Properties

Label 425.2.b.c.324.2
Level $425$
Weight $2$
Character 425.324
Analytic conductor $3.394$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 425.324
Dual form 425.2.b.c.324.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -2.00000i q^{3} +1.00000 q^{4} +2.00000 q^{6} -2.00000i q^{7} +3.00000i q^{8} -1.00000 q^{9} +2.00000 q^{11} -2.00000i q^{12} -2.00000i q^{13} +2.00000 q^{14} -1.00000 q^{16} +1.00000i q^{17} -1.00000i q^{18} -4.00000 q^{21} +2.00000i q^{22} -6.00000i q^{23} +6.00000 q^{24} +2.00000 q^{26} -4.00000i q^{27} -2.00000i q^{28} +6.00000 q^{29} -10.0000 q^{31} +5.00000i q^{32} -4.00000i q^{33} -1.00000 q^{34} -1.00000 q^{36} +2.00000i q^{37} -4.00000 q^{39} +10.0000 q^{41} -4.00000i q^{42} -4.00000i q^{43} +2.00000 q^{44} +6.00000 q^{46} +12.0000i q^{47} +2.00000i q^{48} +3.00000 q^{49} +2.00000 q^{51} -2.00000i q^{52} +10.0000i q^{53} +4.00000 q^{54} +6.00000 q^{56} +6.00000i q^{58} -8.00000 q^{59} -14.0000 q^{61} -10.0000i q^{62} +2.00000i q^{63} -7.00000 q^{64} +4.00000 q^{66} +8.00000i q^{67} +1.00000i q^{68} -12.0000 q^{69} -2.00000 q^{71} -3.00000i q^{72} +14.0000i q^{73} -2.00000 q^{74} -4.00000i q^{77} -4.00000i q^{78} +14.0000 q^{79} -11.0000 q^{81} +10.0000i q^{82} -4.00000i q^{83} -4.00000 q^{84} +4.00000 q^{86} -12.0000i q^{87} +6.00000i q^{88} -6.00000 q^{89} -4.00000 q^{91} -6.00000i q^{92} +20.0000i q^{93} -12.0000 q^{94} +10.0000 q^{96} +2.00000i q^{97} +3.00000i q^{98} -2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 4 q^{6} - 2 q^{9} + 4 q^{11} + 4 q^{14} - 2 q^{16} - 8 q^{21} + 12 q^{24} + 4 q^{26} + 12 q^{29} - 20 q^{31} - 2 q^{34} - 2 q^{36} - 8 q^{39} + 20 q^{41} + 4 q^{44} + 12 q^{46} + 6 q^{49}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) − 2.00000i − 1.15470i −0.816497 0.577350i \(-0.804087\pi\)
0.816497 0.577350i \(-0.195913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 2.00000 0.816497
\(7\) − 2.00000i − 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) − 2.00000i − 0.577350i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.00000i 0.242536i
\(18\) − 1.00000i − 0.235702i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 2.00000i 0.426401i
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 6.00000 1.22474
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) − 4.00000i − 0.769800i
\(28\) − 2.00000i − 0.377964i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 5.00000i 0.883883i
\(33\) − 4.00000i − 0.696311i
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) − 4.00000i − 0.617213i
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 12.0000i 1.75038i 0.483779 + 0.875190i \(0.339264\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 2.00000i 0.288675i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) − 2.00000i − 0.277350i
\(53\) 10.0000i 1.37361i 0.726844 + 0.686803i \(0.240986\pi\)
−0.726844 + 0.686803i \(0.759014\pi\)
\(54\) 4.00000 0.544331
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) 6.00000i 0.787839i
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) − 10.0000i − 1.27000i
\(63\) 2.00000i 0.251976i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 1.00000i 0.121268i
\(69\) −12.0000 −1.44463
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) − 3.00000i − 0.353553i
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 0 0
\(77\) − 4.00000i − 0.455842i
\(78\) − 4.00000i − 0.452911i
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 10.0000i 1.10432i
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) − 12.0000i − 1.28654i
\(88\) 6.00000i 0.639602i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) − 6.00000i − 0.625543i
\(93\) 20.0000i 2.07390i
\(94\) −12.0000 −1.23771
\(95\) 0 0
\(96\) 10.0000 1.02062
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 3.00000i 0.303046i
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 2.00000i 0.198030i
\(103\) − 12.0000i − 1.18240i −0.806527 0.591198i \(-0.798655\pi\)
0.806527 0.591198i \(-0.201345\pi\)
\(104\) 6.00000 0.588348
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 2.00000i 0.193347i 0.995316 + 0.0966736i \(0.0308203\pi\)
−0.995316 + 0.0966736i \(0.969180\pi\)
\(108\) − 4.00000i − 0.384900i
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) 2.00000i 0.188982i
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 2.00000i 0.184900i
\(118\) − 8.00000i − 0.736460i
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) − 14.0000i − 1.26750i
\(123\) − 20.0000i − 1.80334i
\(124\) −10.0000 −0.898027
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 3.00000i 0.265165i
\(129\) −8.00000 −0.704361
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) − 4.00000i − 0.348155i
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) − 2.00000i − 0.170872i −0.996344 0.0854358i \(-0.972772\pi\)
0.996344 0.0854358i \(-0.0272282\pi\)
\(138\) − 12.0000i − 1.02151i
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 24.0000 2.02116
\(142\) − 2.00000i − 0.167836i
\(143\) − 4.00000i − 0.334497i
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) − 6.00000i − 0.494872i
\(148\) 2.00000i 0.164399i
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) − 1.00000i − 0.0808452i
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) 6.00000i 0.478852i 0.970915 + 0.239426i \(0.0769593\pi\)
−0.970915 + 0.239426i \(0.923041\pi\)
\(158\) 14.0000i 1.11378i
\(159\) 20.0000 1.58610
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) − 11.0000i − 0.864242i
\(163\) 2.00000i 0.156652i 0.996928 + 0.0783260i \(0.0249575\pi\)
−0.996928 + 0.0783260i \(0.975042\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) 2.00000i 0.154765i 0.997001 + 0.0773823i \(0.0246562\pi\)
−0.997001 + 0.0773823i \(0.975344\pi\)
\(168\) − 12.0000i − 0.925820i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) − 4.00000i − 0.304997i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 12.0000 0.909718
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) 16.0000i 1.20263i
\(178\) − 6.00000i − 0.449719i
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) − 4.00000i − 0.296500i
\(183\) 28.0000i 2.06982i
\(184\) 18.0000 1.32698
\(185\) 0 0
\(186\) −20.0000 −1.46647
\(187\) 2.00000i 0.146254i
\(188\) 12.0000i 0.875190i
\(189\) −8.00000 −0.581914
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 14.0000i 1.01036i
\(193\) − 18.0000i − 1.29567i −0.761781 0.647834i \(-0.775675\pi\)
0.761781 0.647834i \(-0.224325\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) − 2.00000i − 0.142134i
\(199\) −6.00000 −0.425329 −0.212664 0.977125i \(-0.568214\pi\)
−0.212664 + 0.977125i \(0.568214\pi\)
\(200\) 0 0
\(201\) 16.0000 1.12855
\(202\) − 6.00000i − 0.422159i
\(203\) − 12.0000i − 0.842235i
\(204\) 2.00000 0.140028
\(205\) 0 0
\(206\) 12.0000 0.836080
\(207\) 6.00000i 0.417029i
\(208\) 2.00000i 0.138675i
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 10.0000i 0.686803i
\(213\) 4.00000i 0.274075i
\(214\) −2.00000 −0.136717
\(215\) 0 0
\(216\) 12.0000 0.816497
\(217\) 20.0000i 1.35769i
\(218\) − 2.00000i − 0.135457i
\(219\) 28.0000 1.89206
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 4.00000i 0.268462i
\(223\) − 16.0000i − 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 10.0000 0.668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) − 2.00000i − 0.132745i −0.997795 0.0663723i \(-0.978857\pi\)
0.997795 0.0663723i \(-0.0211425\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 18.0000i 1.18176i
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −8.00000 −0.520756
\(237\) − 28.0000i − 1.81880i
\(238\) 2.00000i 0.129641i
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) − 7.00000i − 0.449977i
\(243\) 10.0000i 0.641500i
\(244\) −14.0000 −0.896258
\(245\) 0 0
\(246\) 20.0000 1.27515
\(247\) 0 0
\(248\) − 30.0000i − 1.90500i
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) 2.00000i 0.125988i
\(253\) − 12.0000i − 0.754434i
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) − 2.00000i − 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) − 8.00000i − 0.498058i
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 6.00000i 0.370681i
\(263\) 8.00000i 0.493301i 0.969104 + 0.246651i \(0.0793300\pi\)
−0.969104 + 0.246651i \(0.920670\pi\)
\(264\) 12.0000 0.738549
\(265\) 0 0
\(266\) 0 0
\(267\) 12.0000i 0.734388i
\(268\) 8.00000i 0.488678i
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) − 1.00000i − 0.0606339i
\(273\) 8.00000i 0.484182i
\(274\) 2.00000 0.120824
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) − 30.0000i − 1.80253i −0.433273 0.901263i \(-0.642641\pi\)
0.433273 0.901263i \(-0.357359\pi\)
\(278\) − 14.0000i − 0.839664i
\(279\) 10.0000 0.598684
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 24.0000i 1.42918i
\(283\) − 6.00000i − 0.356663i −0.983970 0.178331i \(-0.942930\pi\)
0.983970 0.178331i \(-0.0570699\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) − 20.0000i − 1.18056i
\(288\) − 5.00000i − 0.294628i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 4.00000 0.234484
\(292\) 14.0000i 0.819288i
\(293\) − 30.0000i − 1.75262i −0.481749 0.876309i \(-0.659998\pi\)
0.481749 0.876309i \(-0.340002\pi\)
\(294\) 6.00000 0.349927
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) − 8.00000i − 0.464207i
\(298\) − 6.00000i − 0.347571i
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) − 12.0000i − 0.690522i
\(303\) 12.0000i 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) − 16.0000i − 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) − 4.00000i − 0.227921i
\(309\) −24.0000 −1.36531
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) − 12.0000i − 0.679366i
\(313\) − 2.00000i − 0.113047i −0.998401 0.0565233i \(-0.981998\pi\)
0.998401 0.0565233i \(-0.0180015\pi\)
\(314\) −6.00000 −0.338600
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) 10.0000i 0.561656i 0.959758 + 0.280828i \(0.0906090\pi\)
−0.959758 + 0.280828i \(0.909391\pi\)
\(318\) 20.0000i 1.12154i
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) − 12.0000i − 0.668734i
\(323\) 0 0
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −2.00000 −0.110770
\(327\) 4.00000i 0.221201i
\(328\) 30.0000i 1.65647i
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 16.0000 0.879440 0.439720 0.898135i \(-0.355078\pi\)
0.439720 + 0.898135i \(0.355078\pi\)
\(332\) − 4.00000i − 0.219529i
\(333\) − 2.00000i − 0.109599i
\(334\) −2.00000 −0.109435
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) − 6.00000i − 0.326841i −0.986557 0.163420i \(-0.947747\pi\)
0.986557 0.163420i \(-0.0522527\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) − 20.0000i − 1.07990i
\(344\) 12.0000 0.646997
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) − 26.0000i − 1.39575i −0.716218 0.697877i \(-0.754128\pi\)
0.716218 0.697877i \(-0.245872\pi\)
\(348\) − 12.0000i − 0.643268i
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 10.0000i 0.533002i
\(353\) 14.0000i 0.745145i 0.928003 + 0.372572i \(0.121524\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) −16.0000 −0.850390
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) − 4.00000i − 0.211702i
\(358\) 24.0000i 1.26844i
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 26.0000i 1.36653i
\(363\) 14.0000i 0.734809i
\(364\) −4.00000 −0.209657
\(365\) 0 0
\(366\) −28.0000 −1.46358
\(367\) − 34.0000i − 1.77479i −0.461014 0.887393i \(-0.652514\pi\)
0.461014 0.887393i \(-0.347486\pi\)
\(368\) 6.00000i 0.312772i
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) 20.0000 1.03835
\(372\) 20.0000i 1.03695i
\(373\) − 10.0000i − 0.517780i −0.965907 0.258890i \(-0.916643\pi\)
0.965907 0.258890i \(-0.0833568\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) −36.0000 −1.85656
\(377\) − 12.0000i − 0.618031i
\(378\) − 8.00000i − 0.411476i
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 8.00000i 0.409316i
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 6.00000 0.306186
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) 4.00000i 0.203331i
\(388\) 2.00000i 0.101535i
\(389\) −26.0000 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000i 0.454569i
\(393\) − 12.0000i − 0.605320i
\(394\) −2.00000 −0.100759
\(395\) 0 0
\(396\) −2.00000 −0.100504
\(397\) − 14.0000i − 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) − 6.00000i − 0.300753i
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 16.0000i 0.798007i
\(403\) 20.0000i 0.996271i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 4.00000i 0.198273i
\(408\) 6.00000i 0.297044i
\(409\) 38.0000 1.87898 0.939490 0.342578i \(-0.111300\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) − 12.0000i − 0.591198i
\(413\) 16.0000i 0.787309i
\(414\) −6.00000 −0.294884
\(415\) 0 0
\(416\) 10.0000 0.490290
\(417\) 28.0000i 1.37117i
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 2.00000i 0.0973585i
\(423\) − 12.0000i − 0.583460i
\(424\) −30.0000 −1.45693
\(425\) 0 0
\(426\) −4.00000 −0.193801
\(427\) 28.0000i 1.35501i
\(428\) 2.00000i 0.0966736i
\(429\) −8.00000 −0.386244
\(430\) 0 0
\(431\) −38.0000 −1.83040 −0.915198 0.403005i \(-0.867966\pi\)
−0.915198 + 0.403005i \(0.867966\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) −20.0000 −0.960031
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) 28.0000i 1.33789i
\(439\) −6.00000 −0.286364 −0.143182 0.989696i \(-0.545733\pi\)
−0.143182 + 0.989696i \(0.545733\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 2.00000i 0.0951303i
\(443\) − 24.0000i − 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) 12.0000i 0.567581i
\(448\) 14.0000i 0.661438i
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) 6.00000i 0.282216i
\(453\) 24.0000i 1.12762i
\(454\) 2.00000 0.0938647
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000i 0.280668i 0.990104 + 0.140334i \(0.0448177\pi\)
−0.990104 + 0.140334i \(0.955182\pi\)
\(458\) − 10.0000i − 0.467269i
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) − 8.00000i − 0.372194i
\(463\) 36.0000i 1.67306i 0.547920 + 0.836531i \(0.315420\pi\)
−0.547920 + 0.836531i \(0.684580\pi\)
\(464\) −6.00000 −0.278543
\(465\) 0 0
\(466\) −14.0000 −0.648537
\(467\) 28.0000i 1.29569i 0.761774 + 0.647843i \(0.224329\pi\)
−0.761774 + 0.647843i \(0.775671\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 12.0000 0.552931
\(472\) − 24.0000i − 1.10469i
\(473\) − 8.00000i − 0.367840i
\(474\) 28.0000 1.28608
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) − 10.0000i − 0.457869i
\(478\) 8.00000i 0.365911i
\(479\) 18.0000 0.822441 0.411220 0.911536i \(-0.365103\pi\)
0.411220 + 0.911536i \(0.365103\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) − 6.00000i − 0.273293i
\(483\) 24.0000i 1.09204i
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) 22.0000i 0.996915i 0.866914 + 0.498458i \(0.166100\pi\)
−0.866914 + 0.498458i \(0.833900\pi\)
\(488\) − 42.0000i − 1.90125i
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −16.0000 −0.722070 −0.361035 0.932552i \(-0.617576\pi\)
−0.361035 + 0.932552i \(0.617576\pi\)
\(492\) − 20.0000i − 0.901670i
\(493\) 6.00000i 0.270226i
\(494\) 0 0
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 4.00000i 0.179425i
\(498\) − 8.00000i − 0.358489i
\(499\) 14.0000 0.626726 0.313363 0.949633i \(-0.398544\pi\)
0.313363 + 0.949633i \(0.398544\pi\)
\(500\) 0 0
\(501\) 4.00000 0.178707
\(502\) 28.0000i 1.24970i
\(503\) − 6.00000i − 0.267527i −0.991013 0.133763i \(-0.957294\pi\)
0.991013 0.133763i \(-0.0427062\pi\)
\(504\) −6.00000 −0.267261
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) − 18.0000i − 0.799408i
\(508\) 8.00000i 0.354943i
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) − 11.0000i − 0.486136i
\(513\) 0 0
\(514\) 2.00000 0.0882162
\(515\) 0 0
\(516\) −8.00000 −0.352180
\(517\) 24.0000i 1.05552i
\(518\) 4.00000i 0.175750i
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) − 6.00000i − 0.262613i
\(523\) − 32.0000i − 1.39926i −0.714504 0.699631i \(-0.753348\pi\)
0.714504 0.699631i \(-0.246652\pi\)
\(524\) 6.00000 0.262111
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) − 10.0000i − 0.435607i
\(528\) 4.00000i 0.174078i
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) − 20.0000i − 0.866296i
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) −24.0000 −1.03664
\(537\) − 48.0000i − 2.07135i
\(538\) − 10.0000i − 0.431131i
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) − 16.0000i − 0.687259i
\(543\) − 52.0000i − 2.23153i
\(544\) −5.00000 −0.214373
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) − 22.0000i − 0.940652i −0.882493 0.470326i \(-0.844136\pi\)
0.882493 0.470326i \(-0.155864\pi\)
\(548\) − 2.00000i − 0.0854358i
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 0 0
\(552\) − 36.0000i − 1.53226i
\(553\) − 28.0000i − 1.19068i
\(554\) 30.0000 1.27458
\(555\) 0 0
\(556\) −14.0000 −0.593732
\(557\) 2.00000i 0.0847427i 0.999102 + 0.0423714i \(0.0134913\pi\)
−0.999102 + 0.0423714i \(0.986509\pi\)
\(558\) 10.0000i 0.423334i
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) − 6.00000i − 0.253095i
\(563\) − 4.00000i − 0.168580i −0.996441 0.0842900i \(-0.973138\pi\)
0.996441 0.0842900i \(-0.0268622\pi\)
\(564\) 24.0000 1.01058
\(565\) 0 0
\(566\) 6.00000 0.252199
\(567\) 22.0000i 0.923913i
\(568\) − 6.00000i − 0.251754i
\(569\) 38.0000 1.59304 0.796521 0.604610i \(-0.206671\pi\)
0.796521 + 0.604610i \(0.206671\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) − 4.00000i − 0.167248i
\(573\) − 16.0000i − 0.668410i
\(574\) 20.0000 0.834784
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) 6.00000i 0.249783i 0.992170 + 0.124892i \(0.0398583\pi\)
−0.992170 + 0.124892i \(0.960142\pi\)
\(578\) − 1.00000i − 0.0415945i
\(579\) −36.0000 −1.49611
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 4.00000i 0.165805i
\(583\) 20.0000i 0.828315i
\(584\) −42.0000 −1.73797
\(585\) 0 0
\(586\) 30.0000 1.23929
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) − 6.00000i − 0.247436i
\(589\) 0 0
\(590\) 0 0
\(591\) 4.00000 0.164538
\(592\) − 2.00000i − 0.0821995i
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) 8.00000 0.328244
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) 12.0000i 0.491127i
\(598\) − 12.0000i − 0.490716i
\(599\) −16.0000 −0.653742 −0.326871 0.945069i \(-0.605994\pi\)
−0.326871 + 0.945069i \(0.605994\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) − 8.00000i − 0.326056i
\(603\) − 8.00000i − 0.325785i
\(604\) −12.0000 −0.488273
\(605\) 0 0
\(606\) −12.0000 −0.487467
\(607\) 18.0000i 0.730597i 0.930890 + 0.365299i \(0.119033\pi\)
−0.930890 + 0.365299i \(0.880967\pi\)
\(608\) 0 0
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) − 1.00000i − 0.0404226i
\(613\) − 46.0000i − 1.85792i −0.370177 0.928961i \(-0.620703\pi\)
0.370177 0.928961i \(-0.379297\pi\)
\(614\) 16.0000 0.645707
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) 42.0000i 1.69086i 0.534089 + 0.845428i \(0.320655\pi\)
−0.534089 + 0.845428i \(0.679345\pi\)
\(618\) − 24.0000i − 0.965422i
\(619\) 14.0000 0.562708 0.281354 0.959604i \(-0.409217\pi\)
0.281354 + 0.959604i \(0.409217\pi\)
\(620\) 0 0
\(621\) −24.0000 −0.963087
\(622\) 6.00000i 0.240578i
\(623\) 12.0000i 0.480770i
\(624\) 4.00000 0.160128
\(625\) 0 0
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) 6.00000i 0.239426i
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) −4.00000 −0.159237 −0.0796187 0.996825i \(-0.525370\pi\)
−0.0796187 + 0.996825i \(0.525370\pi\)
\(632\) 42.0000i 1.67067i
\(633\) − 4.00000i − 0.158986i
\(634\) −10.0000 −0.397151
\(635\) 0 0
\(636\) 20.0000 0.793052
\(637\) − 6.00000i − 0.237729i
\(638\) 12.0000i 0.475085i
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 4.00000i 0.157867i
\(643\) 14.0000i 0.552106i 0.961142 + 0.276053i \(0.0890266\pi\)
−0.961142 + 0.276053i \(0.910973\pi\)
\(644\) −12.0000 −0.472866
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000i 1.10079i 0.834903 + 0.550397i \(0.185524\pi\)
−0.834903 + 0.550397i \(0.814476\pi\)
\(648\) − 33.0000i − 1.29636i
\(649\) −16.0000 −0.628055
\(650\) 0 0
\(651\) 40.0000 1.56772
\(652\) 2.00000i 0.0783260i
\(653\) 14.0000i 0.547862i 0.961749 + 0.273931i \(0.0883240\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) − 14.0000i − 0.546192i
\(658\) 24.0000i 0.935617i
\(659\) 44.0000 1.71400 0.856998 0.515319i \(-0.172327\pi\)
0.856998 + 0.515319i \(0.172327\pi\)
\(660\) 0 0
\(661\) 46.0000 1.78919 0.894596 0.446875i \(-0.147463\pi\)
0.894596 + 0.446875i \(0.147463\pi\)
\(662\) 16.0000i 0.621858i
\(663\) − 4.00000i − 0.155347i
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) − 36.0000i − 1.39393i
\(668\) 2.00000i 0.0773823i
\(669\) −32.0000 −1.23719
\(670\) 0 0
\(671\) −28.0000 −1.08093
\(672\) − 20.0000i − 0.771517i
\(673\) − 10.0000i − 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) 6.00000 0.231111
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) − 30.0000i − 1.15299i −0.817099 0.576497i \(-0.804419\pi\)
0.817099 0.576497i \(-0.195581\pi\)
\(678\) 12.0000i 0.460857i
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) − 20.0000i − 0.765840i
\(683\) − 18.0000i − 0.688751i −0.938832 0.344375i \(-0.888091\pi\)
0.938832 0.344375i \(-0.111909\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 20.0000i 0.763048i
\(688\) 4.00000i 0.152499i
\(689\) 20.0000 0.761939
\(690\) 0 0
\(691\) 2.00000 0.0760836 0.0380418 0.999276i \(-0.487888\pi\)
0.0380418 + 0.999276i \(0.487888\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 4.00000i 0.151947i
\(694\) 26.0000 0.986947
\(695\) 0 0
\(696\) 36.0000 1.36458
\(697\) 10.0000i 0.378777i
\(698\) − 22.0000i − 0.832712i
\(699\) 28.0000 1.05906
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) − 8.00000i − 0.301941i
\(703\) 0 0
\(704\) −14.0000 −0.527645
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) 12.0000i 0.451306i
\(708\) 16.0000i 0.601317i
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) −14.0000 −0.525041
\(712\) − 18.0000i − 0.674579i
\(713\) 60.0000i 2.24702i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) − 16.0000i − 0.597531i
\(718\) − 20.0000i − 0.746393i
\(719\) −14.0000 −0.522112 −0.261056 0.965324i \(-0.584071\pi\)
−0.261056 + 0.965324i \(0.584071\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) − 19.0000i − 0.707107i
\(723\) 12.0000i 0.446285i
\(724\) 26.0000 0.966282
\(725\) 0 0
\(726\) −14.0000 −0.519589
\(727\) − 12.0000i − 0.445055i −0.974926 0.222528i \(-0.928569\pi\)
0.974926 0.222528i \(-0.0714308\pi\)
\(728\) − 12.0000i − 0.444750i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 4.00000 0.147945
\(732\) 28.0000i 1.03491i
\(733\) 2.00000i 0.0738717i 0.999318 + 0.0369358i \(0.0117597\pi\)
−0.999318 + 0.0369358i \(0.988240\pi\)
\(734\) 34.0000 1.25496
\(735\) 0 0
\(736\) 30.0000 1.10581
\(737\) 16.0000i 0.589368i
\(738\) − 10.0000i − 0.368105i
\(739\) 8.00000 0.294285 0.147142 0.989115i \(-0.452992\pi\)
0.147142 + 0.989115i \(0.452992\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 20.0000i 0.734223i
\(743\) 6.00000i 0.220119i 0.993925 + 0.110059i \(0.0351041\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(744\) −60.0000 −2.19971
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) 4.00000i 0.146352i
\(748\) 2.00000i 0.0731272i
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) −2.00000 −0.0729810 −0.0364905 0.999334i \(-0.511618\pi\)
−0.0364905 + 0.999334i \(0.511618\pi\)
\(752\) − 12.0000i − 0.437595i
\(753\) − 56.0000i − 2.04075i
\(754\) 12.0000 0.437014
\(755\) 0 0
\(756\) −8.00000 −0.290957
\(757\) − 22.0000i − 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) 2.00000i 0.0726433i
\(759\) −24.0000 −0.871145
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 16.0000i 0.579619i
\(763\) 4.00000i 0.144810i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 0 0
\(767\) 16.0000i 0.577727i
\(768\) 34.0000i 1.22687i
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 0 0
\(771\) −4.00000 −0.144056
\(772\) − 18.0000i − 0.647834i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) − 8.00000i − 0.286998i
\(778\) − 26.0000i − 0.932145i
\(779\) 0 0
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) 6.00000i 0.214560i
\(783\) − 24.0000i − 0.857690i
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 12.0000 0.428026
\(787\) − 6.00000i − 0.213877i −0.994266 0.106938i \(-0.965895\pi\)
0.994266 0.106938i \(-0.0341048\pi\)
\(788\) 2.00000i 0.0712470i
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) − 6.00000i − 0.213201i
\(793\) 28.0000i 0.994309i
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) −6.00000 −0.212664
\(797\) − 2.00000i − 0.0708436i −0.999372 0.0354218i \(-0.988723\pi\)
0.999372 0.0354218i \(-0.0112775\pi\)
\(798\) 0 0
\(799\) −12.0000 −0.424529
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 18.0000i 0.635602i
\(803\) 28.0000i 0.988099i
\(804\) 16.0000 0.564276
\(805\) 0 0
\(806\) −20.0000 −0.704470
\(807\) 20.0000i 0.704033i
\(808\) − 18.0000i − 0.633238i
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) − 12.0000i − 0.421117i
\(813\) 32.0000i 1.12229i
\(814\) −4.00000 −0.140200
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) 38.0000i 1.32864i
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) 2.00000 0.0698005 0.0349002 0.999391i \(-0.488889\pi\)
0.0349002 + 0.999391i \(0.488889\pi\)
\(822\) − 4.00000i − 0.139516i
\(823\) 34.0000i 1.18517i 0.805510 + 0.592583i \(0.201892\pi\)
−0.805510 + 0.592583i \(0.798108\pi\)
\(824\) 36.0000 1.25412
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) − 42.0000i − 1.46048i −0.683189 0.730242i \(-0.739408\pi\)
0.683189 0.730242i \(-0.260592\pi\)
\(828\) 6.00000i 0.208514i
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) −60.0000 −2.08138
\(832\) 14.0000i 0.485363i
\(833\) 3.00000i 0.103944i
\(834\) −28.0000 −0.969561
\(835\) 0 0
\(836\) 0 0
\(837\) 40.0000i 1.38260i
\(838\) − 18.0000i − 0.621800i
\(839\) −26.0000 −0.897620 −0.448810 0.893627i \(-0.648152\pi\)
−0.448810 + 0.893627i \(0.648152\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 26.0000i 0.896019i
\(843\) 12.0000i 0.413302i
\(844\) 2.00000 0.0688428
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 14.0000i 0.481046i
\(848\) − 10.0000i − 0.343401i
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 4.00000i 0.137038i
\(853\) − 34.0000i − 1.16414i −0.813139 0.582069i \(-0.802243\pi\)
0.813139 0.582069i \(-0.197757\pi\)
\(854\) −28.0000 −0.958140
\(855\) 0 0
\(856\) −6.00000 −0.205076
\(857\) 34.0000i 1.16142i 0.814111 + 0.580709i \(0.197225\pi\)
−0.814111 + 0.580709i \(0.802775\pi\)
\(858\) − 8.00000i − 0.273115i
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) 0 0
\(861\) −40.0000 −1.36320
\(862\) − 38.0000i − 1.29429i
\(863\) 4.00000i 0.136162i 0.997680 + 0.0680808i \(0.0216876\pi\)
−0.997680 + 0.0680808i \(0.978312\pi\)
\(864\) 20.0000 0.680414
\(865\) 0 0
\(866\) −34.0000 −1.15537
\(867\) 2.00000i 0.0679236i
\(868\) 20.0000i 0.678844i
\(869\) 28.0000 0.949835
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) − 6.00000i − 0.203186i
\(873\) − 2.00000i − 0.0676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 28.0000 0.946032
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) − 6.00000i − 0.202490i
\(879\) −60.0000 −2.02375
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) − 3.00000i − 0.101015i
\(883\) − 16.0000i − 0.538443i −0.963078 0.269221i \(-0.913234\pi\)
0.963078 0.269221i \(-0.0867663\pi\)
\(884\) 2.00000 0.0672673
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) − 22.0000i − 0.738688i −0.929293 0.369344i \(-0.879582\pi\)
0.929293 0.369344i \(-0.120418\pi\)
\(888\) 12.0000i 0.402694i
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) −22.0000 −0.737028
\(892\) − 16.0000i − 0.535720i
\(893\) 0 0
\(894\) −12.0000 −0.401340
\(895\) 0 0
\(896\) 6.00000 0.200446
\(897\) 24.0000i 0.801337i
\(898\) − 18.0000i − 0.600668i
\(899\) −60.0000 −2.00111
\(900\) 0 0
\(901\) −10.0000 −0.333148
\(902\) 20.0000i 0.665927i
\(903\) 16.0000i 0.532447i
\(904\) −18.0000 −0.598671
\(905\) 0 0
\(906\) −24.0000 −0.797347
\(907\) 30.0000i 0.996134i 0.867139 + 0.498067i \(0.165957\pi\)
−0.867139 + 0.498067i \(0.834043\pi\)
\(908\) − 2.00000i − 0.0663723i
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) −38.0000 −1.25900 −0.629498 0.777002i \(-0.716739\pi\)
−0.629498 + 0.777002i \(0.716739\pi\)
\(912\) 0 0
\(913\) − 8.00000i − 0.264761i
\(914\) −6.00000 −0.198462
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) − 12.0000i − 0.396275i
\(918\) 4.00000i 0.132020i
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −32.0000 −1.05444
\(922\) − 26.0000i − 0.856264i
\(923\) 4.00000i 0.131662i
\(924\) −8.00000 −0.263181
\(925\) 0 0
\(926\) −36.0000 −1.18303
\(927\) 12.0000i 0.394132i
\(928\) 30.0000i 0.984798i
\(929\) −58.0000 −1.90292 −0.951459 0.307775i \(-0.900416\pi\)
−0.951459 + 0.307775i \(0.900416\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 14.0000i 0.458585i
\(933\) − 12.0000i − 0.392862i
\(934\) −28.0000 −0.916188
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) − 38.0000i − 1.24141i −0.784046 0.620703i \(-0.786847\pi\)
0.784046 0.620703i \(-0.213153\pi\)
\(938\) 16.0000i 0.522419i
\(939\) −4.00000 −0.130535
\(940\) 0 0
\(941\) 34.0000 1.10837 0.554184 0.832394i \(-0.313030\pi\)
0.554184 + 0.832394i \(0.313030\pi\)
\(942\) 12.0000i 0.390981i
\(943\) − 60.0000i − 1.95387i
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) 26.0000i 0.844886i 0.906389 + 0.422443i \(0.138827\pi\)
−0.906389 + 0.422443i \(0.861173\pi\)
\(948\) − 28.0000i − 0.909398i
\(949\) 28.0000 0.908918
\(950\) 0 0
\(951\) 20.0000 0.648544
\(952\) 6.00000i 0.194461i
\(953\) 18.0000i 0.583077i 0.956559 + 0.291539i \(0.0941672\pi\)
−0.956559 + 0.291539i \(0.905833\pi\)
\(954\) 10.0000 0.323762
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) − 24.0000i − 0.775810i
\(958\) 18.0000i 0.581554i
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 4.00000i 0.128965i
\(963\) − 2.00000i − 0.0644491i
\(964\) −6.00000 −0.193247
\(965\) 0 0
\(966\) −24.0000 −0.772187
\(967\) 32.0000i 1.02905i 0.857475 + 0.514525i \(0.172032\pi\)
−0.857475 + 0.514525i \(0.827968\pi\)
\(968\) − 21.0000i − 0.674966i
\(969\) 0 0
\(970\) 0 0
\(971\) −8.00000 −0.256732 −0.128366 0.991727i \(-0.540973\pi\)
−0.128366 + 0.991727i \(0.540973\pi\)
\(972\) 10.0000i 0.320750i
\(973\) 28.0000i 0.897639i
\(974\) −22.0000 −0.704925
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 34.0000i 1.08776i 0.839164 + 0.543878i \(0.183045\pi\)
−0.839164 + 0.543878i \(0.816955\pi\)
\(978\) 4.00000i 0.127906i
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) − 16.0000i − 0.510581i
\(983\) 6.00000i 0.191370i 0.995412 + 0.0956851i \(0.0305042\pi\)
−0.995412 + 0.0956851i \(0.969496\pi\)
\(984\) 60.0000 1.91273
\(985\) 0 0
\(986\) −6.00000 −0.191079
\(987\) − 48.0000i − 1.52786i
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −58.0000 −1.84243 −0.921215 0.389053i \(-0.872802\pi\)
−0.921215 + 0.389053i \(0.872802\pi\)
\(992\) − 50.0000i − 1.58750i
\(993\) − 32.0000i − 1.01549i
\(994\) −4.00000 −0.126872
\(995\) 0 0
\(996\) −8.00000 −0.253490
\(997\) − 62.0000i − 1.96356i −0.190022 0.981780i \(-0.560856\pi\)
0.190022 0.981780i \(-0.439144\pi\)
\(998\) 14.0000i 0.443162i
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.b.c.324.2 2
5.2 odd 4 425.2.a.a.1.1 1
5.3 odd 4 85.2.a.a.1.1 1
5.4 even 2 inner 425.2.b.c.324.1 2
15.2 even 4 3825.2.a.l.1.1 1
15.8 even 4 765.2.a.a.1.1 1
20.3 even 4 1360.2.a.b.1.1 1
20.7 even 4 6800.2.a.v.1.1 1
35.13 even 4 4165.2.a.l.1.1 1
40.3 even 4 5440.2.a.x.1.1 1
40.13 odd 4 5440.2.a.e.1.1 1
85.13 odd 4 1445.2.d.a.866.2 2
85.33 odd 4 1445.2.a.c.1.1 1
85.38 odd 4 1445.2.d.a.866.1 2
85.67 odd 4 7225.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.a.1.1 1 5.3 odd 4
425.2.a.a.1.1 1 5.2 odd 4
425.2.b.c.324.1 2 5.4 even 2 inner
425.2.b.c.324.2 2 1.1 even 1 trivial
765.2.a.a.1.1 1 15.8 even 4
1360.2.a.b.1.1 1 20.3 even 4
1445.2.a.c.1.1 1 85.33 odd 4
1445.2.d.a.866.1 2 85.38 odd 4
1445.2.d.a.866.2 2 85.13 odd 4
3825.2.a.l.1.1 1 15.2 even 4
4165.2.a.l.1.1 1 35.13 even 4
5440.2.a.e.1.1 1 40.13 odd 4
5440.2.a.x.1.1 1 40.3 even 4
6800.2.a.v.1.1 1 20.7 even 4
7225.2.a.d.1.1 1 85.67 odd 4