Properties

Label 425.2.c
Level $425$
Weight $2$
Character orbit 425.c
Rep. character $\chi_{425}(424,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $3$
Sturm bound $90$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(90\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(425, [\chi])\).

Total New Old
Modular forms 52 28 24
Cusp forms 40 24 16
Eisenstein series 12 4 8

Trace form

\( 24 q - 8 q^{4} + 28 q^{9} - 24 q^{16} - 24 q^{19} - 20 q^{21} + 4 q^{26} - 48 q^{34} + 4 q^{36} + 20 q^{49} + 16 q^{51} - 8 q^{59} + 88 q^{64} - 16 q^{66} - 48 q^{69} - 24 q^{76} + 16 q^{81} + 12 q^{84}+ \cdots + 64 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(425, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
425.2.c.a 425.c 85.c $6$ $3.394$ 6.0.350464.1 None 85.2.d.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}+\beta _{1}q^{3}+(-\beta _{1}+\beta _{2})q^{4}+\cdots\)
425.2.c.b 425.c 85.c $6$ $3.394$ 6.0.350464.1 None 85.2.d.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{2}-\beta _{1}q^{3}+(-\beta _{1}+\beta _{2})q^{4}+\cdots\)
425.2.c.c 425.c 85.c $12$ $3.394$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 425.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{8}q^{2}-\beta _{2}q^{3}+(-\beta _{1}+\beta _{4})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(425, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(425, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 2}\)