\pi\)
\(432\) −6.39803 −0.307825
\(433\) 3.62475i 0.174195i −0.996200 0.0870973i \(-0.972241\pi\)
0.996200 0.0870973i \(-0.0277591\pi\)
\(434\) 43.3256 2.07970
\(435\) 0 0
\(436\) 22.0989i 1.05835i
\(437\) −5.62863 −0.269254
\(438\) 12.9627i 0.619380i
\(439\) 6.40522i 0.305704i 0.988249 + 0.152852i \(0.0488459\pi\)
−0.988249 + 0.152852i \(0.951154\pi\)
\(440\) 0 0
\(441\) −45.5380 −2.16847
\(442\) 14.4969 + 18.5464i 0.689549 + 0.882161i
\(443\) 27.4824i 1.30573i −0.757476 0.652864i \(-0.773568\pi\)
0.757476 0.652864i \(-0.226432\pi\)
\(444\) −7.68649 −0.364785
\(445\) 0 0
\(446\) 4.75646 0.225225
\(447\) −7.70086 −0.364238
\(448\) 60.0710 2.83809
\(449\) 28.7526i 1.35692i 0.734638 + 0.678459i \(0.237352\pi\)
−0.734638 + 0.678459i \(0.762648\pi\)
\(450\) 0 0
\(451\) −17.7587 −0.836226
\(452\) −46.1133 −2.16899
\(453\) −6.93600 −0.325882
\(454\) 20.7454i 0.973630i
\(455\) 0 0
\(456\) 0.894960i 0.0419104i
\(457\) 31.4101i 1.46930i −0.678444 0.734652i \(-0.737345\pi\)
0.678444 0.734652i \(-0.262655\pi\)
\(458\) 15.9916i 0.747238i
\(459\) −7.81658 10.0000i −0.364847 0.466760i
\(460\) 0 0
\(461\) −7.75872 −0.361360 −0.180680 0.983542i \(-0.557830\pi\)
−0.180680 + 0.983542i \(0.557830\pi\)
\(462\) 18.0989 0.842037
\(463\) 24.2329i 1.12620i −0.826390 0.563098i \(-0.809609\pi\)
0.826390 0.563098i \(-0.190391\pi\)
\(464\) 6.07223i 0.281896i
\(465\) 0 0
\(466\) 20.4969i 0.949502i
\(467\) 12.3174i 0.569981i −0.958530 0.284990i \(-0.908010\pi\)
0.958530 0.284990i \(-0.0919904\pi\)
\(468\) 19.3112i 0.892663i
\(469\) 49.7998i 2.29954i
\(470\) 0 0
\(471\) 2.02666i 0.0933837i
\(472\) 3.60197i 0.165794i
\(473\) −10.6803 −0.491083
\(474\) 8.10731 0.372381
\(475\) 0 0
\(476\) 33.5669 + 42.9432i 1.53854 + 1.96830i
\(477\) 10.1834i 0.466267i
\(478\) 13.5753i 0.620920i
\(479\) 2.14957i 0.0982162i −0.998793 0.0491081i \(-0.984362\pi\)
0.998793 0.0491081i \(-0.0156379\pi\)
\(480\) 0 0
\(481\) 13.8432i 0.631198i
\(482\) −5.41855 −0.246808
\(483\) −13.7321 −0.624830
\(484\) −2.57531 −0.117059
\(485\) 0 0
\(486\) 27.6092i 1.25238i
\(487\) 40.0833 1.81635 0.908174 0.418593i \(-0.137477\pi\)
0.908174 + 0.418593i \(0.137477\pi\)
\(488\) −18.8638 −0.853922
\(489\) 4.68876 0.212033
\(490\) 0 0
\(491\) −2.25565 −0.101796 −0.0508981 0.998704i \(-0.516208\pi\)
−0.0508981 + 0.998704i \(0.516208\pi\)
\(492\) 8.18342i 0.368937i
\(493\) 9.49079 7.41855i 0.427443 0.334115i
\(494\) 6.15676 0.277006
\(495\) 0 0
\(496\) 8.50412i 0.381846i
\(497\) 19.8348i 0.889714i
\(498\) 9.63317 0.431672
\(499\) 42.5452i 1.90458i 0.305190 + 0.952291i \(0.401280\pi\)
−0.305190 + 0.952291i \(0.598720\pi\)
\(500\) 0 0
\(501\) 0.742080 0.0331537
\(502\) 25.6430i 1.14450i
\(503\) −9.55971 −0.426246 −0.213123 0.977025i \(-0.568364\pi\)
−0.213123 + 0.977025i \(0.568364\pi\)
\(504\) 20.3474i 0.906343i
\(505\) 0 0
\(506\) −35.9071 −1.59626
\(507\) −3.27739 −0.145554
\(508\) 21.8082i 0.967581i
\(509\) −28.3545 −1.25679 −0.628397 0.777893i \(-0.716288\pi\)
−0.628397 + 0.777893i \(0.716288\pi\)
\(510\) 0 0
\(511\) 54.0554 2.39127
\(512\) 22.1701i 0.979789i
\(513\) −3.31965 −0.146566
\(514\) 32.4307 1.43046
\(515\) 0 0
\(516\) 4.92162i 0.216662i
\(517\) −21.5174 −0.946336
\(518\) 55.7152i 2.44799i
\(519\) 9.36069 0.410889
\(520\) 0 0
\(521\) 15.1050i 0.661764i 0.943672 + 0.330882i \(0.107346\pi\)
−0.943672 + 0.330882i \(0.892654\pi\)
\(522\) −17.1773 −0.751829
\(523\) 10.8865i 0.476036i 0.971261 + 0.238018i \(0.0764977\pi\)
−0.971261 + 0.238018i \(0.923502\pi\)
\(524\) 31.6814i 1.38401i
\(525\) 0 0
\(526\) 28.0905 1.22480
\(527\) 13.2918 10.3896i 0.578999 0.452579i
\(528\) 3.55252i 0.154604i
\(529\) 4.24354 0.184502
\(530\) 0 0
\(531\) −6.34017 −0.275140
\(532\) 14.2557 0.618061
\(533\) −14.7382 −0.638383
\(534\) 8.37137i 0.362265i
\(535\) 0 0
\(536\) −15.7093 −0.678537
\(537\) 3.68649 0.159084
\(538\) 16.2245 0.699486
\(539\) 53.2834i 2.29508i
\(540\) 0 0
\(541\) 6.86830i 0.295291i 0.989040 + 0.147646i \(0.0471695\pi\)
−0.989040 + 0.147646i \(0.952830\pi\)
\(542\) 4.68035i 0.201038i
\(543\) 8.09890i 0.347557i
\(544\) 24.6514 19.2690i 1.05692 0.826151i
\(545\) 0 0
\(546\) 15.0205 0.642819
\(547\) 5.89988 0.252261 0.126130 0.992014i \(-0.459744\pi\)
0.126130 + 0.992014i \(0.459744\pi\)
\(548\) 5.28458i 0.225746i
\(549\) 33.2039i 1.41711i
\(550\) 0 0
\(551\) 3.15061i 0.134221i
\(552\) 4.33176i 0.184372i
\(553\) 33.8082i 1.43767i
\(554\) 26.3812i 1.12083i
\(555\) 0 0
\(556\) 5.43802i 0.230624i
\(557\) 17.7359i 0.751496i −0.926722 0.375748i \(-0.877386\pi\)
0.926722 0.375748i \(-0.122614\pi\)
\(558\) −24.0566 −1.01840
\(559\) −8.86376 −0.374897
\(560\) 0 0
\(561\) 5.55252 4.34017i 0.234428 0.183242i
\(562\) 28.4703i 1.20095i
\(563\) 38.8020i 1.63531i 0.575708 + 0.817655i \(0.304726\pi\)
−0.575708 + 0.817655i \(0.695274\pi\)
\(564\) 9.91548i 0.417517i
\(565\) 0 0
\(566\) 30.2895i 1.27316i
\(567\) 31.5597 1.32538
\(568\) −6.25687 −0.262533
\(569\) −12.1568 −0.509638 −0.254819 0.966989i \(-0.582016\pi\)
−0.254819 + 0.966989i \(0.582016\pi\)
\(570\) 0 0
\(571\) 15.4569i 0.646853i −0.946253 0.323426i \(-0.895165\pi\)
0.946253 0.323426i \(-0.104835\pi\)
\(572\) 22.5958 0.944779
\(573\) 13.0928 0.546958
\(574\) −59.3172 −2.47585
\(575\) 0 0
\(576\) −33.3545 −1.38977
\(577\) 2.36296i 0.0983713i −0.998790 0.0491856i \(-0.984337\pi\)
0.998790 0.0491856i \(-0.0156626\pi\)
\(578\) 35.7998 + 8.90829i 1.48907 + 0.370536i
\(579\) 6.39350 0.265705
\(580\) 0 0
\(581\) 40.1711i 1.66658i
\(582\) 9.57531i 0.396909i
\(583\) −11.9155 −0.493489
\(584\) 17.0517i 0.705605i
\(585\) 0 0
\(586\) −10.2823 −0.424758
\(587\) 3.65142i 0.150710i −0.997157 0.0753550i \(-0.975991\pi\)
0.997157 0.0753550i \(-0.0240090\pi\)
\(588\) 24.5536 1.01257
\(589\) 4.41241i 0.181810i
\(590\) 0 0
\(591\) −9.84324 −0.404897
\(592\) 10.9360 0.449467
\(593\) 1.38735i 0.0569718i 0.999594 + 0.0284859i \(0.00906857\pi\)
−0.999594 + 0.0284859i \(0.990931\pi\)
\(594\) −21.1773 −0.868914
\(595\) 0 0
\(596\) −38.6947 −1.58500
\(597\) 2.00841i 0.0821988i
\(598\) −29.7998 −1.21860
\(599\) 0.451356 0.0184419 0.00922095 0.999957i \(-0.497065\pi\)
0.00922095 + 0.999957i \(0.497065\pi\)
\(600\) 0 0
\(601\) 22.1301i 0.902705i 0.892346 + 0.451353i \(0.149058\pi\)
−0.892346 + 0.451353i \(0.850942\pi\)
\(602\) −35.6742 −1.45397
\(603\) 27.6514i 1.12605i
\(604\) −34.8515 −1.41809
\(605\) 0 0
\(606\) 2.89496i 0.117600i
\(607\) −10.2667 −0.416713 −0.208357 0.978053i \(-0.566811\pi\)
−0.208357 + 0.978053i \(0.566811\pi\)
\(608\) 8.18342i 0.331881i
\(609\) 7.68649i 0.311472i
\(610\) 0 0
\(611\) −17.8576 −0.722442
\(612\) −18.6381 23.8443i −0.753400 0.963848i
\(613\) 9.05172i 0.365595i 0.983151 + 0.182798i \(0.0585153\pi\)
−0.983151 + 0.182798i \(0.941485\pi\)
\(614\) −46.8599 −1.89111
\(615\) 0 0
\(616\) 23.8082 0.959259
\(617\) −17.8166 −0.717269 −0.358634 0.933478i \(-0.616757\pi\)
−0.358634 + 0.933478i \(0.616757\pi\)
\(618\) −22.9939 −0.924949
\(619\) 38.3884i 1.54296i −0.636254 0.771480i \(-0.719517\pi\)
0.636254 0.771480i \(-0.280483\pi\)
\(620\) 0 0
\(621\) 16.0677 0.644775
\(622\) 52.6525 2.11117
\(623\) −34.9093 −1.39861
\(624\) 2.94828i 0.118026i
\(625\) 0 0
\(626\) 8.83710i 0.353202i
\(627\) 1.84324i 0.0736121i
\(628\) 10.1834i 0.406363i
\(629\) 13.3607 + 17.0928i 0.532726 + 0.681533i
\(630\) 0 0
\(631\) −27.4863 −1.09421 −0.547105 0.837064i \(-0.684270\pi\)
−0.547105 + 0.837064i \(0.684270\pi\)
\(632\) 10.6647 0.424221
\(633\) 11.9961i 0.476803i
\(634\) 17.4863i 0.694468i
\(635\) 0 0
\(636\) 5.49079i 0.217724i
\(637\) 44.2206i 1.75208i
\(638\) 20.0989i 0.795723i
\(639\) 11.0133i 0.435681i
\(640\) 0 0
\(641\) 9.79976i 0.387067i 0.981094 + 0.193534i \(0.0619949\pi\)
−0.981094 + 0.193534i \(0.938005\pi\)
\(642\) 14.7877i 0.583622i
\(643\) 16.9372 0.667939 0.333969 0.942584i \(-0.391612\pi\)
0.333969 + 0.942584i \(0.391612\pi\)
\(644\) −68.9998 −2.71897
\(645\) 0 0
\(646\) 7.60197 5.94214i 0.299095 0.233790i
\(647\) 2.98545i 0.117370i −0.998277 0.0586850i \(-0.981309\pi\)
0.998277 0.0586850i \(-0.0186908\pi\)
\(648\) 9.95547i 0.391088i
\(649\) 7.41855i 0.291204i
\(650\) 0 0
\(651\) 10.7649i 0.421908i
\(652\) 23.5597 0.922669
\(653\) 40.1978 1.57306 0.786531 0.617551i \(-0.211875\pi\)
0.786531 + 0.617551i \(0.211875\pi\)
\(654\) −9.54411 −0.373204
\(655\) 0 0
\(656\) 11.6430i 0.454583i
\(657\) −30.0144 −1.17097
\(658\) −71.8720 −2.80186
\(659\) −43.9832 −1.71334 −0.856671 0.515864i \(-0.827471\pi\)
−0.856671 + 0.515864i \(0.827471\pi\)
\(660\) 0 0
\(661\) 26.1133 1.01569 0.507844 0.861449i \(-0.330443\pi\)
0.507844 + 0.861449i \(0.330443\pi\)
\(662\) 21.8576i 0.849521i
\(663\) 4.60811 3.60197i 0.178964 0.139889i
\(664\) 12.6719 0.491766
\(665\) 0 0
\(666\) 30.9360i 1.19875i
\(667\) 15.2495i 0.590463i
\(668\) 3.72875 0.144270
\(669\) 1.18181i 0.0456914i
\(670\) 0 0
\(671\) 38.8515 1.49984
\(672\) 19.9649i 0.770164i
\(673\) −13.3340 −0.513989 −0.256995 0.966413i \(-0.582732\pi\)
−0.256995 + 0.966413i \(0.582732\pi\)
\(674\) 24.3812i 0.939129i
\(675\) 0 0
\(676\) −16.4680 −0.633385
\(677\) 26.5113 1.01891 0.509456 0.860497i \(-0.329847\pi\)
0.509456 + 0.860497i \(0.329847\pi\)
\(678\) 19.9155i 0.764849i
\(679\) 39.9299 1.53237
\(680\) 0 0
\(681\) 5.15449 0.197520
\(682\) 28.1483i 1.07786i
\(683\) 5.71646 0.218734 0.109367 0.994001i \(-0.465118\pi\)
0.109367 + 0.994001i \(0.465118\pi\)
\(684\) −7.91548 −0.302656
\(685\) 0 0
\(686\) 103.855i 3.96521i
\(687\) 3.97334 0.151592
\(688\) 7.00227i 0.266959i
\(689\) −9.88882 −0.376734
\(690\) 0 0
\(691\) 43.8504i 1.66815i −0.551652 0.834075i \(-0.686002\pi\)
0.551652 0.834075i \(-0.313998\pi\)
\(692\) 47.0349 1.78800
\(693\) 41.9071i 1.59192i
\(694\) 18.9867i 0.720724i
\(695\) 0 0
\(696\) 2.42469 0.0919078
\(697\) −18.1978 + 14.2245i −0.689291 + 0.538790i
\(698\) 58.3956i 2.21031i
\(699\) −5.09275 −0.192626
\(700\) 0 0
\(701\) 0.0806452 0.00304593 0.00152296 0.999999i \(-0.499515\pi\)
0.00152296 + 0.999999i \(0.499515\pi\)
\(702\) −17.5753 −0.663337
\(703\) 5.67420 0.214007
\(704\) 39.0277i 1.47091i
\(705\) 0 0
\(706\) −39.7419 −1.49571
\(707\) −12.0722 −0.454023
\(708\) 3.41855 0.128477
\(709\) 10.8227i 0.406456i 0.979131 + 0.203228i \(0.0651433\pi\)
−0.979131 + 0.203228i \(0.934857\pi\)
\(710\) 0 0
\(711\) 18.7721i 0.704007i
\(712\) 11.0121i 0.412696i
\(713\) 21.3568i 0.799819i
\(714\) 18.5464 14.4969i 0.694081 0.542534i
\(715\) 0 0
\(716\) 18.5236 0.692259
\(717\) 3.37298 0.125966
\(718\) 20.7792i 0.775474i
\(719\) 43.7659i 1.63219i 0.577916 + 0.816097i \(0.303866\pi\)
−0.577916 + 0.816097i \(0.696134\pi\)
\(720\) 0 0
\(721\) 95.8864i 3.57100i
\(722\) 38.7081i 1.44056i
\(723\) 1.34632i 0.0500700i
\(724\) 40.6947i 1.51241i
\(725\) 0 0
\(726\) 1.11223i 0.0412786i
\(727\) 3.59809i 0.133446i −0.997772 0.0667229i \(-0.978746\pi\)
0.997772 0.0667229i \(-0.0212544\pi\)
\(728\) 19.7587 0.732307
\(729\) −12.5441 −0.464597
\(730\) 0 0
\(731\) −10.9444 + 8.55479i −0.404794 + 0.316410i
\(732\) 17.9032i 0.661721i
\(733\) 39.8264i 1.47102i 0.677513 + 0.735511i \(0.263058\pi\)
−0.677513 + 0.735511i \(0.736942\pi\)
\(734\) 26.2895i 0.970363i
\(735\) 0 0
\(736\) 39.6092i 1.46001i
\(737\) 32.3545 1.19180
\(738\) 32.9360 1.21239
\(739\) −13.7587 −0.506123 −0.253061 0.967450i \(-0.581437\pi\)
−0.253061 + 0.967450i \(0.581437\pi\)
\(740\) 0 0
\(741\) 1.52973i 0.0561962i
\(742\) −39.7998 −1.46110
\(743\) −9.34963 −0.343005 −0.171502 0.985184i \(-0.554862\pi\)
−0.171502 + 0.985184i \(0.554862\pi\)
\(744\) 3.39576 0.124495
\(745\) 0 0
\(746\) −66.1049 −2.42027
\(747\) 22.3051i 0.816101i
\(748\) 27.8999 21.8082i 1.02012 0.797386i
\(749\) 61.6658 2.25322
\(750\) 0 0
\(751\) 53.7392i 1.96097i 0.196586 + 0.980487i \(0.437014\pi\)
−0.196586 + 0.980487i \(0.562986\pi\)
\(752\) 14.1073i 0.514441i
\(753\) 6.37137 0.232186
\(754\) 16.6803i 0.607462i
\(755\) 0 0
\(756\) −40.6947 −1.48005
\(757\) 41.5136i 1.50884i −0.656394 0.754418i \(-0.727919\pi\)
0.656394 0.754418i \(-0.272081\pi\)
\(758\) 2.14116 0.0777703
\(759\) 8.92162i 0.323834i
\(760\) 0 0
\(761\) −18.0372 −0.653847 −0.326923 0.945051i \(-0.606012\pi\)
−0.326923 + 0.945051i \(0.606012\pi\)
\(762\) 9.41855 0.341198
\(763\) 39.7998i 1.44085i
\(764\) 65.7875 2.38011
\(765\) 0 0
\(766\) 54.1627 1.95698
\(767\) 6.15676i 0.222308i
\(768\) 0.225678 0.00814345
\(769\) 23.0843 0.832443 0.416221 0.909263i \(-0.363354\pi\)
0.416221 + 0.909263i \(0.363354\pi\)
\(770\) 0 0
\(771\) 8.05786i 0.290197i
\(772\) 32.1256 1.15622
\(773\) 27.4101i 0.985874i 0.870065 + 0.492937i \(0.164077\pi\)
−0.870065 + 0.492937i \(0.835923\pi\)
\(774\) 19.8082 0.711990
\(775\) 0 0
\(776\) 12.5958i 0.452164i
\(777\) 13.8432 0.496624
\(778\) 73.3667i 2.63032i
\(779\) 6.04104i 0.216443i
\(780\) 0 0
\(781\) 12.8865 0.461117
\(782\) −36.7948 + 28.7610i −1.31578 + 1.02849i
\(783\) 8.99386i 0.321414i
\(784\) −34.9337 −1.24763
\(785\) 0 0
\(786\) −13.6826 −0.488043
\(787\) −30.6069 −1.09102 −0.545509 0.838105i \(-0.683664\pi\)
−0.545509 + 0.838105i \(0.683664\pi\)
\(788\) −49.4596 −1.76192
\(789\) 6.97948i 0.248476i
\(790\) 0 0
\(791\) 83.0493 2.95289
\(792\) −13.2195 −0.469736
\(793\) 32.2434 1.14500
\(794\) 61.8987i 2.19670i
\(795\) 0 0
\(796\) 10.0917i 0.357691i
\(797\) 22.9770i 0.813888i 0.913453 + 0.406944i \(0.133406\pi\)
−0.913453 + 0.406944i \(0.866594\pi\)
\(798\) 6.15676i 0.217947i
\(799\) −22.0494 + 17.2351i −0.780053 + 0.609735i
\(800\) 0 0
\(801\) 19.3835 0.684882
\(802\) −71.8141 −2.53585
\(803\) 35.1194i 1.23934i
\(804\) 14.9093i 0.525812i
\(805\) 0 0
\(806\) 23.3607i 0.822845i
\(807\) 4.03120i 0.141905i
\(808\) 3.80817i 0.133971i
\(809\) 42.7670i 1.50361i −0.659388 0.751803i \(-0.729184\pi\)
0.659388 0.751803i \(-0.270816\pi\)
\(810\) 0 0
\(811\) 9.41136i 0.330478i 0.986254 + 0.165239i \(0.0528395\pi\)
−0.986254 + 0.165239i \(0.947161\pi\)
\(812\) 38.6225i 1.35538i
\(813\) 1.16290 0.0407846
\(814\) 36.1978 1.26873
\(815\) 0 0
\(816\) −2.84551 3.64035i −0.0996128 0.127438i
\(817\) 3.63317i 0.127108i
\(818\) 65.5318i 2.29127i
\(819\) 34.7792i 1.21529i
\(820\) 0 0
\(821\) 32.6681i 1.14012i −0.821602 0.570062i \(-0.806919\pi\)
0.821602 0.570062i \(-0.193081\pi\)
\(822\) −2.28231 −0.0796048
\(823\) −15.9265 −0.555164 −0.277582 0.960702i \(-0.589533\pi\)
−0.277582 + 0.960702i \(0.589533\pi\)
\(824\) −30.2472 −1.05371
\(825\) 0 0
\(826\) 24.7792i 0.862180i
\(827\) 6.01560 0.209183 0.104591 0.994515i \(-0.466647\pi\)
0.104591 + 0.994515i \(0.466647\pi\)
\(828\) 38.3123 1.33144
\(829\) −11.0472 −0.383684 −0.191842 0.981426i \(-0.561446\pi\)
−0.191842 + 0.981426i \(0.561446\pi\)
\(830\) 0 0
\(831\) 6.55479 0.227383
\(832\) 32.3896i 1.12291i
\(833\) −42.6791 54.6007i −1.47874 1.89180i
\(834\) −2.34858 −0.0813248
\(835\) 0 0
\(836\) 9.26180i 0.320326i
\(837\) 12.5958i 0.435375i
\(838\) −39.4173 −1.36165
\(839\) 35.9805i 1.24219i 0.783737 + 0.621093i \(0.213311\pi\)
−0.783737 + 0.621093i \(0.786689\pi\)
\(840\) 0 0
\(841\) 20.4641 0.705659
\(842\) 1.65142i 0.0569116i
\(843\) −7.07384 −0.243636
\(844\) 60.2772i 2.07483i
\(845\) 0 0
\(846\) 39.9071 1.37203
\(847\) 4.63809 0.159367
\(848\) 7.81205i 0.268267i
\(849\) 7.52586 0.258287
\(850\) 0 0
\(851\) −27.4641 −0.941458
\(852\) 5.93827i 0.203442i
\(853\) −28.7792 −0.985382 −0.492691 0.870204i \(-0.663987\pi\)
−0.492691 + 0.870204i \(0.663987\pi\)
\(854\) 129.771 4.44066
\(855\) 0 0
\(856\) 19.4524i 0.664869i
\(857\) 17.0661 0.582967 0.291483 0.956576i \(-0.405851\pi\)
0.291483 + 0.956576i \(0.405851\pi\)
\(858\) 9.75872i 0.333157i
\(859\) 18.9360 0.646088 0.323044 0.946384i \(-0.395294\pi\)
0.323044 + 0.946384i \(0.395294\pi\)
\(860\) 0 0
\(861\) 14.7382i 0.502277i
\(862\) 13.7743 0.469155
\(863\) 30.8332i 1.04958i −0.851233 0.524788i \(-0.824145\pi\)
0.851233 0.524788i \(-0.175855\pi\)
\(864\) 23.3607i 0.794747i
\(865\) 0 0
\(866\) −7.86603 −0.267299
\(867\) 2.21339 8.89496i 0.0751707 0.302089i
\(868\) 54.0905i 1.83595i
\(869\) −21.9649 −0.745109
\(870\) 0 0
\(871\) 26.8515 0.909828
\(872\) −12.5548 −0.425159
\(873\) −22.1711 −0.750379
\(874\) 12.2146i 0.413165i
\(875\) 0 0
\(876\) 16.1834 0.546787
\(877\) −4.30898 −0.145504 −0.0727519 0.997350i \(-0.523178\pi\)
−0.0727519 + 0.997350i \(0.523178\pi\)
\(878\) 13.8999 0.469098
\(879\) 2.55479i 0.0861708i
\(880\) 0 0
\(881\) 12.2245i 0.411852i −0.978568 0.205926i \(-0.933979\pi\)
0.978568 0.205926i \(-0.0660207\pi\)
\(882\) 98.8213i 3.32749i
\(883\) 28.2329i 0.950112i 0.879956 + 0.475056i \(0.157572\pi\)
−0.879956 + 0.475056i \(0.842428\pi\)
\(884\) 23.1545 18.0989i 0.778770 0.608732i
\(885\) 0 0
\(886\) −59.6391 −2.00362
\(887\) −5.17396 −0.173725 −0.0868623 0.996220i \(-0.527684\pi\)
−0.0868623 + 0.996220i \(0.527684\pi\)
\(888\) 4.36683i 0.146541i
\(889\) 39.2762i 1.31728i
\(890\) 0 0
\(891\) 20.5041i 0.686914i
\(892\) 5.93827i 0.198828i
\(893\) 7.31965i 0.244943i
\(894\) 16.7115i 0.558918i
\(895\) 0 0
\(896\) 56.3039i 1.88098i
\(897\) 7.40417i 0.247218i
\(898\) 62.3956 2.08217
\(899\) −11.9544 −0.398702
\(900\) 0 0
\(901\) −12.2101 + 9.54411i −0.406777 + 0.317960i
\(902\) 38.5380i 1.28317i
\(903\) 8.86376i 0.294968i
\(904\) 26.1978i 0.871326i
\(905\) 0 0
\(906\) 15.0517i 0.500060i
\(907\) 6.32457 0.210004 0.105002 0.994472i \(-0.466515\pi\)
0.105002 + 0.994472i \(0.466515\pi\)
\(908\) 25.8999 0.859518
\(909\) 6.70313 0.222329
\(910\) 0 0
\(911\) 27.6526i 0.916173i 0.888908 + 0.458086i \(0.151465\pi\)
−0.888908 + 0.458086i \(0.848535\pi\)
\(912\) −1.20847 −0.0400165
\(913\) −26.0989 −0.863747
\(914\) −68.1627 −2.25462
\(915\) 0 0
\(916\) 19.9649 0.659660
\(917\) 57.0577i 1.88421i
\(918\) −21.7009 + 16.9627i −0.716235 + 0.559851i
\(919\) 47.5318 1.56793 0.783965 0.620805i \(-0.213194\pi\)
0.783965 + 0.620805i \(0.213194\pi\)
\(920\) 0 0
\(921\) 11.6430i 0.383650i
\(922\) 16.8371i 0.554500i
\(923\) 10.6947 0.352021
\(924\) 22.5958i 0.743348i
\(925\) 0 0
\(926\) −52.5874 −1.72813
\(927\) 53.2411i 1.74867i
\(928\) −22.1711 −0.727803
\(929\) 43.7875i 1.43662i 0.695723 + 0.718310i \(0.255084\pi\)
−0.695723 + 0.718310i \(0.744916\pi\)
\(930\) 0 0
\(931\) −18.1256 −0.594041
\(932\) −25.5897 −0.838218
\(933\) 13.0823i 0.428294i
\(934\) −26.7298 −0.874626
\(935\) 0 0
\(936\) −10.9711 −0.358601
\(937\) 14.2367i 0.465094i 0.972585 + 0.232547i \(0.0747060\pi\)
−0.972585 + 0.232547i \(0.925294\pi\)
\(938\) 108.070 3.52860
\(939\) −2.19570 −0.0716541
\(940\) 0 0
\(941\) 35.2183i 1.14808i 0.818826 + 0.574042i \(0.194625\pi\)
−0.818826 + 0.574042i \(0.805375\pi\)
\(942\) −4.39803 −0.143296
\(943\) 29.2397i 0.952175i
\(944\) −4.86376 −0.158302
\(945\) 0 0
\(946\) 23.1773i 0.753558i
\(947\) −49.1227 −1.59627 −0.798137 0.602476i \(-0.794181\pi\)
−0.798137 + 0.602476i \(0.794181\pi\)
\(948\) 10.1217i 0.328737i
\(949\) 29.1461i 0.946122i
\(950\) 0 0
\(951\) 4.34471 0.140887
\(952\) 24.3968 19.0700i 0.790705 0.618061i
\(953\) 17.0556i 0.552485i 0.961088 + 0.276242i \(0.0890893\pi\)
−0.961088 + 0.276242i \(0.910911\pi\)
\(954\) 22.0989 0.715478
\(955\) 0 0
\(956\) 16.9483 0.548147
\(957\) −4.99386 −0.161428
\(958\) −4.66475 −0.150711
\(959\) 9.51745i 0.307334i
\(960\) 0 0
\(961\) 14.2579 0.459933
\(962\) 30.0410 0.968562
\(963\) −34.2401 −1.10337
\(964\) 6.76487i 0.217882i
\(965\) 0 0
\(966\) 29.7998i 0.958792i
\(967\) 25.1955i 0.810233i −0.914265 0.405117i \(-0.867231\pi\)
0.914265 0.405117i \(-0.132769\pi\)
\(968\) 1.46308i 0.0470251i
\(969\) −1.47641 1.88882i −0.0474291 0.0606776i
\(970\) 0 0
\(971\) 1.67420 0.0537277 0.0268639 0.999639i \(-0.491448\pi\)
0.0268639 + 0.999639i \(0.491448\pi\)
\(972\) 34.4690 1.10560
\(973\) 9.79380i 0.313975i
\(974\) 86.9842i 2.78715i
\(975\) 0 0
\(976\) 25.4719i 0.815335i
\(977\) 39.9109i 1.27686i −0.769678 0.638432i \(-0.779583\pi\)
0.769678 0.638432i \(-0.220417\pi\)
\(978\) 10.1750i 0.325361i
\(979\) 22.6803i 0.724867i
\(980\) 0 0
\(981\) 22.0989i 0.705563i
\(982\) 4.89496i 0.156204i
\(983\) −5.46081 −0.174173 −0.0870864 0.996201i \(-0.527756\pi\)
−0.0870864 + 0.996201i \(0.527756\pi\)
\(984\) −4.64915 −0.148209
\(985\) 0 0
\(986\) −16.0989 20.5958i −0.512693 0.655905i
\(987\) 17.8576i 0.568414i
\(988\) 7.68649i 0.244540i
\(989\) 17.5851i 0.559175i
\(990\) 0 0
\(991\) 42.0749i 1.33655i −0.743913 0.668276i \(-0.767032\pi\)
0.743913 0.668276i \(-0.232968\pi\)
\(992\) −31.0505 −0.985854
\(993\) 5.43084 0.172342
\(994\) 43.0433 1.36525
\(995\) 0 0
\(996\) 12.0267i 0.381079i
\(997\) 54.6681 1.73135 0.865677 0.500602i \(-0.166888\pi\)
0.865677 + 0.500602i \(0.166888\pi\)
\(998\) 92.3267 2.92255
\(999\) −16.1978 −0.512476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.c.b.424.1 6
5.2 odd 4 425.2.d.c.101.6 6
5.3 odd 4 85.2.d.a.16.1 6
5.4 even 2 425.2.c.a.424.6 6
15.8 even 4 765.2.g.b.271.5 6
17.16 even 2 425.2.c.a.424.1 6
20.3 even 4 1360.2.c.f.1121.4 6
85.13 odd 4 1445.2.a.j.1.3 3
85.33 odd 4 85.2.d.a.16.2 yes 6
85.38 odd 4 1445.2.a.k.1.3 3
85.47 odd 4 7225.2.a.q.1.1 3
85.67 odd 4 425.2.d.c.101.5 6
85.72 odd 4 7225.2.a.r.1.1 3
85.84 even 2 inner 425.2.c.b.424.6 6
255.203 even 4 765.2.g.b.271.6 6
340.203 even 4 1360.2.c.f.1121.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.1 6 5.3 odd 4
85.2.d.a.16.2 yes 6 85.33 odd 4
425.2.c.a.424.1 6 17.16 even 2
425.2.c.a.424.6 6 5.4 even 2
425.2.c.b.424.1 6 1.1 even 1 trivial
425.2.c.b.424.6 6 85.84 even 2 inner
425.2.d.c.101.5 6 85.67 odd 4
425.2.d.c.101.6 6 5.2 odd 4
765.2.g.b.271.5 6 15.8 even 4
765.2.g.b.271.6 6 255.203 even 4
1360.2.c.f.1121.3 6 340.203 even 4
1360.2.c.f.1121.4 6 20.3 even 4
1445.2.a.j.1.3 3 85.13 odd 4
1445.2.a.k.1.3 3 85.38 odd 4
7225.2.a.q.1.1 3 85.47 odd 4
7225.2.a.r.1.1 3 85.72 odd 4