Properties

Label 425.2.b.d.324.1
Level $425$
Weight $2$
Character 425.324
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 425.324
Dual form 425.2.b.d.324.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{2} -2.73205i q^{3} -1.00000 q^{4} -4.73205 q^{6} -2.73205i q^{7} -1.73205i q^{8} -4.46410 q^{9} +4.73205 q^{11} +2.73205i q^{12} +4.00000i q^{13} -4.73205 q^{14} -5.00000 q^{16} -1.00000i q^{17} +7.73205i q^{18} +1.46410 q^{19} -7.46410 q^{21} -8.19615i q^{22} +8.19615i q^{23} -4.73205 q^{24} +6.92820 q^{26} +4.00000i q^{27} +2.73205i q^{28} +3.46410 q^{29} +3.26795 q^{31} +5.19615i q^{32} -12.9282i q^{33} -1.73205 q^{34} +4.46410 q^{36} -0.535898i q^{37} -2.53590i q^{38} +10.9282 q^{39} -3.46410 q^{41} +12.9282i q^{42} +0.535898i q^{43} -4.73205 q^{44} +14.1962 q^{46} +12.9282i q^{47} +13.6603i q^{48} -0.464102 q^{49} -2.73205 q^{51} -4.00000i q^{52} -6.00000i q^{53} +6.92820 q^{54} -4.73205 q^{56} -4.00000i q^{57} -6.00000i q^{58} -2.53590 q^{59} -4.92820 q^{61} -5.66025i q^{62} +12.1962i q^{63} -1.00000 q^{64} -22.3923 q^{66} -10.0000i q^{67} +1.00000i q^{68} +22.3923 q^{69} +11.6603 q^{71} +7.73205i q^{72} -6.39230i q^{73} -0.928203 q^{74} -1.46410 q^{76} -12.9282i q^{77} -18.9282i q^{78} -14.5885 q^{79} -2.46410 q^{81} +6.00000i q^{82} -8.53590i q^{83} +7.46410 q^{84} +0.928203 q^{86} -9.46410i q^{87} -8.19615i q^{88} -4.39230 q^{89} +10.9282 q^{91} -8.19615i q^{92} -8.92820i q^{93} +22.3923 q^{94} +14.1962 q^{96} -4.92820i q^{97} +0.803848i q^{98} -21.1244 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 12 q^{6} - 4 q^{9} + 12 q^{11} - 12 q^{14} - 20 q^{16} - 8 q^{19} - 16 q^{21} - 12 q^{24} + 20 q^{31} + 4 q^{36} + 16 q^{39} - 12 q^{44} + 36 q^{46} + 12 q^{49} - 4 q^{51} - 12 q^{56} - 24 q^{59}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.73205i − 1.22474i −0.790569 0.612372i \(-0.790215\pi\)
0.790569 0.612372i \(-0.209785\pi\)
\(3\) − 2.73205i − 1.57735i −0.614810 0.788675i \(-0.710767\pi\)
0.614810 0.788675i \(-0.289233\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −4.73205 −1.93185
\(7\) − 2.73205i − 1.03262i −0.856402 0.516309i \(-0.827306\pi\)
0.856402 0.516309i \(-0.172694\pi\)
\(8\) − 1.73205i − 0.612372i
\(9\) −4.46410 −1.48803
\(10\) 0 0
\(11\) 4.73205 1.42677 0.713384 0.700774i \(-0.247162\pi\)
0.713384 + 0.700774i \(0.247162\pi\)
\(12\) 2.73205i 0.788675i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) −4.73205 −1.26469
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) − 1.00000i − 0.242536i
\(18\) 7.73205i 1.82246i
\(19\) 1.46410 0.335888 0.167944 0.985797i \(-0.446287\pi\)
0.167944 + 0.985797i \(0.446287\pi\)
\(20\) 0 0
\(21\) −7.46410 −1.62880
\(22\) − 8.19615i − 1.74743i
\(23\) 8.19615i 1.70902i 0.519438 + 0.854508i \(0.326141\pi\)
−0.519438 + 0.854508i \(0.673859\pi\)
\(24\) −4.73205 −0.965926
\(25\) 0 0
\(26\) 6.92820 1.35873
\(27\) 4.00000i 0.769800i
\(28\) 2.73205i 0.516309i
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) 0 0
\(31\) 3.26795 0.586941 0.293471 0.955968i \(-0.405190\pi\)
0.293471 + 0.955968i \(0.405190\pi\)
\(32\) 5.19615i 0.918559i
\(33\) − 12.9282i − 2.25051i
\(34\) −1.73205 −0.297044
\(35\) 0 0
\(36\) 4.46410 0.744017
\(37\) − 0.535898i − 0.0881012i −0.999029 0.0440506i \(-0.985974\pi\)
0.999029 0.0440506i \(-0.0140263\pi\)
\(38\) − 2.53590i − 0.411377i
\(39\) 10.9282 1.74991
\(40\) 0 0
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 12.9282i 1.99487i
\(43\) 0.535898i 0.0817237i 0.999165 + 0.0408619i \(0.0130104\pi\)
−0.999165 + 0.0408619i \(0.986990\pi\)
\(44\) −4.73205 −0.713384
\(45\) 0 0
\(46\) 14.1962 2.09311
\(47\) 12.9282i 1.88577i 0.333115 + 0.942886i \(0.391900\pi\)
−0.333115 + 0.942886i \(0.608100\pi\)
\(48\) 13.6603i 1.97169i
\(49\) −0.464102 −0.0663002
\(50\) 0 0
\(51\) −2.73205 −0.382564
\(52\) − 4.00000i − 0.554700i
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 6.92820 0.942809
\(55\) 0 0
\(56\) −4.73205 −0.632347
\(57\) − 4.00000i − 0.529813i
\(58\) − 6.00000i − 0.787839i
\(59\) −2.53590 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(60\) 0 0
\(61\) −4.92820 −0.630992 −0.315496 0.948927i \(-0.602171\pi\)
−0.315496 + 0.948927i \(0.602171\pi\)
\(62\) − 5.66025i − 0.718853i
\(63\) 12.1962i 1.53657i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −22.3923 −2.75630
\(67\) − 10.0000i − 1.22169i −0.791748 0.610847i \(-0.790829\pi\)
0.791748 0.610847i \(-0.209171\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 22.3923 2.69572
\(70\) 0 0
\(71\) 11.6603 1.38382 0.691909 0.721985i \(-0.256770\pi\)
0.691909 + 0.721985i \(0.256770\pi\)
\(72\) 7.73205i 0.911231i
\(73\) − 6.39230i − 0.748163i −0.927396 0.374081i \(-0.877958\pi\)
0.927396 0.374081i \(-0.122042\pi\)
\(74\) −0.928203 −0.107901
\(75\) 0 0
\(76\) −1.46410 −0.167944
\(77\) − 12.9282i − 1.47331i
\(78\) − 18.9282i − 2.14320i
\(79\) −14.5885 −1.64133 −0.820665 0.571410i \(-0.806397\pi\)
−0.820665 + 0.571410i \(0.806397\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 6.00000i 0.662589i
\(83\) − 8.53590i − 0.936937i −0.883480 0.468468i \(-0.844806\pi\)
0.883480 0.468468i \(-0.155194\pi\)
\(84\) 7.46410 0.814400
\(85\) 0 0
\(86\) 0.928203 0.100091
\(87\) − 9.46410i − 1.01466i
\(88\) − 8.19615i − 0.873713i
\(89\) −4.39230 −0.465583 −0.232792 0.972527i \(-0.574786\pi\)
−0.232792 + 0.972527i \(0.574786\pi\)
\(90\) 0 0
\(91\) 10.9282 1.14559
\(92\) − 8.19615i − 0.854508i
\(93\) − 8.92820i − 0.925812i
\(94\) 22.3923 2.30959
\(95\) 0 0
\(96\) 14.1962 1.44889
\(97\) − 4.92820i − 0.500383i −0.968196 0.250192i \(-0.919506\pi\)
0.968196 0.250192i \(-0.0804936\pi\)
\(98\) 0.803848i 0.0812009i
\(99\) −21.1244 −2.12308
\(100\) 0 0
\(101\) −9.46410 −0.941713 −0.470857 0.882210i \(-0.656055\pi\)
−0.470857 + 0.882210i \(0.656055\pi\)
\(102\) 4.73205i 0.468543i
\(103\) − 8.92820i − 0.879722i −0.898066 0.439861i \(-0.855028\pi\)
0.898066 0.439861i \(-0.144972\pi\)
\(104\) 6.92820 0.679366
\(105\) 0 0
\(106\) −10.3923 −1.00939
\(107\) 17.6603i 1.70728i 0.520862 + 0.853641i \(0.325610\pi\)
−0.520862 + 0.853641i \(0.674390\pi\)
\(108\) − 4.00000i − 0.384900i
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −1.46410 −0.138966
\(112\) 13.6603i 1.29077i
\(113\) 17.3205i 1.62938i 0.579899 + 0.814688i \(0.303092\pi\)
−0.579899 + 0.814688i \(0.696908\pi\)
\(114\) −6.92820 −0.648886
\(115\) 0 0
\(116\) −3.46410 −0.321634
\(117\) − 17.8564i − 1.65083i
\(118\) 4.39230i 0.404344i
\(119\) −2.73205 −0.250447
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) 8.53590i 0.772804i
\(123\) 9.46410i 0.853349i
\(124\) −3.26795 −0.293471
\(125\) 0 0
\(126\) 21.1244 1.88191
\(127\) − 14.3923i − 1.27711i −0.769576 0.638555i \(-0.779532\pi\)
0.769576 0.638555i \(-0.220468\pi\)
\(128\) 12.1244i 1.07165i
\(129\) 1.46410 0.128907
\(130\) 0 0
\(131\) −2.19615 −0.191879 −0.0959394 0.995387i \(-0.530585\pi\)
−0.0959394 + 0.995387i \(0.530585\pi\)
\(132\) 12.9282i 1.12526i
\(133\) − 4.00000i − 0.346844i
\(134\) −17.3205 −1.49626
\(135\) 0 0
\(136\) −1.73205 −0.148522
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) − 38.7846i − 3.30157i
\(139\) 3.66025 0.310459 0.155229 0.987878i \(-0.450388\pi\)
0.155229 + 0.987878i \(0.450388\pi\)
\(140\) 0 0
\(141\) 35.3205 2.97452
\(142\) − 20.1962i − 1.69482i
\(143\) 18.9282i 1.58286i
\(144\) 22.3205 1.86004
\(145\) 0 0
\(146\) −11.0718 −0.916308
\(147\) 1.26795i 0.104579i
\(148\) 0.535898i 0.0440506i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −1.46410 −0.119147 −0.0595734 0.998224i \(-0.518974\pi\)
−0.0595734 + 0.998224i \(0.518974\pi\)
\(152\) − 2.53590i − 0.205689i
\(153\) 4.46410i 0.360901i
\(154\) −22.3923 −1.80442
\(155\) 0 0
\(156\) −10.9282 −0.874957
\(157\) 8.92820i 0.712548i 0.934381 + 0.356274i \(0.115953\pi\)
−0.934381 + 0.356274i \(0.884047\pi\)
\(158\) 25.2679i 2.01021i
\(159\) −16.3923 −1.29999
\(160\) 0 0
\(161\) 22.3923 1.76476
\(162\) 4.26795i 0.335322i
\(163\) 0.196152i 0.0153638i 0.999970 + 0.00768192i \(0.00244526\pi\)
−0.999970 + 0.00768192i \(0.997555\pi\)
\(164\) 3.46410 0.270501
\(165\) 0 0
\(166\) −14.7846 −1.14751
\(167\) 12.5885i 0.974124i 0.873367 + 0.487062i \(0.161931\pi\)
−0.873367 + 0.487062i \(0.838069\pi\)
\(168\) 12.9282i 0.997433i
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) −6.53590 −0.499813
\(172\) − 0.535898i − 0.0408619i
\(173\) − 3.46410i − 0.263371i −0.991292 0.131685i \(-0.957961\pi\)
0.991292 0.131685i \(-0.0420389\pi\)
\(174\) −16.3923 −1.24270
\(175\) 0 0
\(176\) −23.6603 −1.78346
\(177\) 6.92820i 0.520756i
\(178\) 7.60770i 0.570221i
\(179\) 11.3205 0.846135 0.423067 0.906098i \(-0.360953\pi\)
0.423067 + 0.906098i \(0.360953\pi\)
\(180\) 0 0
\(181\) −2.39230 −0.177819 −0.0889093 0.996040i \(-0.528338\pi\)
−0.0889093 + 0.996040i \(0.528338\pi\)
\(182\) − 18.9282i − 1.40305i
\(183\) 13.4641i 0.995295i
\(184\) 14.1962 1.04655
\(185\) 0 0
\(186\) −15.4641 −1.13388
\(187\) − 4.73205i − 0.346042i
\(188\) − 12.9282i − 0.942886i
\(189\) 10.9282 0.794910
\(190\) 0 0
\(191\) 1.85641 0.134325 0.0671624 0.997742i \(-0.478605\pi\)
0.0671624 + 0.997742i \(0.478605\pi\)
\(192\) 2.73205i 0.197169i
\(193\) − 16.5359i − 1.19028i −0.803622 0.595140i \(-0.797097\pi\)
0.803622 0.595140i \(-0.202903\pi\)
\(194\) −8.53590 −0.612842
\(195\) 0 0
\(196\) 0.464102 0.0331501
\(197\) 17.3205i 1.23404i 0.786949 + 0.617018i \(0.211659\pi\)
−0.786949 + 0.617018i \(0.788341\pi\)
\(198\) 36.5885i 2.60023i
\(199\) −10.1962 −0.722786 −0.361393 0.932414i \(-0.617699\pi\)
−0.361393 + 0.932414i \(0.617699\pi\)
\(200\) 0 0
\(201\) −27.3205 −1.92704
\(202\) 16.3923i 1.15336i
\(203\) − 9.46410i − 0.664250i
\(204\) 2.73205 0.191282
\(205\) 0 0
\(206\) −15.4641 −1.07744
\(207\) − 36.5885i − 2.54307i
\(208\) − 20.0000i − 1.38675i
\(209\) 6.92820 0.479234
\(210\) 0 0
\(211\) 10.1962 0.701932 0.350966 0.936388i \(-0.385853\pi\)
0.350966 + 0.936388i \(0.385853\pi\)
\(212\) 6.00000i 0.412082i
\(213\) − 31.8564i − 2.18277i
\(214\) 30.5885 2.09098
\(215\) 0 0
\(216\) 6.92820 0.471405
\(217\) − 8.92820i − 0.606086i
\(218\) − 17.3205i − 1.17309i
\(219\) −17.4641 −1.18011
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 2.53590i 0.170198i
\(223\) 26.3923i 1.76736i 0.468092 + 0.883680i \(0.344942\pi\)
−0.468092 + 0.883680i \(0.655058\pi\)
\(224\) 14.1962 0.948520
\(225\) 0 0
\(226\) 30.0000 1.99557
\(227\) 22.7321i 1.50878i 0.656427 + 0.754390i \(0.272067\pi\)
−0.656427 + 0.754390i \(0.727933\pi\)
\(228\) 4.00000i 0.264906i
\(229\) 8.39230 0.554579 0.277290 0.960786i \(-0.410564\pi\)
0.277290 + 0.960786i \(0.410564\pi\)
\(230\) 0 0
\(231\) −35.3205 −2.32392
\(232\) − 6.00000i − 0.393919i
\(233\) − 6.00000i − 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) −30.9282 −2.02184
\(235\) 0 0
\(236\) 2.53590 0.165073
\(237\) 39.8564i 2.58895i
\(238\) 4.73205i 0.306733i
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) −5.60770 −0.361223 −0.180612 0.983554i \(-0.557808\pi\)
−0.180612 + 0.983554i \(0.557808\pi\)
\(242\) − 19.7321i − 1.26842i
\(243\) 18.7321i 1.20166i
\(244\) 4.92820 0.315496
\(245\) 0 0
\(246\) 16.3923 1.04514
\(247\) 5.85641i 0.372634i
\(248\) − 5.66025i − 0.359426i
\(249\) −23.3205 −1.47788
\(250\) 0 0
\(251\) 6.92820 0.437304 0.218652 0.975803i \(-0.429834\pi\)
0.218652 + 0.975803i \(0.429834\pi\)
\(252\) − 12.1962i − 0.768285i
\(253\) 38.7846i 2.43837i
\(254\) −24.9282 −1.56413
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) − 6.92820i − 0.432169i −0.976375 0.216085i \(-0.930671\pi\)
0.976375 0.216085i \(-0.0693287\pi\)
\(258\) − 2.53590i − 0.157878i
\(259\) −1.46410 −0.0909748
\(260\) 0 0
\(261\) −15.4641 −0.957204
\(262\) 3.80385i 0.235002i
\(263\) 1.60770i 0.0991347i 0.998771 + 0.0495674i \(0.0157843\pi\)
−0.998771 + 0.0495674i \(0.984216\pi\)
\(264\) −22.3923 −1.37815
\(265\) 0 0
\(266\) −6.92820 −0.424795
\(267\) 12.0000i 0.734388i
\(268\) 10.0000i 0.610847i
\(269\) −0.928203 −0.0565935 −0.0282968 0.999600i \(-0.509008\pi\)
−0.0282968 + 0.999600i \(0.509008\pi\)
\(270\) 0 0
\(271\) 2.92820 0.177876 0.0889378 0.996037i \(-0.471653\pi\)
0.0889378 + 0.996037i \(0.471653\pi\)
\(272\) 5.00000i 0.303170i
\(273\) − 29.8564i − 1.80699i
\(274\) 0 0
\(275\) 0 0
\(276\) −22.3923 −1.34786
\(277\) 20.9282i 1.25745i 0.777626 + 0.628727i \(0.216424\pi\)
−0.777626 + 0.628727i \(0.783576\pi\)
\(278\) − 6.33975i − 0.380233i
\(279\) −14.5885 −0.873388
\(280\) 0 0
\(281\) −12.9282 −0.771232 −0.385616 0.922659i \(-0.626011\pi\)
−0.385616 + 0.922659i \(0.626011\pi\)
\(282\) − 61.1769i − 3.64303i
\(283\) 5.26795i 0.313147i 0.987666 + 0.156574i \(0.0500448\pi\)
−0.987666 + 0.156574i \(0.949955\pi\)
\(284\) −11.6603 −0.691909
\(285\) 0 0
\(286\) 32.7846 1.93859
\(287\) 9.46410i 0.558648i
\(288\) − 23.1962i − 1.36685i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −13.4641 −0.789280
\(292\) 6.39230i 0.374081i
\(293\) 0.928203i 0.0542262i 0.999632 + 0.0271131i \(0.00863143\pi\)
−0.999632 + 0.0271131i \(0.991369\pi\)
\(294\) 2.19615 0.128082
\(295\) 0 0
\(296\) −0.928203 −0.0539507
\(297\) 18.9282i 1.09833i
\(298\) − 10.3923i − 0.602010i
\(299\) −32.7846 −1.89598
\(300\) 0 0
\(301\) 1.46410 0.0843894
\(302\) 2.53590i 0.145925i
\(303\) 25.8564i 1.48541i
\(304\) −7.32051 −0.419860
\(305\) 0 0
\(306\) 7.73205 0.442012
\(307\) − 10.0000i − 0.570730i −0.958419 0.285365i \(-0.907885\pi\)
0.958419 0.285365i \(-0.0921148\pi\)
\(308\) 12.9282i 0.736653i
\(309\) −24.3923 −1.38763
\(310\) 0 0
\(311\) −16.0526 −0.910257 −0.455129 0.890426i \(-0.650407\pi\)
−0.455129 + 0.890426i \(0.650407\pi\)
\(312\) − 18.9282i − 1.07160i
\(313\) 26.3923i 1.49178i 0.666068 + 0.745891i \(0.267976\pi\)
−0.666068 + 0.745891i \(0.732024\pi\)
\(314\) 15.4641 0.872690
\(315\) 0 0
\(316\) 14.5885 0.820665
\(317\) − 24.9282i − 1.40011i −0.714090 0.700054i \(-0.753159\pi\)
0.714090 0.700054i \(-0.246841\pi\)
\(318\) 28.3923i 1.59216i
\(319\) 16.3923 0.917793
\(320\) 0 0
\(321\) 48.2487 2.69298
\(322\) − 38.7846i − 2.16138i
\(323\) − 1.46410i − 0.0814648i
\(324\) 2.46410 0.136895
\(325\) 0 0
\(326\) 0.339746 0.0188168
\(327\) − 27.3205i − 1.51083i
\(328\) 6.00000i 0.331295i
\(329\) 35.3205 1.94728
\(330\) 0 0
\(331\) −6.53590 −0.359245 −0.179623 0.983736i \(-0.557488\pi\)
−0.179623 + 0.983736i \(0.557488\pi\)
\(332\) 8.53590i 0.468468i
\(333\) 2.39230i 0.131097i
\(334\) 21.8038 1.19305
\(335\) 0 0
\(336\) 37.3205 2.03600
\(337\) − 6.78461i − 0.369581i −0.982778 0.184791i \(-0.940839\pi\)
0.982778 0.184791i \(-0.0591607\pi\)
\(338\) 5.19615i 0.282633i
\(339\) 47.3205 2.57010
\(340\) 0 0
\(341\) 15.4641 0.837428
\(342\) 11.3205i 0.612143i
\(343\) − 17.8564i − 0.964155i
\(344\) 0.928203 0.0500454
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 3.80385i 0.204201i 0.994774 + 0.102101i \(0.0325564\pi\)
−0.994774 + 0.102101i \(0.967444\pi\)
\(348\) 9.46410i 0.507329i
\(349\) −10.7846 −0.577287 −0.288643 0.957437i \(-0.593204\pi\)
−0.288643 + 0.957437i \(0.593204\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 24.5885i 1.31057i
\(353\) − 26.7846i − 1.42560i −0.701367 0.712800i \(-0.747427\pi\)
0.701367 0.712800i \(-0.252573\pi\)
\(354\) 12.0000 0.637793
\(355\) 0 0
\(356\) 4.39230 0.232792
\(357\) 7.46410i 0.395042i
\(358\) − 19.6077i − 1.03630i
\(359\) 21.4641 1.13283 0.566416 0.824119i \(-0.308330\pi\)
0.566416 + 0.824119i \(0.308330\pi\)
\(360\) 0 0
\(361\) −16.8564 −0.887179
\(362\) 4.14359i 0.217782i
\(363\) − 31.1244i − 1.63361i
\(364\) −10.9282 −0.572793
\(365\) 0 0
\(366\) 23.3205 1.21898
\(367\) − 7.80385i − 0.407358i −0.979038 0.203679i \(-0.934710\pi\)
0.979038 0.203679i \(-0.0652898\pi\)
\(368\) − 40.9808i − 2.13627i
\(369\) 15.4641 0.805029
\(370\) 0 0
\(371\) −16.3923 −0.851046
\(372\) 8.92820i 0.462906i
\(373\) − 20.0000i − 1.03556i −0.855514 0.517780i \(-0.826758\pi\)
0.855514 0.517780i \(-0.173242\pi\)
\(374\) −8.19615 −0.423813
\(375\) 0 0
\(376\) 22.3923 1.15479
\(377\) 13.8564i 0.713641i
\(378\) − 18.9282i − 0.973562i
\(379\) −17.8038 −0.914522 −0.457261 0.889332i \(-0.651170\pi\)
−0.457261 + 0.889332i \(0.651170\pi\)
\(380\) 0 0
\(381\) −39.3205 −2.01445
\(382\) − 3.21539i − 0.164514i
\(383\) − 15.4641i − 0.790179i −0.918643 0.395089i \(-0.870714\pi\)
0.918643 0.395089i \(-0.129286\pi\)
\(384\) 33.1244 1.69037
\(385\) 0 0
\(386\) −28.6410 −1.45779
\(387\) − 2.39230i − 0.121608i
\(388\) 4.92820i 0.250192i
\(389\) 4.39230 0.222699 0.111349 0.993781i \(-0.464483\pi\)
0.111349 + 0.993781i \(0.464483\pi\)
\(390\) 0 0
\(391\) 8.19615 0.414497
\(392\) 0.803848i 0.0406004i
\(393\) 6.00000i 0.302660i
\(394\) 30.0000 1.51138
\(395\) 0 0
\(396\) 21.1244 1.06154
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 17.6603i 0.885229i
\(399\) −10.9282 −0.547094
\(400\) 0 0
\(401\) 12.9282 0.645604 0.322802 0.946467i \(-0.395375\pi\)
0.322802 + 0.946467i \(0.395375\pi\)
\(402\) 47.3205i 2.36013i
\(403\) 13.0718i 0.651153i
\(404\) 9.46410 0.470857
\(405\) 0 0
\(406\) −16.3923 −0.813536
\(407\) − 2.53590i − 0.125700i
\(408\) 4.73205i 0.234271i
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 8.92820i 0.439861i
\(413\) 6.92820i 0.340915i
\(414\) −63.3731 −3.11462
\(415\) 0 0
\(416\) −20.7846 −1.01905
\(417\) − 10.0000i − 0.489702i
\(418\) − 12.0000i − 0.586939i
\(419\) −38.1962 −1.86600 −0.933002 0.359871i \(-0.882821\pi\)
−0.933002 + 0.359871i \(0.882821\pi\)
\(420\) 0 0
\(421\) 5.46410 0.266304 0.133152 0.991096i \(-0.457490\pi\)
0.133152 + 0.991096i \(0.457490\pi\)
\(422\) − 17.6603i − 0.859688i
\(423\) − 57.7128i − 2.80609i
\(424\) −10.3923 −0.504695
\(425\) 0 0
\(426\) −55.1769 −2.67333
\(427\) 13.4641i 0.651574i
\(428\) − 17.6603i − 0.853641i
\(429\) 51.7128 2.49672
\(430\) 0 0
\(431\) 9.80385 0.472235 0.236117 0.971725i \(-0.424125\pi\)
0.236117 + 0.971725i \(0.424125\pi\)
\(432\) − 20.0000i − 0.962250i
\(433\) 17.8564i 0.858124i 0.903275 + 0.429062i \(0.141156\pi\)
−0.903275 + 0.429062i \(0.858844\pi\)
\(434\) −15.4641 −0.742301
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) 12.0000i 0.574038i
\(438\) 30.2487i 1.44534i
\(439\) 20.0526 0.957056 0.478528 0.878072i \(-0.341170\pi\)
0.478528 + 0.878072i \(0.341170\pi\)
\(440\) 0 0
\(441\) 2.07180 0.0986570
\(442\) − 6.92820i − 0.329541i
\(443\) 12.9282i 0.614237i 0.951671 + 0.307119i \(0.0993649\pi\)
−0.951671 + 0.307119i \(0.900635\pi\)
\(444\) 1.46410 0.0694832
\(445\) 0 0
\(446\) 45.7128 2.16456
\(447\) − 16.3923i − 0.775329i
\(448\) 2.73205i 0.129077i
\(449\) 34.3923 1.62307 0.811537 0.584302i \(-0.198631\pi\)
0.811537 + 0.584302i \(0.198631\pi\)
\(450\) 0 0
\(451\) −16.3923 −0.771883
\(452\) − 17.3205i − 0.814688i
\(453\) 4.00000i 0.187936i
\(454\) 39.3731 1.84787
\(455\) 0 0
\(456\) −6.92820 −0.324443
\(457\) − 36.7846i − 1.72071i −0.509694 0.860356i \(-0.670241\pi\)
0.509694 0.860356i \(-0.329759\pi\)
\(458\) − 14.5359i − 0.679218i
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) −24.9282 −1.16102 −0.580511 0.814252i \(-0.697147\pi\)
−0.580511 + 0.814252i \(0.697147\pi\)
\(462\) 61.1769i 2.84621i
\(463\) 23.8564i 1.10870i 0.832283 + 0.554351i \(0.187033\pi\)
−0.832283 + 0.554351i \(0.812967\pi\)
\(464\) −17.3205 −0.804084
\(465\) 0 0
\(466\) −10.3923 −0.481414
\(467\) 1.60770i 0.0743953i 0.999308 + 0.0371976i \(0.0118431\pi\)
−0.999308 + 0.0371976i \(0.988157\pi\)
\(468\) 17.8564i 0.825413i
\(469\) −27.3205 −1.26154
\(470\) 0 0
\(471\) 24.3923 1.12394
\(472\) 4.39230i 0.202172i
\(473\) 2.53590i 0.116601i
\(474\) 69.0333 3.17081
\(475\) 0 0
\(476\) 2.73205 0.125223
\(477\) 26.7846i 1.22638i
\(478\) − 36.0000i − 1.64660i
\(479\) 11.6603 0.532771 0.266385 0.963867i \(-0.414171\pi\)
0.266385 + 0.963867i \(0.414171\pi\)
\(480\) 0 0
\(481\) 2.14359 0.0977395
\(482\) 9.71281i 0.442407i
\(483\) − 61.1769i − 2.78365i
\(484\) −11.3923 −0.517832
\(485\) 0 0
\(486\) 32.4449 1.47173
\(487\) 24.9808i 1.13199i 0.824410 + 0.565993i \(0.191507\pi\)
−0.824410 + 0.565993i \(0.808493\pi\)
\(488\) 8.53590i 0.386402i
\(489\) 0.535898 0.0242342
\(490\) 0 0
\(491\) −19.6077 −0.884883 −0.442441 0.896797i \(-0.645888\pi\)
−0.442441 + 0.896797i \(0.645888\pi\)
\(492\) − 9.46410i − 0.426675i
\(493\) − 3.46410i − 0.156015i
\(494\) 10.1436 0.456382
\(495\) 0 0
\(496\) −16.3397 −0.733676
\(497\) − 31.8564i − 1.42896i
\(498\) 40.3923i 1.81002i
\(499\) 15.6603 0.701049 0.350525 0.936554i \(-0.386003\pi\)
0.350525 + 0.936554i \(0.386003\pi\)
\(500\) 0 0
\(501\) 34.3923 1.53653
\(502\) − 12.0000i − 0.535586i
\(503\) − 15.1244i − 0.674362i −0.941440 0.337181i \(-0.890527\pi\)
0.941440 0.337181i \(-0.109473\pi\)
\(504\) 21.1244 0.940954
\(505\) 0 0
\(506\) 67.1769 2.98638
\(507\) 8.19615i 0.364004i
\(508\) 14.3923i 0.638555i
\(509\) −19.8564 −0.880120 −0.440060 0.897968i \(-0.645043\pi\)
−0.440060 + 0.897968i \(0.645043\pi\)
\(510\) 0 0
\(511\) −17.4641 −0.772566
\(512\) − 8.66025i − 0.382733i
\(513\) 5.85641i 0.258567i
\(514\) −12.0000 −0.529297
\(515\) 0 0
\(516\) −1.46410 −0.0644535
\(517\) 61.1769i 2.69056i
\(518\) 2.53590i 0.111421i
\(519\) −9.46410 −0.415428
\(520\) 0 0
\(521\) 4.14359 0.181534 0.0907671 0.995872i \(-0.471068\pi\)
0.0907671 + 0.995872i \(0.471068\pi\)
\(522\) 26.7846i 1.17233i
\(523\) 22.0000i 0.961993i 0.876723 + 0.480996i \(0.159725\pi\)
−0.876723 + 0.480996i \(0.840275\pi\)
\(524\) 2.19615 0.0959394
\(525\) 0 0
\(526\) 2.78461 0.121415
\(527\) − 3.26795i − 0.142354i
\(528\) 64.6410i 2.81314i
\(529\) −44.1769 −1.92074
\(530\) 0 0
\(531\) 11.3205 0.491268
\(532\) 4.00000i 0.173422i
\(533\) − 13.8564i − 0.600188i
\(534\) 20.7846 0.899438
\(535\) 0 0
\(536\) −17.3205 −0.748132
\(537\) − 30.9282i − 1.33465i
\(538\) 1.60770i 0.0693127i
\(539\) −2.19615 −0.0945950
\(540\) 0 0
\(541\) 39.1769 1.68435 0.842174 0.539207i \(-0.181276\pi\)
0.842174 + 0.539207i \(0.181276\pi\)
\(542\) − 5.07180i − 0.217852i
\(543\) 6.53590i 0.280482i
\(544\) 5.19615 0.222783
\(545\) 0 0
\(546\) −51.7128 −2.21310
\(547\) − 39.9090i − 1.70638i −0.521597 0.853192i \(-0.674663\pi\)
0.521597 0.853192i \(-0.325337\pi\)
\(548\) 0 0
\(549\) 22.0000 0.938937
\(550\) 0 0
\(551\) 5.07180 0.216066
\(552\) − 38.7846i − 1.65078i
\(553\) 39.8564i 1.69487i
\(554\) 36.2487 1.54006
\(555\) 0 0
\(556\) −3.66025 −0.155229
\(557\) − 6.92820i − 0.293557i −0.989169 0.146779i \(-0.953109\pi\)
0.989169 0.146779i \(-0.0468905\pi\)
\(558\) 25.2679i 1.06968i
\(559\) −2.14359 −0.0906643
\(560\) 0 0
\(561\) −12.9282 −0.545829
\(562\) 22.3923i 0.944562i
\(563\) − 27.4641i − 1.15747i −0.815514 0.578737i \(-0.803546\pi\)
0.815514 0.578737i \(-0.196454\pi\)
\(564\) −35.3205 −1.48726
\(565\) 0 0
\(566\) 9.12436 0.383525
\(567\) 6.73205i 0.282720i
\(568\) − 20.1962i − 0.847412i
\(569\) −40.6410 −1.70376 −0.851880 0.523737i \(-0.824537\pi\)
−0.851880 + 0.523737i \(0.824537\pi\)
\(570\) 0 0
\(571\) −36.4449 −1.52517 −0.762585 0.646888i \(-0.776070\pi\)
−0.762585 + 0.646888i \(0.776070\pi\)
\(572\) − 18.9282i − 0.791428i
\(573\) − 5.07180i − 0.211877i
\(574\) 16.3923 0.684202
\(575\) 0 0
\(576\) 4.46410 0.186004
\(577\) − 38.6410i − 1.60865i −0.594192 0.804323i \(-0.702528\pi\)
0.594192 0.804323i \(-0.297472\pi\)
\(578\) 1.73205i 0.0720438i
\(579\) −45.1769 −1.87749
\(580\) 0 0
\(581\) −23.3205 −0.967498
\(582\) 23.3205i 0.966666i
\(583\) − 28.3923i − 1.17589i
\(584\) −11.0718 −0.458154
\(585\) 0 0
\(586\) 1.60770 0.0664133
\(587\) 46.3923i 1.91482i 0.288740 + 0.957408i \(0.406764\pi\)
−0.288740 + 0.957408i \(0.593236\pi\)
\(588\) − 1.26795i − 0.0522893i
\(589\) 4.78461 0.197146
\(590\) 0 0
\(591\) 47.3205 1.94651
\(592\) 2.67949i 0.110126i
\(593\) − 19.8564i − 0.815405i −0.913115 0.407702i \(-0.866330\pi\)
0.913115 0.407702i \(-0.133670\pi\)
\(594\) 32.7846 1.34517
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 27.8564i 1.14009i
\(598\) 56.7846i 2.32210i
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 8.24871 0.336472 0.168236 0.985747i \(-0.446193\pi\)
0.168236 + 0.985747i \(0.446193\pi\)
\(602\) − 2.53590i − 0.103356i
\(603\) 44.6410i 1.81792i
\(604\) 1.46410 0.0595734
\(605\) 0 0
\(606\) 44.7846 1.81925
\(607\) − 21.6603i − 0.879163i −0.898203 0.439581i \(-0.855127\pi\)
0.898203 0.439581i \(-0.144873\pi\)
\(608\) 7.60770i 0.308533i
\(609\) −25.8564 −1.04775
\(610\) 0 0
\(611\) −51.7128 −2.09208
\(612\) − 4.46410i − 0.180451i
\(613\) − 15.8564i − 0.640434i −0.947344 0.320217i \(-0.896244\pi\)
0.947344 0.320217i \(-0.103756\pi\)
\(614\) −17.3205 −0.698999
\(615\) 0 0
\(616\) −22.3923 −0.902212
\(617\) − 27.4641i − 1.10566i −0.833293 0.552832i \(-0.813547\pi\)
0.833293 0.552832i \(-0.186453\pi\)
\(618\) 42.2487i 1.69949i
\(619\) −38.5885 −1.55100 −0.775501 0.631347i \(-0.782502\pi\)
−0.775501 + 0.631347i \(0.782502\pi\)
\(620\) 0 0
\(621\) −32.7846 −1.31560
\(622\) 27.8038i 1.11483i
\(623\) 12.0000i 0.480770i
\(624\) −54.6410 −2.18739
\(625\) 0 0
\(626\) 45.7128 1.82705
\(627\) − 18.9282i − 0.755920i
\(628\) − 8.92820i − 0.356274i
\(629\) −0.535898 −0.0213677
\(630\) 0 0
\(631\) −32.3923 −1.28952 −0.644759 0.764386i \(-0.723042\pi\)
−0.644759 + 0.764386i \(0.723042\pi\)
\(632\) 25.2679i 1.00511i
\(633\) − 27.8564i − 1.10719i
\(634\) −43.1769 −1.71477
\(635\) 0 0
\(636\) 16.3923 0.649997
\(637\) − 1.85641i − 0.0735535i
\(638\) − 28.3923i − 1.12406i
\(639\) −52.0526 −2.05917
\(640\) 0 0
\(641\) 31.1769 1.23141 0.615707 0.787975i \(-0.288870\pi\)
0.615707 + 0.787975i \(0.288870\pi\)
\(642\) − 83.5692i − 3.29821i
\(643\) 24.1962i 0.954203i 0.878848 + 0.477102i \(0.158313\pi\)
−0.878848 + 0.477102i \(0.841687\pi\)
\(644\) −22.3923 −0.882380
\(645\) 0 0
\(646\) −2.53590 −0.0997736
\(647\) − 38.7846i − 1.52478i −0.647118 0.762390i \(-0.724026\pi\)
0.647118 0.762390i \(-0.275974\pi\)
\(648\) 4.26795i 0.167661i
\(649\) −12.0000 −0.471041
\(650\) 0 0
\(651\) −24.3923 −0.956010
\(652\) − 0.196152i − 0.00768192i
\(653\) 25.6077i 1.00211i 0.865416 + 0.501053i \(0.167054\pi\)
−0.865416 + 0.501053i \(0.832946\pi\)
\(654\) −47.3205 −1.85038
\(655\) 0 0
\(656\) 17.3205 0.676252
\(657\) 28.5359i 1.11329i
\(658\) − 61.1769i − 2.38492i
\(659\) 32.7846 1.27711 0.638554 0.769577i \(-0.279533\pi\)
0.638554 + 0.769577i \(0.279533\pi\)
\(660\) 0 0
\(661\) −8.14359 −0.316749 −0.158375 0.987379i \(-0.550625\pi\)
−0.158375 + 0.987379i \(0.550625\pi\)
\(662\) 11.3205i 0.439984i
\(663\) − 10.9282i − 0.424416i
\(664\) −14.7846 −0.573754
\(665\) 0 0
\(666\) 4.14359 0.160561
\(667\) 28.3923i 1.09935i
\(668\) − 12.5885i − 0.487062i
\(669\) 72.1051 2.78774
\(670\) 0 0
\(671\) −23.3205 −0.900278
\(672\) − 38.7846i − 1.49615i
\(673\) − 23.4641i − 0.904475i −0.891898 0.452237i \(-0.850626\pi\)
0.891898 0.452237i \(-0.149374\pi\)
\(674\) −11.7513 −0.452643
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 2.78461i 0.107021i 0.998567 + 0.0535106i \(0.0170411\pi\)
−0.998567 + 0.0535106i \(0.982959\pi\)
\(678\) − 81.9615i − 3.14771i
\(679\) −13.4641 −0.516705
\(680\) 0 0
\(681\) 62.1051 2.37987
\(682\) − 26.7846i − 1.02564i
\(683\) 30.8372i 1.17995i 0.807421 + 0.589976i \(0.200863\pi\)
−0.807421 + 0.589976i \(0.799137\pi\)
\(684\) 6.53590 0.249906
\(685\) 0 0
\(686\) −30.9282 −1.18084
\(687\) − 22.9282i − 0.874766i
\(688\) − 2.67949i − 0.102155i
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −38.9808 −1.48290 −0.741449 0.671009i \(-0.765861\pi\)
−0.741449 + 0.671009i \(0.765861\pi\)
\(692\) 3.46410i 0.131685i
\(693\) 57.7128i 2.19233i
\(694\) 6.58846 0.250094
\(695\) 0 0
\(696\) −16.3923 −0.621349
\(697\) 3.46410i 0.131212i
\(698\) 18.6795i 0.707029i
\(699\) −16.3923 −0.620014
\(700\) 0 0
\(701\) 11.3205 0.427570 0.213785 0.976881i \(-0.431421\pi\)
0.213785 + 0.976881i \(0.431421\pi\)
\(702\) 27.7128i 1.04595i
\(703\) − 0.784610i − 0.0295921i
\(704\) −4.73205 −0.178346
\(705\) 0 0
\(706\) −46.3923 −1.74600
\(707\) 25.8564i 0.972430i
\(708\) − 6.92820i − 0.260378i
\(709\) −4.53590 −0.170349 −0.0851746 0.996366i \(-0.527145\pi\)
−0.0851746 + 0.996366i \(0.527145\pi\)
\(710\) 0 0
\(711\) 65.1244 2.44235
\(712\) 7.60770i 0.285110i
\(713\) 26.7846i 1.00309i
\(714\) 12.9282 0.483826
\(715\) 0 0
\(716\) −11.3205 −0.423067
\(717\) − 56.7846i − 2.12066i
\(718\) − 37.1769i − 1.38743i
\(719\) 5.41154 0.201816 0.100908 0.994896i \(-0.467825\pi\)
0.100908 + 0.994896i \(0.467825\pi\)
\(720\) 0 0
\(721\) −24.3923 −0.908417
\(722\) 29.1962i 1.08657i
\(723\) 15.3205i 0.569776i
\(724\) 2.39230 0.0889093
\(725\) 0 0
\(726\) −53.9090 −2.00075
\(727\) 0.143594i 0.00532559i 0.999996 + 0.00266279i \(0.000847595\pi\)
−0.999996 + 0.00266279i \(0.999152\pi\)
\(728\) − 18.9282i − 0.701526i
\(729\) 43.7846 1.62165
\(730\) 0 0
\(731\) 0.535898 0.0198209
\(732\) − 13.4641i − 0.497648i
\(733\) − 2.00000i − 0.0738717i −0.999318 0.0369358i \(-0.988240\pi\)
0.999318 0.0369358i \(-0.0117597\pi\)
\(734\) −13.5167 −0.498909
\(735\) 0 0
\(736\) −42.5885 −1.56983
\(737\) − 47.3205i − 1.74307i
\(738\) − 26.7846i − 0.985955i
\(739\) 11.6077 0.426996 0.213498 0.976944i \(-0.431514\pi\)
0.213498 + 0.976944i \(0.431514\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 28.3923i 1.04231i
\(743\) 22.7321i 0.833958i 0.908916 + 0.416979i \(0.136911\pi\)
−0.908916 + 0.416979i \(0.863089\pi\)
\(744\) −15.4641 −0.566941
\(745\) 0 0
\(746\) −34.6410 −1.26830
\(747\) 38.1051i 1.39419i
\(748\) 4.73205i 0.173021i
\(749\) 48.2487 1.76297
\(750\) 0 0
\(751\) 43.6603 1.59319 0.796593 0.604516i \(-0.206634\pi\)
0.796593 + 0.604516i \(0.206634\pi\)
\(752\) − 64.6410i − 2.35722i
\(753\) − 18.9282i − 0.689782i
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) −10.9282 −0.397455
\(757\) 30.6410i 1.11367i 0.830624 + 0.556833i \(0.187984\pi\)
−0.830624 + 0.556833i \(0.812016\pi\)
\(758\) 30.8372i 1.12006i
\(759\) 105.962 3.84616
\(760\) 0 0
\(761\) −28.3923 −1.02922 −0.514610 0.857424i \(-0.672063\pi\)
−0.514610 + 0.857424i \(0.672063\pi\)
\(762\) 68.1051i 2.46719i
\(763\) − 27.3205i − 0.989069i
\(764\) −1.85641 −0.0671624
\(765\) 0 0
\(766\) −26.7846 −0.967767
\(767\) − 10.1436i − 0.366264i
\(768\) − 51.9090i − 1.87310i
\(769\) −36.3923 −1.31234 −0.656170 0.754613i \(-0.727825\pi\)
−0.656170 + 0.754613i \(0.727825\pi\)
\(770\) 0 0
\(771\) −18.9282 −0.681683
\(772\) 16.5359i 0.595140i
\(773\) 46.6410i 1.67756i 0.544470 + 0.838780i \(0.316731\pi\)
−0.544470 + 0.838780i \(0.683269\pi\)
\(774\) −4.14359 −0.148938
\(775\) 0 0
\(776\) −8.53590 −0.306421
\(777\) 4.00000i 0.143499i
\(778\) − 7.60770i − 0.272749i
\(779\) −5.07180 −0.181716
\(780\) 0 0
\(781\) 55.1769 1.97439
\(782\) − 14.1962i − 0.507653i
\(783\) 13.8564i 0.495188i
\(784\) 2.32051 0.0828753
\(785\) 0 0
\(786\) 10.3923 0.370681
\(787\) 43.9090i 1.56519i 0.622534 + 0.782593i \(0.286103\pi\)
−0.622534 + 0.782593i \(0.713897\pi\)
\(788\) − 17.3205i − 0.617018i
\(789\) 4.39230 0.156370
\(790\) 0 0
\(791\) 47.3205 1.68252
\(792\) 36.5885i 1.30011i
\(793\) − 19.7128i − 0.700023i
\(794\) 24.2487 0.860555
\(795\) 0 0
\(796\) 10.1962 0.361393
\(797\) − 24.9282i − 0.883002i −0.897261 0.441501i \(-0.854446\pi\)
0.897261 0.441501i \(-0.145554\pi\)
\(798\) 18.9282i 0.670051i
\(799\) 12.9282 0.457367
\(800\) 0 0
\(801\) 19.6077 0.692804
\(802\) − 22.3923i − 0.790700i
\(803\) − 30.2487i − 1.06745i
\(804\) 27.3205 0.963520
\(805\) 0 0
\(806\) 22.6410 0.797496
\(807\) 2.53590i 0.0892679i
\(808\) 16.3923i 0.576679i
\(809\) 55.8564 1.96381 0.981903 0.189383i \(-0.0606487\pi\)
0.981903 + 0.189383i \(0.0606487\pi\)
\(810\) 0 0
\(811\) 44.8372 1.57445 0.787223 0.616668i \(-0.211518\pi\)
0.787223 + 0.616668i \(0.211518\pi\)
\(812\) 9.46410i 0.332125i
\(813\) − 8.00000i − 0.280572i
\(814\) −4.39230 −0.153950
\(815\) 0 0
\(816\) 13.6603 0.478205
\(817\) 0.784610i 0.0274500i
\(818\) 45.0333i 1.57455i
\(819\) −48.7846 −1.70467
\(820\) 0 0
\(821\) −24.9282 −0.870000 −0.435000 0.900430i \(-0.643252\pi\)
−0.435000 + 0.900430i \(0.643252\pi\)
\(822\) 0 0
\(823\) 8.98076i 0.313050i 0.987674 + 0.156525i \(0.0500291\pi\)
−0.987674 + 0.156525i \(0.949971\pi\)
\(824\) −15.4641 −0.538718
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) − 15.8038i − 0.549554i −0.961508 0.274777i \(-0.911396\pi\)
0.961508 0.274777i \(-0.0886040\pi\)
\(828\) 36.5885i 1.27154i
\(829\) −17.7128 −0.615191 −0.307596 0.951517i \(-0.599524\pi\)
−0.307596 + 0.951517i \(0.599524\pi\)
\(830\) 0 0
\(831\) 57.1769 1.98345
\(832\) − 4.00000i − 0.138675i
\(833\) 0.464102i 0.0160802i
\(834\) −17.3205 −0.599760
\(835\) 0 0
\(836\) −6.92820 −0.239617
\(837\) 13.0718i 0.451827i
\(838\) 66.1577i 2.28538i
\(839\) −19.2679 −0.665203 −0.332602 0.943067i \(-0.607926\pi\)
−0.332602 + 0.943067i \(0.607926\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) − 9.46410i − 0.326154i
\(843\) 35.3205i 1.21650i
\(844\) −10.1962 −0.350966
\(845\) 0 0
\(846\) −99.9615 −3.43675
\(847\) − 31.1244i − 1.06945i
\(848\) 30.0000i 1.03020i
\(849\) 14.3923 0.493943
\(850\) 0 0
\(851\) 4.39230 0.150566
\(852\) 31.8564i 1.09138i
\(853\) 23.1769i 0.793562i 0.917913 + 0.396781i \(0.129873\pi\)
−0.917913 + 0.396781i \(0.870127\pi\)
\(854\) 23.3205 0.798011
\(855\) 0 0
\(856\) 30.5885 1.04549
\(857\) 31.1769i 1.06498i 0.846435 + 0.532492i \(0.178744\pi\)
−0.846435 + 0.532492i \(0.821256\pi\)
\(858\) − 89.5692i − 3.05784i
\(859\) 25.4641 0.868824 0.434412 0.900714i \(-0.356956\pi\)
0.434412 + 0.900714i \(0.356956\pi\)
\(860\) 0 0
\(861\) 25.8564 0.881184
\(862\) − 16.9808i − 0.578367i
\(863\) − 23.0718i − 0.785373i −0.919672 0.392687i \(-0.871546\pi\)
0.919672 0.392687i \(-0.128454\pi\)
\(864\) −20.7846 −0.707107
\(865\) 0 0
\(866\) 30.9282 1.05098
\(867\) 2.73205i 0.0927853i
\(868\) 8.92820i 0.303043i
\(869\) −69.0333 −2.34180
\(870\) 0 0
\(871\) 40.0000 1.35535
\(872\) − 17.3205i − 0.586546i
\(873\) 22.0000i 0.744587i
\(874\) 20.7846 0.703050
\(875\) 0 0
\(876\) 17.4641 0.590057
\(877\) − 1.21539i − 0.0410408i −0.999789 0.0205204i \(-0.993468\pi\)
0.999789 0.0205204i \(-0.00653231\pi\)
\(878\) − 34.7321i − 1.17215i
\(879\) 2.53590 0.0855337
\(880\) 0 0
\(881\) −41.3205 −1.39212 −0.696062 0.717982i \(-0.745066\pi\)
−0.696062 + 0.717982i \(0.745066\pi\)
\(882\) − 3.58846i − 0.120830i
\(883\) 10.0000i 0.336527i 0.985742 + 0.168263i \(0.0538159\pi\)
−0.985742 + 0.168263i \(0.946184\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) 22.3923 0.752284
\(887\) 3.12436i 0.104906i 0.998623 + 0.0524528i \(0.0167039\pi\)
−0.998623 + 0.0524528i \(0.983296\pi\)
\(888\) 2.53590i 0.0850992i
\(889\) −39.3205 −1.31877
\(890\) 0 0
\(891\) −11.6603 −0.390633
\(892\) − 26.3923i − 0.883680i
\(893\) 18.9282i 0.633408i
\(894\) −28.3923 −0.949581
\(895\) 0 0
\(896\) 33.1244 1.10661
\(897\) 89.5692i 2.99063i
\(898\) − 59.5692i − 1.98785i
\(899\) 11.3205 0.377560
\(900\) 0 0
\(901\) −6.00000 −0.199889
\(902\) 28.3923i 0.945360i
\(903\) − 4.00000i − 0.133112i
\(904\) 30.0000 0.997785
\(905\) 0 0
\(906\) 6.92820 0.230174
\(907\) 30.7321i 1.02044i 0.860044 + 0.510220i \(0.170436\pi\)
−0.860044 + 0.510220i \(0.829564\pi\)
\(908\) − 22.7321i − 0.754390i
\(909\) 42.2487 1.40130
\(910\) 0 0
\(911\) 36.3397 1.20399 0.601995 0.798500i \(-0.294373\pi\)
0.601995 + 0.798500i \(0.294373\pi\)
\(912\) 20.0000i 0.662266i
\(913\) − 40.3923i − 1.33679i
\(914\) −63.7128 −2.10743
\(915\) 0 0
\(916\) −8.39230 −0.277290
\(917\) 6.00000i 0.198137i
\(918\) − 6.92820i − 0.228665i
\(919\) 40.0000 1.31948 0.659739 0.751495i \(-0.270667\pi\)
0.659739 + 0.751495i \(0.270667\pi\)
\(920\) 0 0
\(921\) −27.3205 −0.900241
\(922\) 43.1769i 1.42196i
\(923\) 46.6410i 1.53521i
\(924\) 35.3205 1.16196
\(925\) 0 0
\(926\) 41.3205 1.35788
\(927\) 39.8564i 1.30906i
\(928\) 18.0000i 0.590879i
\(929\) 3.46410 0.113653 0.0568267 0.998384i \(-0.481902\pi\)
0.0568267 + 0.998384i \(0.481902\pi\)
\(930\) 0 0
\(931\) −0.679492 −0.0222694
\(932\) 6.00000i 0.196537i
\(933\) 43.8564i 1.43579i
\(934\) 2.78461 0.0911152
\(935\) 0 0
\(936\) −30.9282 −1.01092
\(937\) − 32.6410i − 1.06634i −0.846010 0.533168i \(-0.821001\pi\)
0.846010 0.533168i \(-0.178999\pi\)
\(938\) 47.3205i 1.54507i
\(939\) 72.1051 2.35306
\(940\) 0 0
\(941\) 48.2487 1.57286 0.786432 0.617677i \(-0.211926\pi\)
0.786432 + 0.617677i \(0.211926\pi\)
\(942\) − 42.2487i − 1.37654i
\(943\) − 28.3923i − 0.924581i
\(944\) 12.6795 0.412682
\(945\) 0 0
\(946\) 4.39230 0.142806
\(947\) 8.19615i 0.266339i 0.991093 + 0.133170i \(0.0425155\pi\)
−0.991093 + 0.133170i \(0.957485\pi\)
\(948\) − 39.8564i − 1.29448i
\(949\) 25.5692 0.830012
\(950\) 0 0
\(951\) −68.1051 −2.20846
\(952\) 4.73205i 0.153367i
\(953\) 8.78461i 0.284561i 0.989826 + 0.142281i \(0.0454436\pi\)
−0.989826 + 0.142281i \(0.954556\pi\)
\(954\) 46.3923 1.50201
\(955\) 0 0
\(956\) −20.7846 −0.672222
\(957\) − 44.7846i − 1.44768i
\(958\) − 20.1962i − 0.652508i
\(959\) 0 0
\(960\) 0 0
\(961\) −20.3205 −0.655500
\(962\) − 3.71281i − 0.119706i
\(963\) − 78.8372i − 2.54049i
\(964\) 5.60770 0.180612
\(965\) 0 0
\(966\) −105.962 −3.40926
\(967\) 39.1769i 1.25984i 0.776658 + 0.629922i \(0.216913\pi\)
−0.776658 + 0.629922i \(0.783087\pi\)
\(968\) − 19.7321i − 0.634212i
\(969\) −4.00000 −0.128499
\(970\) 0 0
\(971\) 54.2487 1.74092 0.870462 0.492236i \(-0.163820\pi\)
0.870462 + 0.492236i \(0.163820\pi\)
\(972\) − 18.7321i − 0.600831i
\(973\) − 10.0000i − 0.320585i
\(974\) 43.2679 1.38639
\(975\) 0 0
\(976\) 24.6410 0.788740
\(977\) 30.0000i 0.959785i 0.877327 + 0.479893i \(0.159324\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(978\) − 0.928203i − 0.0296807i
\(979\) −20.7846 −0.664279
\(980\) 0 0
\(981\) −44.6410 −1.42528
\(982\) 33.9615i 1.08376i
\(983\) − 58.7321i − 1.87326i −0.350318 0.936631i \(-0.613927\pi\)
0.350318 0.936631i \(-0.386073\pi\)
\(984\) 16.3923 0.522568
\(985\) 0 0
\(986\) −6.00000 −0.191079
\(987\) − 96.4974i − 3.07155i
\(988\) − 5.85641i − 0.186317i
\(989\) −4.39230 −0.139667
\(990\) 0 0
\(991\) −2.98076 −0.0946870 −0.0473435 0.998879i \(-0.515076\pi\)
−0.0473435 + 0.998879i \(0.515076\pi\)
\(992\) 16.9808i 0.539140i
\(993\) 17.8564i 0.566656i
\(994\) −55.1769 −1.75011
\(995\) 0 0
\(996\) 23.3205 0.738939
\(997\) − 2.39230i − 0.0757651i −0.999282 0.0378825i \(-0.987939\pi\)
0.999282 0.0378825i \(-0.0120613\pi\)
\(998\) − 27.1244i − 0.858606i
\(999\) 2.14359 0.0678203
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.b.d.324.1 4
5.2 odd 4 425.2.a.e.1.2 2
5.3 odd 4 85.2.a.c.1.1 2
5.4 even 2 inner 425.2.b.d.324.4 4
15.2 even 4 3825.2.a.v.1.1 2
15.8 even 4 765.2.a.g.1.2 2
20.3 even 4 1360.2.a.k.1.1 2
20.7 even 4 6800.2.a.bg.1.2 2
35.13 even 4 4165.2.a.t.1.1 2
40.3 even 4 5440.2.a.bl.1.2 2
40.13 odd 4 5440.2.a.bb.1.1 2
85.13 odd 4 1445.2.d.e.866.4 4
85.33 odd 4 1445.2.a.g.1.1 2
85.38 odd 4 1445.2.d.e.866.3 4
85.67 odd 4 7225.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.c.1.1 2 5.3 odd 4
425.2.a.e.1.2 2 5.2 odd 4
425.2.b.d.324.1 4 1.1 even 1 trivial
425.2.b.d.324.4 4 5.4 even 2 inner
765.2.a.g.1.2 2 15.8 even 4
1360.2.a.k.1.1 2 20.3 even 4
1445.2.a.g.1.1 2 85.33 odd 4
1445.2.d.e.866.3 4 85.38 odd 4
1445.2.d.e.866.4 4 85.13 odd 4
3825.2.a.v.1.1 2 15.2 even 4
4165.2.a.t.1.1 2 35.13 even 4
5440.2.a.bb.1.1 2 40.13 odd 4
5440.2.a.bl.1.2 2 40.3 even 4
6800.2.a.bg.1.2 2 20.7 even 4
7225.2.a.l.1.2 2 85.67 odd 4