Properties

Label 425.2.b.a.324.2
Level $425$
Weight $2$
Character 425.324
Analytic conductor $3.394$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 425.324
Dual form 425.2.b.a.324.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000i q^{3} +1.00000 q^{4} -1.00000 q^{6} +1.00000i q^{7} +3.00000i q^{8} +2.00000 q^{9} -4.00000 q^{11} +1.00000i q^{12} +1.00000i q^{13} -1.00000 q^{14} -1.00000 q^{16} +1.00000i q^{17} +2.00000i q^{18} +6.00000 q^{19} -1.00000 q^{21} -4.00000i q^{22} -3.00000 q^{24} -1.00000 q^{26} +5.00000i q^{27} +1.00000i q^{28} -7.00000 q^{31} +5.00000i q^{32} -4.00000i q^{33} -1.00000 q^{34} +2.00000 q^{36} -4.00000i q^{37} +6.00000i q^{38} -1.00000 q^{39} -2.00000 q^{41} -1.00000i q^{42} -4.00000i q^{43} -4.00000 q^{44} -6.00000i q^{47} -1.00000i q^{48} +6.00000 q^{49} -1.00000 q^{51} +1.00000i q^{52} -11.0000i q^{53} -5.00000 q^{54} -3.00000 q^{56} +6.00000i q^{57} -8.00000 q^{59} +10.0000 q^{61} -7.00000i q^{62} +2.00000i q^{63} -7.00000 q^{64} +4.00000 q^{66} +8.00000i q^{67} +1.00000i q^{68} +7.00000 q^{71} +6.00000i q^{72} -4.00000i q^{73} +4.00000 q^{74} +6.00000 q^{76} -4.00000i q^{77} -1.00000i q^{78} +11.0000 q^{79} +1.00000 q^{81} -2.00000i q^{82} +8.00000i q^{83} -1.00000 q^{84} +4.00000 q^{86} -12.0000i q^{88} +6.00000 q^{89} -1.00000 q^{91} -7.00000i q^{93} +6.00000 q^{94} -5.00000 q^{96} -16.0000i q^{97} +6.00000i q^{98} -8.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{6} + 4 q^{9} - 8 q^{11} - 2 q^{14} - 2 q^{16} + 12 q^{19} - 2 q^{21} - 6 q^{24} - 2 q^{26} - 14 q^{31} - 2 q^{34} + 4 q^{36} - 2 q^{39} - 4 q^{41} - 8 q^{44} + 12 q^{49} - 2 q^{51}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 1.00000i 0.377964i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.00000i 0.242536i
\(18\) 2.00000i 0.471405i
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) − 4.00000i − 0.852803i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −3.00000 −0.612372
\(25\) 0 0
\(26\) −1.00000 −0.196116
\(27\) 5.00000i 0.962250i
\(28\) 1.00000i 0.188982i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 5.00000i 0.883883i
\(33\) − 4.00000i − 0.696311i
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 2.00000 0.333333
\(37\) − 4.00000i − 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 6.00000i 0.973329i
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) − 1.00000i − 0.154303i
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) −4.00000 −0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) − 6.00000i − 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 1.00000i 0.138675i
\(53\) − 11.0000i − 1.51097i −0.655168 0.755483i \(-0.727402\pi\)
0.655168 0.755483i \(-0.272598\pi\)
\(54\) −5.00000 −0.680414
\(55\) 0 0
\(56\) −3.00000 −0.400892
\(57\) 6.00000i 0.794719i
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) − 7.00000i − 0.889001i
\(63\) 2.00000i 0.251976i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) 1.00000i 0.121268i
\(69\) 0 0
\(70\) 0 0
\(71\) 7.00000 0.830747 0.415374 0.909651i \(-0.363651\pi\)
0.415374 + 0.909651i \(0.363651\pi\)
\(72\) 6.00000i 0.707107i
\(73\) − 4.00000i − 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) 6.00000 0.688247
\(77\) − 4.00000i − 0.455842i
\(78\) − 1.00000i − 0.113228i
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 2.00000i − 0.220863i
\(83\) 8.00000i 0.878114i 0.898459 + 0.439057i \(0.144687\pi\)
−0.898459 + 0.439057i \(0.855313\pi\)
\(84\) −1.00000 −0.109109
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) − 12.0000i − 1.27920i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −1.00000 −0.104828
\(92\) 0 0
\(93\) − 7.00000i − 0.725866i
\(94\) 6.00000 0.618853
\(95\) 0 0
\(96\) −5.00000 −0.510310
\(97\) − 16.0000i − 1.62455i −0.583272 0.812277i \(-0.698228\pi\)
0.583272 0.812277i \(-0.301772\pi\)
\(98\) 6.00000i 0.606092i
\(99\) −8.00000 −0.804030
\(100\) 0 0
\(101\) 15.0000 1.49256 0.746278 0.665635i \(-0.231839\pi\)
0.746278 + 0.665635i \(0.231839\pi\)
\(102\) − 1.00000i − 0.0990148i
\(103\) − 6.00000i − 0.591198i −0.955312 0.295599i \(-0.904481\pi\)
0.955312 0.295599i \(-0.0955191\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) 11.0000 1.06841
\(107\) − 19.0000i − 1.83680i −0.395654 0.918400i \(-0.629482\pi\)
0.395654 0.918400i \(-0.370518\pi\)
\(108\) 5.00000i 0.481125i
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) − 1.00000i − 0.0944911i
\(113\) 12.0000i 1.12887i 0.825479 + 0.564433i \(0.190905\pi\)
−0.825479 + 0.564433i \(0.809095\pi\)
\(114\) −6.00000 −0.561951
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) − 8.00000i − 0.736460i
\(119\) −1.00000 −0.0916698
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 10.0000i 0.905357i
\(123\) − 2.00000i − 0.180334i
\(124\) −7.00000 −0.628619
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) − 16.0000i − 1.41977i −0.704317 0.709885i \(-0.748747\pi\)
0.704317 0.709885i \(-0.251253\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) − 4.00000i − 0.348155i
\(133\) 6.00000i 0.520266i
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) − 11.0000i − 0.939793i −0.882721 0.469897i \(-0.844291\pi\)
0.882721 0.469897i \(-0.155709\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 7.00000i 0.587427i
\(143\) − 4.00000i − 0.334497i
\(144\) −2.00000 −0.166667
\(145\) 0 0
\(146\) 4.00000 0.331042
\(147\) 6.00000i 0.494872i
\(148\) − 4.00000i − 0.328798i
\(149\) −21.0000 −1.72039 −0.860194 0.509968i \(-0.829657\pi\)
−0.860194 + 0.509968i \(0.829657\pi\)
\(150\) 0 0
\(151\) −18.0000 −1.46482 −0.732410 0.680864i \(-0.761604\pi\)
−0.732410 + 0.680864i \(0.761604\pi\)
\(152\) 18.0000i 1.45999i
\(153\) 2.00000i 0.161690i
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) −1.00000 −0.0800641
\(157\) 21.0000i 1.67598i 0.545684 + 0.837991i \(0.316270\pi\)
−0.545684 + 0.837991i \(0.683730\pi\)
\(158\) 11.0000i 0.875113i
\(159\) 11.0000 0.872357
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000i 0.0785674i
\(163\) 11.0000i 0.861586i 0.902451 + 0.430793i \(0.141766\pi\)
−0.902451 + 0.430793i \(0.858234\pi\)
\(164\) −2.00000 −0.156174
\(165\) 0 0
\(166\) −8.00000 −0.620920
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) − 3.00000i − 0.231455i
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 12.0000 0.917663
\(172\) − 4.00000i − 0.304997i
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) − 8.00000i − 0.601317i
\(178\) 6.00000i 0.449719i
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) − 1.00000i − 0.0741249i
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 7.00000 0.513265
\(187\) − 4.00000i − 0.292509i
\(188\) − 6.00000i − 0.437595i
\(189\) −5.00000 −0.363696
\(190\) 0 0
\(191\) −10.0000 −0.723575 −0.361787 0.932261i \(-0.617833\pi\)
−0.361787 + 0.932261i \(0.617833\pi\)
\(192\) − 7.00000i − 0.505181i
\(193\) − 24.0000i − 1.72756i −0.503871 0.863779i \(-0.668091\pi\)
0.503871 0.863779i \(-0.331909\pi\)
\(194\) 16.0000 1.14873
\(195\) 0 0
\(196\) 6.00000 0.428571
\(197\) 14.0000i 0.997459i 0.866758 + 0.498729i \(0.166200\pi\)
−0.866758 + 0.498729i \(0.833800\pi\)
\(198\) − 8.00000i − 0.568535i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) −8.00000 −0.564276
\(202\) 15.0000i 1.05540i
\(203\) 0 0
\(204\) −1.00000 −0.0700140
\(205\) 0 0
\(206\) 6.00000 0.418040
\(207\) 0 0
\(208\) − 1.00000i − 0.0693375i
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) − 11.0000i − 0.755483i
\(213\) 7.00000i 0.479632i
\(214\) 19.0000 1.29881
\(215\) 0 0
\(216\) −15.0000 −1.02062
\(217\) − 7.00000i − 0.475191i
\(218\) 4.00000i 0.270914i
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −1.00000 −0.0672673
\(222\) 4.00000i 0.268462i
\(223\) 2.00000i 0.133930i 0.997755 + 0.0669650i \(0.0213316\pi\)
−0.997755 + 0.0669650i \(0.978668\pi\)
\(224\) −5.00000 −0.334077
\(225\) 0 0
\(226\) −12.0000 −0.798228
\(227\) 25.0000i 1.65931i 0.558278 + 0.829654i \(0.311462\pi\)
−0.558278 + 0.829654i \(0.688538\pi\)
\(228\) 6.00000i 0.397360i
\(229\) −1.00000 −0.0660819 −0.0330409 0.999454i \(-0.510519\pi\)
−0.0330409 + 0.999454i \(0.510519\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) 8.00000i 0.524097i 0.965055 + 0.262049i \(0.0843981\pi\)
−0.965055 + 0.262049i \(0.915602\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −8.00000 −0.520756
\(237\) 11.0000i 0.714527i
\(238\) − 1.00000i − 0.0648204i
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 16.0000i 1.02640i
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 2.00000 0.127515
\(247\) 6.00000i 0.381771i
\(248\) − 21.0000i − 1.33350i
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 0 0
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 19.0000i 1.18519i 0.805502 + 0.592594i \(0.201896\pi\)
−0.805502 + 0.592594i \(0.798104\pi\)
\(258\) 4.00000i 0.249029i
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) − 15.0000i − 0.926703i
\(263\) − 16.0000i − 0.986602i −0.869859 0.493301i \(-0.835790\pi\)
0.869859 0.493301i \(-0.164210\pi\)
\(264\) 12.0000 0.738549
\(265\) 0 0
\(266\) −6.00000 −0.367884
\(267\) 6.00000i 0.367194i
\(268\) 8.00000i 0.488678i
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) − 1.00000i − 0.0606339i
\(273\) − 1.00000i − 0.0605228i
\(274\) 11.0000 0.664534
\(275\) 0 0
\(276\) 0 0
\(277\) − 30.0000i − 1.80253i −0.433273 0.901263i \(-0.642641\pi\)
0.433273 0.901263i \(-0.357359\pi\)
\(278\) 13.0000i 0.779688i
\(279\) −14.0000 −0.838158
\(280\) 0 0
\(281\) 9.00000 0.536895 0.268447 0.963294i \(-0.413489\pi\)
0.268447 + 0.963294i \(0.413489\pi\)
\(282\) 6.00000i 0.357295i
\(283\) 24.0000i 1.42665i 0.700832 + 0.713326i \(0.252812\pi\)
−0.700832 + 0.713326i \(0.747188\pi\)
\(284\) 7.00000 0.415374
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) − 2.00000i − 0.118056i
\(288\) 10.0000i 0.589256i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 16.0000 0.937937
\(292\) − 4.00000i − 0.234082i
\(293\) − 6.00000i − 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) −6.00000 −0.349927
\(295\) 0 0
\(296\) 12.0000 0.697486
\(297\) − 20.0000i − 1.16052i
\(298\) − 21.0000i − 1.21650i
\(299\) 0 0
\(300\) 0 0
\(301\) 4.00000 0.230556
\(302\) − 18.0000i − 1.03578i
\(303\) 15.0000i 0.861727i
\(304\) −6.00000 −0.344124
\(305\) 0 0
\(306\) −2.00000 −0.114332
\(307\) 20.0000i 1.14146i 0.821138 + 0.570730i \(0.193340\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(308\) − 4.00000i − 0.227921i
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) −27.0000 −1.53103 −0.765515 0.643418i \(-0.777516\pi\)
−0.765515 + 0.643418i \(0.777516\pi\)
\(312\) − 3.00000i − 0.169842i
\(313\) 10.0000i 0.565233i 0.959233 + 0.282617i \(0.0912024\pi\)
−0.959233 + 0.282617i \(0.908798\pi\)
\(314\) −21.0000 −1.18510
\(315\) 0 0
\(316\) 11.0000 0.618798
\(317\) − 14.0000i − 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) 11.0000i 0.616849i
\(319\) 0 0
\(320\) 0 0
\(321\) 19.0000 1.06048
\(322\) 0 0
\(323\) 6.00000i 0.333849i
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −11.0000 −0.609234
\(327\) 4.00000i 0.221201i
\(328\) − 6.00000i − 0.331295i
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −14.0000 −0.769510 −0.384755 0.923019i \(-0.625714\pi\)
−0.384755 + 0.923019i \(0.625714\pi\)
\(332\) 8.00000i 0.439057i
\(333\) − 8.00000i − 0.438397i
\(334\) −8.00000 −0.437741
\(335\) 0 0
\(336\) 1.00000 0.0545545
\(337\) − 24.0000i − 1.30736i −0.756770 0.653682i \(-0.773224\pi\)
0.756770 0.653682i \(-0.226776\pi\)
\(338\) 12.0000i 0.652714i
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) 28.0000 1.51629
\(342\) 12.0000i 0.648886i
\(343\) 13.0000i 0.701934i
\(344\) 12.0000 0.646997
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 7.00000i 0.375780i 0.982190 + 0.187890i \(0.0601648\pi\)
−0.982190 + 0.187890i \(0.939835\pi\)
\(348\) 0 0
\(349\) −19.0000 −1.01705 −0.508523 0.861048i \(-0.669808\pi\)
−0.508523 + 0.861048i \(0.669808\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) − 20.0000i − 1.06600i
\(353\) − 19.0000i − 1.01127i −0.862748 0.505634i \(-0.831259\pi\)
0.862748 0.505634i \(-0.168741\pi\)
\(354\) 8.00000 0.425195
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) − 1.00000i − 0.0529256i
\(358\) − 6.00000i − 0.317110i
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) − 22.0000i − 1.15629i
\(363\) 5.00000i 0.262432i
\(364\) −1.00000 −0.0524142
\(365\) 0 0
\(366\) −10.0000 −0.522708
\(367\) 23.0000i 1.20059i 0.799779 + 0.600295i \(0.204950\pi\)
−0.799779 + 0.600295i \(0.795050\pi\)
\(368\) 0 0
\(369\) −4.00000 −0.208232
\(370\) 0 0
\(371\) 11.0000 0.571092
\(372\) − 7.00000i − 0.362933i
\(373\) − 19.0000i − 0.983783i −0.870657 0.491891i \(-0.836306\pi\)
0.870657 0.491891i \(-0.163694\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 18.0000 0.928279
\(377\) 0 0
\(378\) − 5.00000i − 0.257172i
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) − 10.0000i − 0.511645i
\(383\) − 6.00000i − 0.306586i −0.988181 0.153293i \(-0.951012\pi\)
0.988181 0.153293i \(-0.0489878\pi\)
\(384\) −3.00000 −0.153093
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) − 8.00000i − 0.406663i
\(388\) − 16.0000i − 0.812277i
\(389\) 34.0000 1.72387 0.861934 0.507020i \(-0.169253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 18.0000i 0.909137i
\(393\) − 15.0000i − 0.756650i
\(394\) −14.0000 −0.705310
\(395\) 0 0
\(396\) −8.00000 −0.402015
\(397\) 4.00000i 0.200754i 0.994949 + 0.100377i \(0.0320049\pi\)
−0.994949 + 0.100377i \(0.967995\pi\)
\(398\) 0 0
\(399\) −6.00000 −0.300376
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) − 8.00000i − 0.399004i
\(403\) − 7.00000i − 0.348695i
\(404\) 15.0000 0.746278
\(405\) 0 0
\(406\) 0 0
\(407\) 16.0000i 0.793091i
\(408\) − 3.00000i − 0.148522i
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) 0 0
\(411\) 11.0000 0.542590
\(412\) − 6.00000i − 0.295599i
\(413\) − 8.00000i − 0.393654i
\(414\) 0 0
\(415\) 0 0
\(416\) −5.00000 −0.245145
\(417\) 13.0000i 0.636613i
\(418\) − 24.0000i − 1.17388i
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −25.0000 −1.21843 −0.609213 0.793007i \(-0.708514\pi\)
−0.609213 + 0.793007i \(0.708514\pi\)
\(422\) − 25.0000i − 1.21698i
\(423\) − 12.0000i − 0.583460i
\(424\) 33.0000 1.60262
\(425\) 0 0
\(426\) −7.00000 −0.339151
\(427\) 10.0000i 0.483934i
\(428\) − 19.0000i − 0.918400i
\(429\) 4.00000 0.193122
\(430\) 0 0
\(431\) 31.0000 1.49322 0.746609 0.665263i \(-0.231681\pi\)
0.746609 + 0.665263i \(0.231681\pi\)
\(432\) − 5.00000i − 0.240563i
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 7.00000 0.336011
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) 0 0
\(438\) 4.00000i 0.191127i
\(439\) 33.0000 1.57500 0.787502 0.616312i \(-0.211374\pi\)
0.787502 + 0.616312i \(0.211374\pi\)
\(440\) 0 0
\(441\) 12.0000 0.571429
\(442\) − 1.00000i − 0.0475651i
\(443\) − 6.00000i − 0.285069i −0.989790 0.142534i \(-0.954475\pi\)
0.989790 0.142534i \(-0.0455251\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) −2.00000 −0.0947027
\(447\) − 21.0000i − 0.993266i
\(448\) − 7.00000i − 0.330719i
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 12.0000i 0.564433i
\(453\) − 18.0000i − 0.845714i
\(454\) −25.0000 −1.17331
\(455\) 0 0
\(456\) −18.0000 −0.842927
\(457\) 3.00000i 0.140334i 0.997535 + 0.0701670i \(0.0223532\pi\)
−0.997535 + 0.0701670i \(0.977647\pi\)
\(458\) − 1.00000i − 0.0467269i
\(459\) −5.00000 −0.233380
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 4.00000i 0.186097i
\(463\) − 12.0000i − 0.557687i −0.960337 0.278844i \(-0.910049\pi\)
0.960337 0.278844i \(-0.0899511\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −8.00000 −0.370593
\(467\) 22.0000i 1.01804i 0.860755 + 0.509019i \(0.169992\pi\)
−0.860755 + 0.509019i \(0.830008\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) −21.0000 −0.967629
\(472\) − 24.0000i − 1.10469i
\(473\) 16.0000i 0.735681i
\(474\) −11.0000 −0.505247
\(475\) 0 0
\(476\) −1.00000 −0.0458349
\(477\) − 22.0000i − 1.00731i
\(478\) 8.00000i 0.365911i
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 18.0000i 0.819878i
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) −16.0000 −0.725775
\(487\) 4.00000i 0.181257i 0.995885 + 0.0906287i \(0.0288876\pi\)
−0.995885 + 0.0906287i \(0.971112\pi\)
\(488\) 30.0000i 1.35804i
\(489\) −11.0000 −0.497437
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) − 2.00000i − 0.0901670i
\(493\) 0 0
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) 7.00000 0.314309
\(497\) 7.00000i 0.313993i
\(498\) − 8.00000i − 0.358489i
\(499\) −13.0000 −0.581960 −0.290980 0.956729i \(-0.593981\pi\)
−0.290980 + 0.956729i \(0.593981\pi\)
\(500\) 0 0
\(501\) −8.00000 −0.357414
\(502\) − 8.00000i − 0.357057i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −6.00000 −0.267261
\(505\) 0 0
\(506\) 0 0
\(507\) 12.0000i 0.532939i
\(508\) − 16.0000i − 0.709885i
\(509\) −5.00000 −0.221621 −0.110811 0.993842i \(-0.535345\pi\)
−0.110811 + 0.993842i \(0.535345\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) − 11.0000i − 0.486136i
\(513\) 30.0000i 1.32453i
\(514\) −19.0000 −0.838054
\(515\) 0 0
\(516\) 4.00000 0.176090
\(517\) 24.0000i 1.05552i
\(518\) 4.00000i 0.175750i
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) − 20.0000i − 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) −15.0000 −0.655278
\(525\) 0 0
\(526\) 16.0000 0.697633
\(527\) − 7.00000i − 0.304925i
\(528\) 4.00000i 0.174078i
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −16.0000 −0.694341
\(532\) 6.00000i 0.260133i
\(533\) − 2.00000i − 0.0866296i
\(534\) −6.00000 −0.259645
\(535\) 0 0
\(536\) −24.0000 −1.03664
\(537\) − 6.00000i − 0.258919i
\(538\) − 10.0000i − 0.431131i
\(539\) −24.0000 −1.03375
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 2.00000i 0.0859074i
\(543\) − 22.0000i − 0.944110i
\(544\) −5.00000 −0.214373
\(545\) 0 0
\(546\) 1.00000 0.0427960
\(547\) 5.00000i 0.213785i 0.994271 + 0.106892i \(0.0340900\pi\)
−0.994271 + 0.106892i \(0.965910\pi\)
\(548\) − 11.0000i − 0.469897i
\(549\) 20.0000 0.853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 11.0000i 0.467768i
\(554\) 30.0000 1.27458
\(555\) 0 0
\(556\) 13.0000 0.551323
\(557\) − 37.0000i − 1.56774i −0.620925 0.783870i \(-0.713243\pi\)
0.620925 0.783870i \(-0.286757\pi\)
\(558\) − 14.0000i − 0.592667i
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 9.00000i 0.379642i
\(563\) 26.0000i 1.09577i 0.836554 + 0.547885i \(0.184567\pi\)
−0.836554 + 0.547885i \(0.815433\pi\)
\(564\) 6.00000 0.252646
\(565\) 0 0
\(566\) −24.0000 −1.00880
\(567\) 1.00000i 0.0419961i
\(568\) 21.0000i 0.881140i
\(569\) 14.0000 0.586911 0.293455 0.955973i \(-0.405195\pi\)
0.293455 + 0.955973i \(0.405195\pi\)
\(570\) 0 0
\(571\) −3.00000 −0.125546 −0.0627730 0.998028i \(-0.519994\pi\)
−0.0627730 + 0.998028i \(0.519994\pi\)
\(572\) − 4.00000i − 0.167248i
\(573\) − 10.0000i − 0.417756i
\(574\) 2.00000 0.0834784
\(575\) 0 0
\(576\) −14.0000 −0.583333
\(577\) 30.0000i 1.24892i 0.781058 + 0.624458i \(0.214680\pi\)
−0.781058 + 0.624458i \(0.785320\pi\)
\(578\) − 1.00000i − 0.0415945i
\(579\) 24.0000 0.997406
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) 16.0000i 0.663221i
\(583\) 44.0000i 1.82229i
\(584\) 12.0000 0.496564
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 6.00000i 0.247436i
\(589\) −42.0000 −1.73058
\(590\) 0 0
\(591\) −14.0000 −0.575883
\(592\) 4.00000i 0.164399i
\(593\) − 9.00000i − 0.369586i −0.982777 0.184793i \(-0.940839\pi\)
0.982777 0.184793i \(-0.0591614\pi\)
\(594\) 20.0000 0.820610
\(595\) 0 0
\(596\) −21.0000 −0.860194
\(597\) 0 0
\(598\) 0 0
\(599\) 44.0000 1.79779 0.898896 0.438163i \(-0.144371\pi\)
0.898896 + 0.438163i \(0.144371\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 4.00000i 0.163028i
\(603\) 16.0000i 0.651570i
\(604\) −18.0000 −0.732410
\(605\) 0 0
\(606\) −15.0000 −0.609333
\(607\) − 27.0000i − 1.09590i −0.836512 0.547948i \(-0.815409\pi\)
0.836512 0.547948i \(-0.184591\pi\)
\(608\) 30.0000i 1.21666i
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 0.242734
\(612\) 2.00000i 0.0808452i
\(613\) 47.0000i 1.89831i 0.314806 + 0.949156i \(0.398061\pi\)
−0.314806 + 0.949156i \(0.601939\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) 36.0000i 1.44931i 0.689114 + 0.724653i \(0.258000\pi\)
−0.689114 + 0.724653i \(0.742000\pi\)
\(618\) 6.00000i 0.241355i
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 27.0000i − 1.08260i
\(623\) 6.00000i 0.240385i
\(624\) 1.00000 0.0400320
\(625\) 0 0
\(626\) −10.0000 −0.399680
\(627\) − 24.0000i − 0.958468i
\(628\) 21.0000i 0.837991i
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 33.0000i 1.31267i
\(633\) − 25.0000i − 0.993661i
\(634\) 14.0000 0.556011
\(635\) 0 0
\(636\) 11.0000 0.436178
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 14.0000 0.553831
\(640\) 0 0
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 19.0000i 0.749870i
\(643\) − 1.00000i − 0.0394362i −0.999806 0.0197181i \(-0.993723\pi\)
0.999806 0.0197181i \(-0.00627687\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) 4.00000i 0.157256i 0.996904 + 0.0786281i \(0.0250540\pi\)
−0.996904 + 0.0786281i \(0.974946\pi\)
\(648\) 3.00000i 0.117851i
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) 7.00000 0.274352
\(652\) 11.0000i 0.430793i
\(653\) − 4.00000i − 0.156532i −0.996933 0.0782660i \(-0.975062\pi\)
0.996933 0.0782660i \(-0.0249384\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) − 8.00000i − 0.312110i
\(658\) 6.00000i 0.233904i
\(659\) 2.00000 0.0779089 0.0389545 0.999241i \(-0.487597\pi\)
0.0389545 + 0.999241i \(0.487597\pi\)
\(660\) 0 0
\(661\) −5.00000 −0.194477 −0.0972387 0.995261i \(-0.531001\pi\)
−0.0972387 + 0.995261i \(0.531001\pi\)
\(662\) − 14.0000i − 0.544125i
\(663\) − 1.00000i − 0.0388368i
\(664\) −24.0000 −0.931381
\(665\) 0 0
\(666\) 8.00000 0.309994
\(667\) 0 0
\(668\) 8.00000i 0.309529i
\(669\) −2.00000 −0.0773245
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) − 5.00000i − 0.192879i
\(673\) 38.0000i 1.46479i 0.680879 + 0.732396i \(0.261598\pi\)
−0.680879 + 0.732396i \(0.738402\pi\)
\(674\) 24.0000 0.924445
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) − 36.0000i − 1.38359i −0.722093 0.691796i \(-0.756820\pi\)
0.722093 0.691796i \(-0.243180\pi\)
\(678\) − 12.0000i − 0.460857i
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) −25.0000 −0.958002
\(682\) 28.0000i 1.07218i
\(683\) − 9.00000i − 0.344375i −0.985064 0.172188i \(-0.944916\pi\)
0.985064 0.172188i \(-0.0550836\pi\)
\(684\) 12.0000 0.458831
\(685\) 0 0
\(686\) −13.0000 −0.496342
\(687\) − 1.00000i − 0.0381524i
\(688\) 4.00000i 0.152499i
\(689\) 11.0000 0.419067
\(690\) 0 0
\(691\) 35.0000 1.33146 0.665731 0.746191i \(-0.268120\pi\)
0.665731 + 0.746191i \(0.268120\pi\)
\(692\) − 6.00000i − 0.228086i
\(693\) − 8.00000i − 0.303895i
\(694\) −7.00000 −0.265716
\(695\) 0 0
\(696\) 0 0
\(697\) − 2.00000i − 0.0757554i
\(698\) − 19.0000i − 0.719161i
\(699\) −8.00000 −0.302588
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) − 5.00000i − 0.188713i
\(703\) − 24.0000i − 0.905177i
\(704\) 28.0000 1.05529
\(705\) 0 0
\(706\) 19.0000 0.715074
\(707\) 15.0000i 0.564133i
\(708\) − 8.00000i − 0.300658i
\(709\) 6.00000 0.225335 0.112667 0.993633i \(-0.464061\pi\)
0.112667 + 0.993633i \(0.464061\pi\)
\(710\) 0 0
\(711\) 22.0000 0.825064
\(712\) 18.0000i 0.674579i
\(713\) 0 0
\(714\) 1.00000 0.0374241
\(715\) 0 0
\(716\) −6.00000 −0.224231
\(717\) 8.00000i 0.298765i
\(718\) 10.0000i 0.373197i
\(719\) −17.0000 −0.633993 −0.316997 0.948427i \(-0.602674\pi\)
−0.316997 + 0.948427i \(0.602674\pi\)
\(720\) 0 0
\(721\) 6.00000 0.223452
\(722\) 17.0000i 0.632674i
\(723\) 18.0000i 0.669427i
\(724\) −22.0000 −0.817624
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) 18.0000i 0.667583i 0.942647 + 0.333792i \(0.108328\pi\)
−0.942647 + 0.333792i \(0.891672\pi\)
\(728\) − 3.00000i − 0.111187i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 4.00000 0.147945
\(732\) 10.0000i 0.369611i
\(733\) 5.00000i 0.184679i 0.995728 + 0.0923396i \(0.0294345\pi\)
−0.995728 + 0.0923396i \(0.970565\pi\)
\(734\) −23.0000 −0.848945
\(735\) 0 0
\(736\) 0 0
\(737\) − 32.0000i − 1.17874i
\(738\) − 4.00000i − 0.147242i
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 11.0000i 0.403823i
\(743\) − 21.0000i − 0.770415i −0.922830 0.385208i \(-0.874130\pi\)
0.922830 0.385208i \(-0.125870\pi\)
\(744\) 21.0000 0.769897
\(745\) 0 0
\(746\) 19.0000 0.695639
\(747\) 16.0000i 0.585409i
\(748\) − 4.00000i − 0.146254i
\(749\) 19.0000 0.694245
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 6.00000i 0.218797i
\(753\) − 8.00000i − 0.291536i
\(754\) 0 0
\(755\) 0 0
\(756\) −5.00000 −0.181848
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) − 25.0000i − 0.908041i
\(759\) 0 0
\(760\) 0 0
\(761\) −39.0000 −1.41375 −0.706874 0.707339i \(-0.749895\pi\)
−0.706874 + 0.707339i \(0.749895\pi\)
\(762\) 16.0000i 0.579619i
\(763\) 4.00000i 0.144810i
\(764\) −10.0000 −0.361787
\(765\) 0 0
\(766\) 6.00000 0.216789
\(767\) − 8.00000i − 0.288863i
\(768\) − 17.0000i − 0.613435i
\(769\) −33.0000 −1.19001 −0.595005 0.803722i \(-0.702850\pi\)
−0.595005 + 0.803722i \(0.702850\pi\)
\(770\) 0 0
\(771\) −19.0000 −0.684268
\(772\) − 24.0000i − 0.863779i
\(773\) − 45.0000i − 1.61854i −0.587439 0.809269i \(-0.699864\pi\)
0.587439 0.809269i \(-0.300136\pi\)
\(774\) 8.00000 0.287554
\(775\) 0 0
\(776\) 48.0000 1.72310
\(777\) 4.00000i 0.143499i
\(778\) 34.0000i 1.21896i
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −28.0000 −1.00192
\(782\) 0 0
\(783\) 0 0
\(784\) −6.00000 −0.214286
\(785\) 0 0
\(786\) 15.0000 0.535032
\(787\) 15.0000i 0.534692i 0.963601 + 0.267346i \(0.0861467\pi\)
−0.963601 + 0.267346i \(0.913853\pi\)
\(788\) 14.0000i 0.498729i
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) − 24.0000i − 0.852803i
\(793\) 10.0000i 0.355110i
\(794\) −4.00000 −0.141955
\(795\) 0 0
\(796\) 0 0
\(797\) − 17.0000i − 0.602171i −0.953597 0.301085i \(-0.902651\pi\)
0.953597 0.301085i \(-0.0973489\pi\)
\(798\) − 6.00000i − 0.212398i
\(799\) 6.00000 0.212265
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 6.00000i 0.211867i
\(803\) 16.0000i 0.564628i
\(804\) −8.00000 −0.282138
\(805\) 0 0
\(806\) 7.00000 0.246564
\(807\) − 10.0000i − 0.352017i
\(808\) 45.0000i 1.58309i
\(809\) 22.0000 0.773479 0.386739 0.922189i \(-0.373601\pi\)
0.386739 + 0.922189i \(0.373601\pi\)
\(810\) 0 0
\(811\) 7.00000 0.245803 0.122902 0.992419i \(-0.460780\pi\)
0.122902 + 0.992419i \(0.460780\pi\)
\(812\) 0 0
\(813\) 2.00000i 0.0701431i
\(814\) −16.0000 −0.560800
\(815\) 0 0
\(816\) 1.00000 0.0350070
\(817\) − 24.0000i − 0.839654i
\(818\) − 19.0000i − 0.664319i
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 11.0000i 0.383669i
\(823\) − 53.0000i − 1.84746i −0.383040 0.923732i \(-0.625123\pi\)
0.383040 0.923732i \(-0.374877\pi\)
\(824\) 18.0000 0.627060
\(825\) 0 0
\(826\) 8.00000 0.278356
\(827\) − 36.0000i − 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) 0 0
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) 0 0
\(831\) 30.0000 1.04069
\(832\) − 7.00000i − 0.242681i
\(833\) 6.00000i 0.207888i
\(834\) −13.0000 −0.450153
\(835\) 0 0
\(836\) −24.0000 −0.830057
\(837\) − 35.0000i − 1.20978i
\(838\) − 12.0000i − 0.414533i
\(839\) −23.0000 −0.794048 −0.397024 0.917808i \(-0.629957\pi\)
−0.397024 + 0.917808i \(0.629957\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) − 25.0000i − 0.861557i
\(843\) 9.00000i 0.309976i
\(844\) −25.0000 −0.860535
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 5.00000i 0.171802i
\(848\) 11.0000i 0.377742i
\(849\) −24.0000 −0.823678
\(850\) 0 0
\(851\) 0 0
\(852\) 7.00000i 0.239816i
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) −10.0000 −0.342193
\(855\) 0 0
\(856\) 57.0000 1.94822
\(857\) − 20.0000i − 0.683187i −0.939848 0.341593i \(-0.889033\pi\)
0.939848 0.341593i \(-0.110967\pi\)
\(858\) 4.00000i 0.136558i
\(859\) −18.0000 −0.614152 −0.307076 0.951685i \(-0.599351\pi\)
−0.307076 + 0.951685i \(0.599351\pi\)
\(860\) 0 0
\(861\) 2.00000 0.0681598
\(862\) 31.0000i 1.05586i
\(863\) − 56.0000i − 1.90626i −0.302558 0.953131i \(-0.597840\pi\)
0.302558 0.953131i \(-0.402160\pi\)
\(864\) −25.0000 −0.850517
\(865\) 0 0
\(866\) −34.0000 −1.15537
\(867\) − 1.00000i − 0.0339618i
\(868\) − 7.00000i − 0.237595i
\(869\) −44.0000 −1.49260
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 12.0000i 0.406371i
\(873\) − 32.0000i − 1.08304i
\(874\) 0 0
\(875\) 0 0
\(876\) 4.00000 0.135147
\(877\) 16.0000i 0.540282i 0.962821 + 0.270141i \(0.0870703\pi\)
−0.962821 + 0.270141i \(0.912930\pi\)
\(878\) 33.0000i 1.11370i
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 12.0000i 0.404061i
\(883\) 2.00000i 0.0673054i 0.999434 + 0.0336527i \(0.0107140\pi\)
−0.999434 + 0.0336527i \(0.989286\pi\)
\(884\) −1.00000 −0.0336336
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) − 43.0000i − 1.44380i −0.691998 0.721899i \(-0.743269\pi\)
0.691998 0.721899i \(-0.256731\pi\)
\(888\) 12.0000i 0.402694i
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 2.00000i 0.0669650i
\(893\) − 36.0000i − 1.20469i
\(894\) 21.0000 0.702345
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) 0 0
\(898\) − 36.0000i − 1.20134i
\(899\) 0 0
\(900\) 0 0
\(901\) 11.0000 0.366463
\(902\) 8.00000i 0.266371i
\(903\) 4.00000i 0.133112i
\(904\) −36.0000 −1.19734
\(905\) 0 0
\(906\) 18.0000 0.598010
\(907\) − 36.0000i − 1.19536i −0.801735 0.597680i \(-0.796089\pi\)
0.801735 0.597680i \(-0.203911\pi\)
\(908\) 25.0000i 0.829654i
\(909\) 30.0000 0.995037
\(910\) 0 0
\(911\) 1.00000 0.0331315 0.0165657 0.999863i \(-0.494727\pi\)
0.0165657 + 0.999863i \(0.494727\pi\)
\(912\) − 6.00000i − 0.198680i
\(913\) − 32.0000i − 1.05905i
\(914\) −3.00000 −0.0992312
\(915\) 0 0
\(916\) −1.00000 −0.0330409
\(917\) − 15.0000i − 0.495344i
\(918\) − 5.00000i − 0.165025i
\(919\) 44.0000 1.45143 0.725713 0.687998i \(-0.241510\pi\)
0.725713 + 0.687998i \(0.241510\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) − 14.0000i − 0.461065i
\(923\) 7.00000i 0.230408i
\(924\) 4.00000 0.131590
\(925\) 0 0
\(926\) 12.0000 0.394344
\(927\) − 12.0000i − 0.394132i
\(928\) 0 0
\(929\) 56.0000 1.83730 0.918650 0.395072i \(-0.129280\pi\)
0.918650 + 0.395072i \(0.129280\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 8.00000i 0.262049i
\(933\) − 27.0000i − 0.883940i
\(934\) −22.0000 −0.719862
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) 25.0000i 0.816714i 0.912822 + 0.408357i \(0.133898\pi\)
−0.912822 + 0.408357i \(0.866102\pi\)
\(938\) − 8.00000i − 0.261209i
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) 34.0000 1.10837 0.554184 0.832394i \(-0.313030\pi\)
0.554184 + 0.832394i \(0.313030\pi\)
\(942\) − 21.0000i − 0.684217i
\(943\) 0 0
\(944\) 8.00000 0.260378
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) − 4.00000i − 0.129983i −0.997886 0.0649913i \(-0.979298\pi\)
0.997886 0.0649913i \(-0.0207020\pi\)
\(948\) 11.0000i 0.357263i
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 14.0000 0.453981
\(952\) − 3.00000i − 0.0972306i
\(953\) − 9.00000i − 0.291539i −0.989319 0.145769i \(-0.953434\pi\)
0.989319 0.145769i \(-0.0465657\pi\)
\(954\) 22.0000 0.712276
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) 0 0
\(958\) 12.0000i 0.387702i
\(959\) 11.0000 0.355209
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 4.00000i 0.128965i
\(963\) − 38.0000i − 1.22453i
\(964\) 18.0000 0.579741
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.00000i − 0.128631i −0.997930 0.0643157i \(-0.979514\pi\)
0.997930 0.0643157i \(-0.0204865\pi\)
\(968\) 15.0000i 0.482118i
\(969\) −6.00000 −0.192748
\(970\) 0 0
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) 16.0000i 0.513200i
\(973\) 13.0000i 0.416761i
\(974\) −4.00000 −0.128168
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 13.0000i 0.415907i 0.978139 + 0.207953i \(0.0666802\pi\)
−0.978139 + 0.207953i \(0.933320\pi\)
\(978\) − 11.0000i − 0.351741i
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 20.0000i 0.638226i
\(983\) 21.0000i 0.669796i 0.942254 + 0.334898i \(0.108702\pi\)
−0.942254 + 0.334898i \(0.891298\pi\)
\(984\) 6.00000 0.191273
\(985\) 0 0
\(986\) 0 0
\(987\) 6.00000i 0.190982i
\(988\) 6.00000i 0.190885i
\(989\) 0 0
\(990\) 0 0
\(991\) 5.00000 0.158830 0.0794151 0.996842i \(-0.474695\pi\)
0.0794151 + 0.996842i \(0.474695\pi\)
\(992\) − 35.0000i − 1.11125i
\(993\) − 14.0000i − 0.444277i
\(994\) −7.00000 −0.222027
\(995\) 0 0
\(996\) −8.00000 −0.253490
\(997\) 4.00000i 0.126681i 0.997992 + 0.0633406i \(0.0201755\pi\)
−0.997992 + 0.0633406i \(0.979825\pi\)
\(998\) − 13.0000i − 0.411508i
\(999\) 20.0000 0.632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.b.a.324.2 2
5.2 odd 4 425.2.a.b.1.1 1
5.3 odd 4 425.2.a.c.1.1 yes 1
5.4 even 2 inner 425.2.b.a.324.1 2
15.2 even 4 3825.2.a.k.1.1 1
15.8 even 4 3825.2.a.f.1.1 1
20.3 even 4 6800.2.a.q.1.1 1
20.7 even 4 6800.2.a.i.1.1 1
85.33 odd 4 7225.2.a.h.1.1 1
85.67 odd 4 7225.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.b.1.1 1 5.2 odd 4
425.2.a.c.1.1 yes 1 5.3 odd 4
425.2.b.a.324.1 2 5.4 even 2 inner
425.2.b.a.324.2 2 1.1 even 1 trivial
3825.2.a.f.1.1 1 15.8 even 4
3825.2.a.k.1.1 1 15.2 even 4
6800.2.a.i.1.1 1 20.7 even 4
6800.2.a.q.1.1 1 20.3 even 4
7225.2.a.b.1.1 1 85.67 odd 4
7225.2.a.h.1.1 1 85.33 odd 4