Properties

Label 425.2.a.j.1.5
Level $425$
Weight $2$
Character 425.1
Self dual yes
Analytic conductor $3.394$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,2,Mod(1,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.60789\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.80107 q^{2} -2.60789 q^{3} +5.84602 q^{4} -7.30489 q^{6} +1.33298 q^{7} +10.7730 q^{8} +3.80107 q^{9} +1.09485 q^{11} -15.2458 q^{12} -3.17083 q^{13} +3.73378 q^{14} +18.4839 q^{16} -1.00000 q^{17} +10.6471 q^{18} +2.75613 q^{19} -3.47626 q^{21} +3.06675 q^{22} -3.57111 q^{23} -28.0947 q^{24} -8.88173 q^{26} -2.08911 q^{27} +7.79262 q^{28} -0.180058 q^{29} +0.816039 q^{31} +30.2288 q^{32} -2.85524 q^{33} -2.80107 q^{34} +22.2211 q^{36} -8.44817 q^{37} +7.72013 q^{38} +8.26917 q^{39} -7.97191 q^{41} -9.73726 q^{42} -6.54798 q^{43} +6.40051 q^{44} -10.0029 q^{46} -0.576074 q^{47} -48.2039 q^{48} -5.22317 q^{49} +2.60789 q^{51} -18.5367 q^{52} -7.84602 q^{53} -5.85176 q^{54} +14.3602 q^{56} -7.18768 q^{57} -0.504355 q^{58} -9.76375 q^{59} -5.21577 q^{61} +2.28579 q^{62} +5.06675 q^{63} +47.7053 q^{64} -7.99775 q^{66} +2.64963 q^{67} -5.84602 q^{68} +9.31305 q^{69} +13.4114 q^{71} +40.9489 q^{72} +12.3299 q^{73} -23.6639 q^{74} +16.1124 q^{76} +1.45941 q^{77} +23.1626 q^{78} +3.74745 q^{79} -5.95506 q^{81} -22.3299 q^{82} +4.66596 q^{83} -20.3223 q^{84} -18.3414 q^{86} +0.469570 q^{87} +11.7948 q^{88} +3.00946 q^{89} -4.22665 q^{91} -20.8768 q^{92} -2.12814 q^{93} -1.61363 q^{94} -78.8332 q^{96} +12.2681 q^{97} -14.6305 q^{98} +4.16160 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - q^{3} + 11 q^{4} + 3 q^{6} - q^{7} + 9 q^{8} + 6 q^{9} + 4 q^{11} - 17 q^{12} + 3 q^{13} - 7 q^{14} + 27 q^{16} - 5 q^{17} + 22 q^{18} + 6 q^{19} - 5 q^{21} - 18 q^{22} - 4 q^{23} - 19 q^{24}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.80107 1.98066 0.990329 0.138737i \(-0.0443042\pi\)
0.990329 + 0.138737i \(0.0443042\pi\)
\(3\) −2.60789 −1.50566 −0.752832 0.658213i \(-0.771313\pi\)
−0.752832 + 0.658213i \(0.771313\pi\)
\(4\) 5.84602 2.92301
\(5\) 0 0
\(6\) −7.30489 −2.98221
\(7\) 1.33298 0.503819 0.251909 0.967751i \(-0.418941\pi\)
0.251909 + 0.967751i \(0.418941\pi\)
\(8\) 10.7730 3.80882
\(9\) 3.80107 1.26702
\(10\) 0 0
\(11\) 1.09485 0.330110 0.165055 0.986284i \(-0.447220\pi\)
0.165055 + 0.986284i \(0.447220\pi\)
\(12\) −15.2458 −4.40107
\(13\) −3.17083 −0.879430 −0.439715 0.898137i \(-0.644921\pi\)
−0.439715 + 0.898137i \(0.644921\pi\)
\(14\) 3.73378 0.997893
\(15\) 0 0
\(16\) 18.4839 4.62097
\(17\) −1.00000 −0.242536
\(18\) 10.6471 2.50954
\(19\) 2.75613 0.632300 0.316150 0.948709i \(-0.397610\pi\)
0.316150 + 0.948709i \(0.397610\pi\)
\(20\) 0 0
\(21\) −3.47626 −0.758582
\(22\) 3.06675 0.653834
\(23\) −3.57111 −0.744628 −0.372314 0.928107i \(-0.621436\pi\)
−0.372314 + 0.928107i \(0.621436\pi\)
\(24\) −28.0947 −5.73481
\(25\) 0 0
\(26\) −8.88173 −1.74185
\(27\) −2.08911 −0.402050
\(28\) 7.79262 1.47267
\(29\) −0.180058 −0.0334359 −0.0167179 0.999860i \(-0.505322\pi\)
−0.0167179 + 0.999860i \(0.505322\pi\)
\(30\) 0 0
\(31\) 0.816039 0.146565 0.0732825 0.997311i \(-0.476653\pi\)
0.0732825 + 0.997311i \(0.476653\pi\)
\(32\) 30.2288 5.34374
\(33\) −2.85524 −0.497034
\(34\) −2.80107 −0.480380
\(35\) 0 0
\(36\) 22.2211 3.70352
\(37\) −8.44817 −1.38887 −0.694435 0.719555i \(-0.744346\pi\)
−0.694435 + 0.719555i \(0.744346\pi\)
\(38\) 7.72013 1.25237
\(39\) 8.26917 1.32413
\(40\) 0 0
\(41\) −7.97191 −1.24500 −0.622501 0.782619i \(-0.713883\pi\)
−0.622501 + 0.782619i \(0.713883\pi\)
\(42\) −9.73726 −1.50249
\(43\) −6.54798 −0.998557 −0.499279 0.866441i \(-0.666402\pi\)
−0.499279 + 0.866441i \(0.666402\pi\)
\(44\) 6.40051 0.964913
\(45\) 0 0
\(46\) −10.0029 −1.47485
\(47\) −0.576074 −0.0840290 −0.0420145 0.999117i \(-0.513378\pi\)
−0.0420145 + 0.999117i \(0.513378\pi\)
\(48\) −48.2039 −6.95763
\(49\) −5.22317 −0.746166
\(50\) 0 0
\(51\) 2.60789 0.365177
\(52\) −18.5367 −2.57058
\(53\) −7.84602 −1.07773 −0.538867 0.842391i \(-0.681147\pi\)
−0.538867 + 0.842391i \(0.681147\pi\)
\(54\) −5.85176 −0.796323
\(55\) 0 0
\(56\) 14.3602 1.91896
\(57\) −7.18768 −0.952031
\(58\) −0.504355 −0.0662251
\(59\) −9.76375 −1.27113 −0.635566 0.772046i \(-0.719233\pi\)
−0.635566 + 0.772046i \(0.719233\pi\)
\(60\) 0 0
\(61\) −5.21577 −0.667811 −0.333906 0.942606i \(-0.608367\pi\)
−0.333906 + 0.942606i \(0.608367\pi\)
\(62\) 2.28579 0.290295
\(63\) 5.06675 0.638351
\(64\) 47.7053 5.96316
\(65\) 0 0
\(66\) −7.99775 −0.984455
\(67\) 2.64963 0.323704 0.161852 0.986815i \(-0.448253\pi\)
0.161852 + 0.986815i \(0.448253\pi\)
\(68\) −5.84602 −0.708934
\(69\) 9.31305 1.12116
\(70\) 0 0
\(71\) 13.4114 1.59164 0.795820 0.605534i \(-0.207040\pi\)
0.795820 + 0.605534i \(0.207040\pi\)
\(72\) 40.9489 4.82587
\(73\) 12.3299 1.44311 0.721553 0.692359i \(-0.243429\pi\)
0.721553 + 0.692359i \(0.243429\pi\)
\(74\) −23.6639 −2.75088
\(75\) 0 0
\(76\) 16.1124 1.84822
\(77\) 1.45941 0.166315
\(78\) 23.1626 2.62264
\(79\) 3.74745 0.421621 0.210810 0.977527i \(-0.432390\pi\)
0.210810 + 0.977527i \(0.432390\pi\)
\(80\) 0 0
\(81\) −5.95506 −0.661673
\(82\) −22.3299 −2.46592
\(83\) 4.66596 0.512156 0.256078 0.966656i \(-0.417570\pi\)
0.256078 + 0.966656i \(0.417570\pi\)
\(84\) −20.3223 −2.21734
\(85\) 0 0
\(86\) −18.3414 −1.97780
\(87\) 0.469570 0.0503432
\(88\) 11.7948 1.25733
\(89\) 3.00946 0.319002 0.159501 0.987198i \(-0.449012\pi\)
0.159501 + 0.987198i \(0.449012\pi\)
\(90\) 0 0
\(91\) −4.22665 −0.443074
\(92\) −20.8768 −2.17655
\(93\) −2.12814 −0.220678
\(94\) −1.61363 −0.166433
\(95\) 0 0
\(96\) −78.8332 −8.04588
\(97\) 12.2681 1.24564 0.622819 0.782366i \(-0.285987\pi\)
0.622819 + 0.782366i \(0.285987\pi\)
\(98\) −14.6305 −1.47790
\(99\) 4.16160 0.418257
\(100\) 0 0
\(101\) 2.98113 0.296634 0.148317 0.988940i \(-0.452614\pi\)
0.148317 + 0.988940i \(0.452614\pi\)
\(102\) 7.30489 0.723291
\(103\) 13.8440 1.36409 0.682045 0.731310i \(-0.261091\pi\)
0.682045 + 0.731310i \(0.261091\pi\)
\(104\) −34.1593 −3.34959
\(105\) 0 0
\(106\) −21.9773 −2.13462
\(107\) 7.87103 0.760921 0.380461 0.924797i \(-0.375765\pi\)
0.380461 + 0.924797i \(0.375765\pi\)
\(108\) −12.2130 −1.17519
\(109\) 13.6739 1.30972 0.654859 0.755751i \(-0.272728\pi\)
0.654859 + 0.755751i \(0.272728\pi\)
\(110\) 0 0
\(111\) 22.0319 2.09117
\(112\) 24.6386 2.32813
\(113\) −19.5722 −1.84120 −0.920600 0.390508i \(-0.872300\pi\)
−0.920600 + 0.390508i \(0.872300\pi\)
\(114\) −20.1332 −1.88565
\(115\) 0 0
\(116\) −1.05262 −0.0977334
\(117\) −12.0526 −1.11426
\(118\) −27.3490 −2.51768
\(119\) −1.33298 −0.122194
\(120\) 0 0
\(121\) −9.80130 −0.891028
\(122\) −14.6098 −1.32271
\(123\) 20.7898 1.87456
\(124\) 4.77058 0.428411
\(125\) 0 0
\(126\) 14.1924 1.26436
\(127\) 5.00946 0.444517 0.222259 0.974988i \(-0.428657\pi\)
0.222259 + 0.974988i \(0.428657\pi\)
\(128\) 73.1684 6.46724
\(129\) 17.0764 1.50349
\(130\) 0 0
\(131\) 2.63893 0.230564 0.115282 0.993333i \(-0.463223\pi\)
0.115282 + 0.993333i \(0.463223\pi\)
\(132\) −16.6918 −1.45284
\(133\) 3.67387 0.318565
\(134\) 7.42180 0.641146
\(135\) 0 0
\(136\) −10.7730 −0.923775
\(137\) 3.27064 0.279430 0.139715 0.990192i \(-0.455381\pi\)
0.139715 + 0.990192i \(0.455381\pi\)
\(138\) 26.0865 2.22063
\(139\) −10.3901 −0.881276 −0.440638 0.897685i \(-0.645248\pi\)
−0.440638 + 0.897685i \(0.645248\pi\)
\(140\) 0 0
\(141\) 1.50234 0.126519
\(142\) 37.5663 3.15249
\(143\) −3.47158 −0.290308
\(144\) 70.2586 5.85488
\(145\) 0 0
\(146\) 34.5370 2.85830
\(147\) 13.6214 1.12348
\(148\) −49.3881 −4.05968
\(149\) −11.2566 −0.922179 −0.461090 0.887354i \(-0.652541\pi\)
−0.461090 + 0.887354i \(0.652541\pi\)
\(150\) 0 0
\(151\) 7.13736 0.580831 0.290415 0.956901i \(-0.406207\pi\)
0.290415 + 0.956901i \(0.406207\pi\)
\(152\) 29.6917 2.40832
\(153\) −3.80107 −0.307299
\(154\) 4.08792 0.329414
\(155\) 0 0
\(156\) 48.3417 3.87043
\(157\) 8.30595 0.662887 0.331443 0.943475i \(-0.392464\pi\)
0.331443 + 0.943475i \(0.392464\pi\)
\(158\) 10.4969 0.835087
\(159\) 20.4615 1.62270
\(160\) 0 0
\(161\) −4.76022 −0.375158
\(162\) −16.6806 −1.31055
\(163\) −11.6059 −0.909042 −0.454521 0.890736i \(-0.650189\pi\)
−0.454521 + 0.890736i \(0.650189\pi\)
\(164\) −46.6039 −3.63915
\(165\) 0 0
\(166\) 13.0697 1.01441
\(167\) 19.6832 1.52313 0.761566 0.648087i \(-0.224431\pi\)
0.761566 + 0.648087i \(0.224431\pi\)
\(168\) −37.4497 −2.88931
\(169\) −2.94583 −0.226602
\(170\) 0 0
\(171\) 10.4763 0.801140
\(172\) −38.2796 −2.91879
\(173\) −19.8536 −1.50944 −0.754722 0.656045i \(-0.772228\pi\)
−0.754722 + 0.656045i \(0.772228\pi\)
\(174\) 1.31530 0.0997127
\(175\) 0 0
\(176\) 20.2371 1.52543
\(177\) 25.4628 1.91390
\(178\) 8.42971 0.631834
\(179\) −6.71142 −0.501635 −0.250817 0.968034i \(-0.580699\pi\)
−0.250817 + 0.968034i \(0.580699\pi\)
\(180\) 0 0
\(181\) 1.49564 0.111170 0.0555852 0.998454i \(-0.482298\pi\)
0.0555852 + 0.998454i \(0.482298\pi\)
\(182\) −11.8392 −0.877578
\(183\) 13.6021 1.00550
\(184\) −38.4715 −2.83616
\(185\) 0 0
\(186\) −5.96107 −0.437087
\(187\) −1.09485 −0.0800633
\(188\) −3.36774 −0.245617
\(189\) −2.78474 −0.202560
\(190\) 0 0
\(191\) −15.9320 −1.15280 −0.576401 0.817167i \(-0.695543\pi\)
−0.576401 + 0.817167i \(0.695543\pi\)
\(192\) −124.410 −8.97851
\(193\) 17.4673 1.25732 0.628661 0.777680i \(-0.283603\pi\)
0.628661 + 0.777680i \(0.283603\pi\)
\(194\) 34.3639 2.46718
\(195\) 0 0
\(196\) −30.5347 −2.18105
\(197\) 14.0436 1.00057 0.500283 0.865862i \(-0.333229\pi\)
0.500283 + 0.865862i \(0.333229\pi\)
\(198\) 11.6570 0.828424
\(199\) −4.58571 −0.325072 −0.162536 0.986703i \(-0.551967\pi\)
−0.162536 + 0.986703i \(0.551967\pi\)
\(200\) 0 0
\(201\) −6.90993 −0.487389
\(202\) 8.35037 0.587530
\(203\) −0.240013 −0.0168456
\(204\) 15.2458 1.06742
\(205\) 0 0
\(206\) 38.7781 2.70180
\(207\) −13.5741 −0.943462
\(208\) −58.6093 −4.06382
\(209\) 3.01755 0.208728
\(210\) 0 0
\(211\) 7.23345 0.497971 0.248986 0.968507i \(-0.419903\pi\)
0.248986 + 0.968507i \(0.419903\pi\)
\(212\) −45.8680 −3.15022
\(213\) −34.9754 −2.39647
\(214\) 22.0473 1.50713
\(215\) 0 0
\(216\) −22.5060 −1.53134
\(217\) 1.08776 0.0738422
\(218\) 38.3015 2.59411
\(219\) −32.1550 −2.17283
\(220\) 0 0
\(221\) 3.17083 0.213293
\(222\) 61.7129 4.14190
\(223\) 22.2566 1.49041 0.745207 0.666833i \(-0.232351\pi\)
0.745207 + 0.666833i \(0.232351\pi\)
\(224\) 40.2943 2.69228
\(225\) 0 0
\(226\) −54.8232 −3.64679
\(227\) −13.3541 −0.886342 −0.443171 0.896437i \(-0.646147\pi\)
−0.443171 + 0.896437i \(0.646147\pi\)
\(228\) −42.0193 −2.78280
\(229\) −20.4647 −1.35235 −0.676174 0.736742i \(-0.736363\pi\)
−0.676174 + 0.736742i \(0.736363\pi\)
\(230\) 0 0
\(231\) −3.80598 −0.250415
\(232\) −1.93976 −0.127351
\(233\) 16.1239 1.05631 0.528155 0.849148i \(-0.322884\pi\)
0.528155 + 0.849148i \(0.322884\pi\)
\(234\) −33.7601 −2.20697
\(235\) 0 0
\(236\) −57.0791 −3.71553
\(237\) −9.77292 −0.634820
\(238\) −3.73378 −0.242025
\(239\) −4.38637 −0.283731 −0.141865 0.989886i \(-0.545310\pi\)
−0.141865 + 0.989886i \(0.545310\pi\)
\(240\) 0 0
\(241\) −14.8343 −0.955558 −0.477779 0.878480i \(-0.658558\pi\)
−0.477779 + 0.878480i \(0.658558\pi\)
\(242\) −27.4542 −1.76482
\(243\) 21.7974 1.39831
\(244\) −30.4915 −1.95202
\(245\) 0 0
\(246\) 58.2339 3.71285
\(247\) −8.73923 −0.556064
\(248\) 8.79118 0.558240
\(249\) −12.1683 −0.771134
\(250\) 0 0
\(251\) 14.5998 0.921534 0.460767 0.887521i \(-0.347574\pi\)
0.460767 + 0.887521i \(0.347574\pi\)
\(252\) 29.6203 1.86591
\(253\) −3.90983 −0.245809
\(254\) 14.0319 0.880437
\(255\) 0 0
\(256\) 109.540 6.84623
\(257\) −5.34722 −0.333550 −0.166775 0.985995i \(-0.553335\pi\)
−0.166775 + 0.985995i \(0.553335\pi\)
\(258\) 47.8322 2.97790
\(259\) −11.2612 −0.699739
\(260\) 0 0
\(261\) −0.684413 −0.0423641
\(262\) 7.39183 0.456669
\(263\) −18.3754 −1.13307 −0.566537 0.824037i \(-0.691717\pi\)
−0.566537 + 0.824037i \(0.691717\pi\)
\(264\) −30.7595 −1.89312
\(265\) 0 0
\(266\) 10.2908 0.630968
\(267\) −7.84832 −0.480310
\(268\) 15.4898 0.946188
\(269\) −15.0812 −0.919516 −0.459758 0.888044i \(-0.652064\pi\)
−0.459758 + 0.888044i \(0.652064\pi\)
\(270\) 0 0
\(271\) 20.6031 1.25155 0.625774 0.780004i \(-0.284783\pi\)
0.625774 + 0.780004i \(0.284783\pi\)
\(272\) −18.4839 −1.12075
\(273\) 11.0226 0.667120
\(274\) 9.16132 0.553455
\(275\) 0 0
\(276\) 54.4443 3.27716
\(277\) 3.93417 0.236381 0.118191 0.992991i \(-0.462291\pi\)
0.118191 + 0.992991i \(0.462291\pi\)
\(278\) −29.1034 −1.74551
\(279\) 3.10183 0.185701
\(280\) 0 0
\(281\) 24.7878 1.47872 0.739358 0.673312i \(-0.235129\pi\)
0.739358 + 0.673312i \(0.235129\pi\)
\(282\) 4.20815 0.250592
\(283\) −10.2892 −0.611631 −0.305815 0.952091i \(-0.598929\pi\)
−0.305815 + 0.952091i \(0.598929\pi\)
\(284\) 78.4032 4.65237
\(285\) 0 0
\(286\) −9.72416 −0.575002
\(287\) −10.6264 −0.627256
\(288\) 114.902 6.77065
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −31.9938 −1.87551
\(292\) 72.0808 4.21821
\(293\) 4.20448 0.245628 0.122814 0.992430i \(-0.460808\pi\)
0.122814 + 0.992430i \(0.460808\pi\)
\(294\) 38.1546 2.22522
\(295\) 0 0
\(296\) −91.0119 −5.28996
\(297\) −2.28726 −0.132720
\(298\) −31.5307 −1.82652
\(299\) 11.3234 0.654848
\(300\) 0 0
\(301\) −8.72832 −0.503092
\(302\) 19.9923 1.15043
\(303\) −7.77446 −0.446631
\(304\) 50.9440 2.92184
\(305\) 0 0
\(306\) −10.6471 −0.608654
\(307\) −20.2969 −1.15841 −0.579204 0.815183i \(-0.696637\pi\)
−0.579204 + 0.815183i \(0.696637\pi\)
\(308\) 8.53175 0.486141
\(309\) −36.1036 −2.05386
\(310\) 0 0
\(311\) 8.03850 0.455822 0.227911 0.973682i \(-0.426811\pi\)
0.227911 + 0.973682i \(0.426811\pi\)
\(312\) 89.0836 5.04337
\(313\) 29.6525 1.67606 0.838028 0.545627i \(-0.183708\pi\)
0.838028 + 0.545627i \(0.183708\pi\)
\(314\) 23.2656 1.31295
\(315\) 0 0
\(316\) 21.9077 1.23240
\(317\) −3.06410 −0.172097 −0.0860484 0.996291i \(-0.527424\pi\)
−0.0860484 + 0.996291i \(0.527424\pi\)
\(318\) 57.3143 3.21402
\(319\) −0.197136 −0.0110375
\(320\) 0 0
\(321\) −20.5268 −1.14569
\(322\) −13.3337 −0.743059
\(323\) −2.75613 −0.153355
\(324\) −34.8134 −1.93408
\(325\) 0 0
\(326\) −32.5089 −1.80050
\(327\) −35.6599 −1.97200
\(328\) −85.8812 −4.74199
\(329\) −0.767895 −0.0423354
\(330\) 0 0
\(331\) 11.6185 0.638609 0.319305 0.947652i \(-0.396551\pi\)
0.319305 + 0.947652i \(0.396551\pi\)
\(332\) 27.2773 1.49704
\(333\) −32.1121 −1.75973
\(334\) 55.1341 3.01681
\(335\) 0 0
\(336\) −64.2548 −3.50539
\(337\) 7.19732 0.392063 0.196032 0.980598i \(-0.437195\pi\)
0.196032 + 0.980598i \(0.437195\pi\)
\(338\) −8.25149 −0.448822
\(339\) 51.0421 2.77223
\(340\) 0 0
\(341\) 0.893440 0.0483825
\(342\) 29.3448 1.58678
\(343\) −16.2932 −0.879752
\(344\) −70.5412 −3.80333
\(345\) 0 0
\(346\) −55.6115 −2.98969
\(347\) −8.49365 −0.455963 −0.227982 0.973665i \(-0.573213\pi\)
−0.227982 + 0.973665i \(0.573213\pi\)
\(348\) 2.74512 0.147154
\(349\) −0.281605 −0.0150739 −0.00753697 0.999972i \(-0.502399\pi\)
−0.00753697 + 0.999972i \(0.502399\pi\)
\(350\) 0 0
\(351\) 6.62422 0.353575
\(352\) 33.0960 1.76402
\(353\) −7.56460 −0.402623 −0.201311 0.979527i \(-0.564520\pi\)
−0.201311 + 0.979527i \(0.564520\pi\)
\(354\) 71.3231 3.79078
\(355\) 0 0
\(356\) 17.5933 0.932445
\(357\) 3.47626 0.183983
\(358\) −18.7992 −0.993568
\(359\) 4.24214 0.223891 0.111946 0.993714i \(-0.464292\pi\)
0.111946 + 0.993714i \(0.464292\pi\)
\(360\) 0 0
\(361\) −11.4037 −0.600197
\(362\) 4.18941 0.220191
\(363\) 25.5607 1.34159
\(364\) −24.7091 −1.29511
\(365\) 0 0
\(366\) 38.1006 1.99155
\(367\) 27.9623 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(368\) −66.0080 −3.44090
\(369\) −30.3018 −1.57745
\(370\) 0 0
\(371\) −10.4586 −0.542982
\(372\) −12.4411 −0.645043
\(373\) 9.39715 0.486566 0.243283 0.969955i \(-0.421776\pi\)
0.243283 + 0.969955i \(0.421776\pi\)
\(374\) −3.06675 −0.158578
\(375\) 0 0
\(376\) −6.20603 −0.320052
\(377\) 0.570933 0.0294045
\(378\) −7.80027 −0.401203
\(379\) 23.9952 1.23255 0.616275 0.787531i \(-0.288641\pi\)
0.616275 + 0.787531i \(0.288641\pi\)
\(380\) 0 0
\(381\) −13.0641 −0.669294
\(382\) −44.6268 −2.28331
\(383\) −1.97888 −0.101116 −0.0505581 0.998721i \(-0.516100\pi\)
−0.0505581 + 0.998721i \(0.516100\pi\)
\(384\) −190.815 −9.73749
\(385\) 0 0
\(386\) 48.9271 2.49032
\(387\) −24.8894 −1.26520
\(388\) 71.7196 3.64101
\(389\) −26.5739 −1.34735 −0.673674 0.739028i \(-0.735285\pi\)
−0.673674 + 0.739028i \(0.735285\pi\)
\(390\) 0 0
\(391\) 3.57111 0.180599
\(392\) −56.2691 −2.84202
\(393\) −6.88202 −0.347152
\(394\) 39.3372 1.98178
\(395\) 0 0
\(396\) 24.3288 1.22257
\(397\) −6.32026 −0.317205 −0.158602 0.987343i \(-0.550699\pi\)
−0.158602 + 0.987343i \(0.550699\pi\)
\(398\) −12.8449 −0.643857
\(399\) −9.58103 −0.479651
\(400\) 0 0
\(401\) −14.9995 −0.749041 −0.374520 0.927219i \(-0.622193\pi\)
−0.374520 + 0.927219i \(0.622193\pi\)
\(402\) −19.3552 −0.965351
\(403\) −2.58752 −0.128894
\(404\) 17.4277 0.867063
\(405\) 0 0
\(406\) −0.672295 −0.0333654
\(407\) −9.24947 −0.458479
\(408\) 28.0947 1.39090
\(409\) 18.0132 0.890697 0.445348 0.895357i \(-0.353080\pi\)
0.445348 + 0.895357i \(0.353080\pi\)
\(410\) 0 0
\(411\) −8.52947 −0.420728
\(412\) 80.9322 3.98725
\(413\) −13.0149 −0.640421
\(414\) −38.0219 −1.86868
\(415\) 0 0
\(416\) −95.8503 −4.69945
\(417\) 27.0962 1.32691
\(418\) 8.45238 0.413419
\(419\) −11.2294 −0.548594 −0.274297 0.961645i \(-0.588445\pi\)
−0.274297 + 0.961645i \(0.588445\pi\)
\(420\) 0 0
\(421\) 37.8927 1.84678 0.923389 0.383866i \(-0.125408\pi\)
0.923389 + 0.383866i \(0.125408\pi\)
\(422\) 20.2614 0.986311
\(423\) −2.18970 −0.106467
\(424\) −84.5250 −4.10490
\(425\) 0 0
\(426\) −97.9687 −4.74660
\(427\) −6.95252 −0.336456
\(428\) 46.0142 2.22418
\(429\) 9.05350 0.437107
\(430\) 0 0
\(431\) 14.7151 0.708803 0.354402 0.935093i \(-0.384685\pi\)
0.354402 + 0.935093i \(0.384685\pi\)
\(432\) −38.6149 −1.85786
\(433\) 37.5179 1.80299 0.901497 0.432786i \(-0.142469\pi\)
0.901497 + 0.432786i \(0.142469\pi\)
\(434\) 3.04691 0.146256
\(435\) 0 0
\(436\) 79.9377 3.82832
\(437\) −9.84245 −0.470828
\(438\) −90.0685 −4.30364
\(439\) 34.8342 1.66255 0.831273 0.555864i \(-0.187612\pi\)
0.831273 + 0.555864i \(0.187612\pi\)
\(440\) 0 0
\(441\) −19.8536 −0.945411
\(442\) 8.88173 0.422461
\(443\) −9.84325 −0.467667 −0.233833 0.972277i \(-0.575127\pi\)
−0.233833 + 0.972277i \(0.575127\pi\)
\(444\) 128.799 6.11251
\(445\) 0 0
\(446\) 62.3425 2.95200
\(447\) 29.3560 1.38849
\(448\) 63.5901 3.00435
\(449\) 27.7439 1.30932 0.654658 0.755925i \(-0.272813\pi\)
0.654658 + 0.755925i \(0.272813\pi\)
\(450\) 0 0
\(451\) −8.72804 −0.410987
\(452\) −114.420 −5.38184
\(453\) −18.6134 −0.874536
\(454\) −37.4058 −1.75554
\(455\) 0 0
\(456\) −77.4327 −3.62612
\(457\) −28.0953 −1.31424 −0.657120 0.753786i \(-0.728226\pi\)
−0.657120 + 0.753786i \(0.728226\pi\)
\(458\) −57.3232 −2.67854
\(459\) 2.08911 0.0975114
\(460\) 0 0
\(461\) 5.20430 0.242388 0.121194 0.992629i \(-0.461328\pi\)
0.121194 + 0.992629i \(0.461328\pi\)
\(462\) −10.6608 −0.495987
\(463\) 1.28264 0.0596092 0.0298046 0.999556i \(-0.490511\pi\)
0.0298046 + 0.999556i \(0.490511\pi\)
\(464\) −3.32817 −0.154506
\(465\) 0 0
\(466\) 45.1642 2.09219
\(467\) −24.5006 −1.13375 −0.566876 0.823803i \(-0.691848\pi\)
−0.566876 + 0.823803i \(0.691848\pi\)
\(468\) −70.4595 −3.25699
\(469\) 3.53190 0.163088
\(470\) 0 0
\(471\) −21.6610 −0.998085
\(472\) −105.185 −4.84152
\(473\) −7.16905 −0.329633
\(474\) −27.3747 −1.25736
\(475\) 0 0
\(476\) −7.79262 −0.357174
\(477\) −29.8233 −1.36551
\(478\) −12.2866 −0.561974
\(479\) −31.1171 −1.42178 −0.710888 0.703306i \(-0.751707\pi\)
−0.710888 + 0.703306i \(0.751707\pi\)
\(480\) 0 0
\(481\) 26.7877 1.22141
\(482\) −41.5518 −1.89263
\(483\) 12.4141 0.564861
\(484\) −57.2986 −2.60448
\(485\) 0 0
\(486\) 61.0563 2.76957
\(487\) −19.8828 −0.900978 −0.450489 0.892782i \(-0.648750\pi\)
−0.450489 + 0.892782i \(0.648750\pi\)
\(488\) −56.1894 −2.54358
\(489\) 30.2668 1.36871
\(490\) 0 0
\(491\) 19.8895 0.897602 0.448801 0.893632i \(-0.351851\pi\)
0.448801 + 0.893632i \(0.351851\pi\)
\(492\) 121.538 5.47934
\(493\) 0.180058 0.00810939
\(494\) −24.4792 −1.10137
\(495\) 0 0
\(496\) 15.0836 0.677272
\(497\) 17.8771 0.801898
\(498\) −34.0843 −1.52735
\(499\) 4.68299 0.209639 0.104820 0.994491i \(-0.466573\pi\)
0.104820 + 0.994491i \(0.466573\pi\)
\(500\) 0 0
\(501\) −51.3316 −2.29333
\(502\) 40.8952 1.82524
\(503\) −39.2233 −1.74888 −0.874440 0.485134i \(-0.838771\pi\)
−0.874440 + 0.485134i \(0.838771\pi\)
\(504\) 54.5840 2.43137
\(505\) 0 0
\(506\) −10.9517 −0.486863
\(507\) 7.68239 0.341187
\(508\) 29.2854 1.29933
\(509\) 16.9770 0.752494 0.376247 0.926519i \(-0.377214\pi\)
0.376247 + 0.926519i \(0.377214\pi\)
\(510\) 0 0
\(511\) 16.4355 0.727064
\(512\) 160.492 7.09281
\(513\) −5.75786 −0.254216
\(514\) −14.9780 −0.660649
\(515\) 0 0
\(516\) 99.8289 4.39472
\(517\) −0.630714 −0.0277388
\(518\) −31.5436 −1.38594
\(519\) 51.7760 2.27272
\(520\) 0 0
\(521\) −24.6927 −1.08181 −0.540903 0.841085i \(-0.681917\pi\)
−0.540903 + 0.841085i \(0.681917\pi\)
\(522\) −1.91709 −0.0839088
\(523\) 41.2117 1.80206 0.901032 0.433753i \(-0.142811\pi\)
0.901032 + 0.433753i \(0.142811\pi\)
\(524\) 15.4272 0.673941
\(525\) 0 0
\(526\) −51.4707 −2.24423
\(527\) −0.816039 −0.0355472
\(528\) −52.7760 −2.29678
\(529\) −10.2472 −0.445529
\(530\) 0 0
\(531\) −37.1128 −1.61056
\(532\) 21.4775 0.931167
\(533\) 25.2776 1.09489
\(534\) −21.9837 −0.951329
\(535\) 0 0
\(536\) 28.5444 1.23293
\(537\) 17.5026 0.755294
\(538\) −42.2435 −1.82125
\(539\) −5.71858 −0.246317
\(540\) 0 0
\(541\) −3.70168 −0.159147 −0.0795737 0.996829i \(-0.525356\pi\)
−0.0795737 + 0.996829i \(0.525356\pi\)
\(542\) 57.7108 2.47889
\(543\) −3.90047 −0.167385
\(544\) −30.2288 −1.29605
\(545\) 0 0
\(546\) 30.8752 1.32134
\(547\) −31.0162 −1.32616 −0.663079 0.748550i \(-0.730750\pi\)
−0.663079 + 0.748550i \(0.730750\pi\)
\(548\) 19.1202 0.816776
\(549\) −19.8255 −0.846134
\(550\) 0 0
\(551\) −0.496263 −0.0211415
\(552\) 100.329 4.27030
\(553\) 4.99527 0.212421
\(554\) 11.0199 0.468191
\(555\) 0 0
\(556\) −60.7407 −2.57598
\(557\) 40.6170 1.72100 0.860498 0.509453i \(-0.170152\pi\)
0.860498 + 0.509453i \(0.170152\pi\)
\(558\) 8.68845 0.367811
\(559\) 20.7625 0.878162
\(560\) 0 0
\(561\) 2.85524 0.120548
\(562\) 69.4325 2.92883
\(563\) 6.63255 0.279529 0.139764 0.990185i \(-0.455366\pi\)
0.139764 + 0.990185i \(0.455366\pi\)
\(564\) 8.78268 0.369817
\(565\) 0 0
\(566\) −28.8209 −1.21143
\(567\) −7.93797 −0.333363
\(568\) 144.481 6.06227
\(569\) −20.9921 −0.880035 −0.440017 0.897989i \(-0.645028\pi\)
−0.440017 + 0.897989i \(0.645028\pi\)
\(570\) 0 0
\(571\) 9.22867 0.386208 0.193104 0.981178i \(-0.438145\pi\)
0.193104 + 0.981178i \(0.438145\pi\)
\(572\) −20.2949 −0.848574
\(573\) 41.5490 1.73573
\(574\) −29.7653 −1.24238
\(575\) 0 0
\(576\) 181.331 7.55547
\(577\) 1.17031 0.0487208 0.0243604 0.999703i \(-0.492245\pi\)
0.0243604 + 0.999703i \(0.492245\pi\)
\(578\) 2.80107 0.116509
\(579\) −45.5526 −1.89310
\(580\) 0 0
\(581\) 6.21963 0.258034
\(582\) −89.6171 −3.71475
\(583\) −8.59021 −0.355770
\(584\) 132.830 5.49653
\(585\) 0 0
\(586\) 11.7771 0.486506
\(587\) −32.1314 −1.32620 −0.663102 0.748529i \(-0.730761\pi\)
−0.663102 + 0.748529i \(0.730761\pi\)
\(588\) 79.6311 3.28393
\(589\) 2.24911 0.0926730
\(590\) 0 0
\(591\) −36.6242 −1.50652
\(592\) −156.155 −6.41793
\(593\) 24.9096 1.02291 0.511456 0.859309i \(-0.329106\pi\)
0.511456 + 0.859309i \(0.329106\pi\)
\(594\) −6.40679 −0.262874
\(595\) 0 0
\(596\) −65.8065 −2.69554
\(597\) 11.9590 0.489450
\(598\) 31.7176 1.29703
\(599\) −30.4971 −1.24608 −0.623039 0.782191i \(-0.714102\pi\)
−0.623039 + 0.782191i \(0.714102\pi\)
\(600\) 0 0
\(601\) −4.43000 −0.180703 −0.0903517 0.995910i \(-0.528799\pi\)
−0.0903517 + 0.995910i \(0.528799\pi\)
\(602\) −24.4487 −0.996454
\(603\) 10.0714 0.410140
\(604\) 41.7252 1.69777
\(605\) 0 0
\(606\) −21.7768 −0.884623
\(607\) −28.4929 −1.15649 −0.578246 0.815862i \(-0.696263\pi\)
−0.578246 + 0.815862i \(0.696263\pi\)
\(608\) 83.3145 3.37885
\(609\) 0.625927 0.0253639
\(610\) 0 0
\(611\) 1.82663 0.0738976
\(612\) −22.2211 −0.898237
\(613\) 5.63970 0.227785 0.113893 0.993493i \(-0.463668\pi\)
0.113893 + 0.993493i \(0.463668\pi\)
\(614\) −56.8533 −2.29441
\(615\) 0 0
\(616\) 15.7222 0.633466
\(617\) −5.49860 −0.221365 −0.110683 0.993856i \(-0.535304\pi\)
−0.110683 + 0.993856i \(0.535304\pi\)
\(618\) −101.129 −4.06800
\(619\) −20.7770 −0.835096 −0.417548 0.908655i \(-0.637111\pi\)
−0.417548 + 0.908655i \(0.637111\pi\)
\(620\) 0 0
\(621\) 7.46045 0.299377
\(622\) 22.5164 0.902827
\(623\) 4.01154 0.160719
\(624\) 152.846 6.11875
\(625\) 0 0
\(626\) 83.0588 3.31970
\(627\) −7.86943 −0.314275
\(628\) 48.5567 1.93762
\(629\) 8.44817 0.336850
\(630\) 0 0
\(631\) −9.55265 −0.380285 −0.190142 0.981757i \(-0.560895\pi\)
−0.190142 + 0.981757i \(0.560895\pi\)
\(632\) 40.3712 1.60588
\(633\) −18.8640 −0.749778
\(634\) −8.58276 −0.340865
\(635\) 0 0
\(636\) 119.618 4.74318
\(637\) 16.5618 0.656201
\(638\) −0.552193 −0.0218615
\(639\) 50.9777 2.01665
\(640\) 0 0
\(641\) −38.2638 −1.51133 −0.755664 0.654959i \(-0.772686\pi\)
−0.755664 + 0.654959i \(0.772686\pi\)
\(642\) −57.4970 −2.26922
\(643\) −2.28036 −0.0899286 −0.0449643 0.998989i \(-0.514317\pi\)
−0.0449643 + 0.998989i \(0.514317\pi\)
\(644\) −27.8283 −1.09659
\(645\) 0 0
\(646\) −7.72013 −0.303744
\(647\) −15.3848 −0.604840 −0.302420 0.953175i \(-0.597794\pi\)
−0.302420 + 0.953175i \(0.597794\pi\)
\(648\) −64.1537 −2.52020
\(649\) −10.6898 −0.419613
\(650\) 0 0
\(651\) −2.83677 −0.111182
\(652\) −67.8481 −2.65714
\(653\) −24.7373 −0.968046 −0.484023 0.875055i \(-0.660825\pi\)
−0.484023 + 0.875055i \(0.660825\pi\)
\(654\) −99.8860 −3.90585
\(655\) 0 0
\(656\) −147.352 −5.75312
\(657\) 46.8669 1.82845
\(658\) −2.15093 −0.0838520
\(659\) −17.3744 −0.676812 −0.338406 0.941000i \(-0.609888\pi\)
−0.338406 + 0.941000i \(0.609888\pi\)
\(660\) 0 0
\(661\) 4.18538 0.162793 0.0813963 0.996682i \(-0.474062\pi\)
0.0813963 + 0.996682i \(0.474062\pi\)
\(662\) 32.5442 1.26487
\(663\) −8.26917 −0.321148
\(664\) 50.2663 1.95071
\(665\) 0 0
\(666\) −89.9484 −3.48543
\(667\) 0.643006 0.0248973
\(668\) 115.068 4.45213
\(669\) −58.0428 −2.24406
\(670\) 0 0
\(671\) −5.71049 −0.220451
\(672\) −105.083 −4.05367
\(673\) −16.8948 −0.651246 −0.325623 0.945500i \(-0.605574\pi\)
−0.325623 + 0.945500i \(0.605574\pi\)
\(674\) 20.1602 0.776543
\(675\) 0 0
\(676\) −17.2214 −0.662361
\(677\) −6.13351 −0.235730 −0.117865 0.993030i \(-0.537605\pi\)
−0.117865 + 0.993030i \(0.537605\pi\)
\(678\) 142.973 5.49084
\(679\) 16.3531 0.627576
\(680\) 0 0
\(681\) 34.8260 1.33453
\(682\) 2.50259 0.0958292
\(683\) 26.7588 1.02390 0.511949 0.859016i \(-0.328924\pi\)
0.511949 + 0.859016i \(0.328924\pi\)
\(684\) 61.2444 2.34174
\(685\) 0 0
\(686\) −45.6386 −1.74249
\(687\) 53.3697 2.03618
\(688\) −121.032 −4.61430
\(689\) 24.8784 0.947791
\(690\) 0 0
\(691\) 23.1367 0.880160 0.440080 0.897959i \(-0.354950\pi\)
0.440080 + 0.897959i \(0.354950\pi\)
\(692\) −116.065 −4.41212
\(693\) 5.54733 0.210726
\(694\) −23.7914 −0.903107
\(695\) 0 0
\(696\) 5.05867 0.191748
\(697\) 7.97191 0.301957
\(698\) −0.788795 −0.0298563
\(699\) −42.0492 −1.59045
\(700\) 0 0
\(701\) 41.0017 1.54861 0.774307 0.632810i \(-0.218098\pi\)
0.774307 + 0.632810i \(0.218098\pi\)
\(702\) 18.5549 0.700311
\(703\) −23.2843 −0.878182
\(704\) 52.2301 1.96850
\(705\) 0 0
\(706\) −21.1890 −0.797458
\(707\) 3.97379 0.149450
\(708\) 148.856 5.59434
\(709\) −10.7096 −0.402207 −0.201103 0.979570i \(-0.564453\pi\)
−0.201103 + 0.979570i \(0.564453\pi\)
\(710\) 0 0
\(711\) 14.2443 0.534204
\(712\) 32.4208 1.21502
\(713\) −2.91417 −0.109136
\(714\) 9.73726 0.364408
\(715\) 0 0
\(716\) −39.2351 −1.46628
\(717\) 11.4392 0.427204
\(718\) 11.8825 0.443452
\(719\) −6.17046 −0.230119 −0.115060 0.993359i \(-0.536706\pi\)
−0.115060 + 0.993359i \(0.536706\pi\)
\(720\) 0 0
\(721\) 18.4538 0.687254
\(722\) −31.9427 −1.18878
\(723\) 38.6861 1.43875
\(724\) 8.74357 0.324952
\(725\) 0 0
\(726\) 71.5974 2.65723
\(727\) 38.9277 1.44375 0.721875 0.692024i \(-0.243281\pi\)
0.721875 + 0.692024i \(0.243281\pi\)
\(728\) −45.5337 −1.68759
\(729\) −38.9801 −1.44371
\(730\) 0 0
\(731\) 6.54798 0.242186
\(732\) 79.5184 2.93908
\(733\) −31.8680 −1.17707 −0.588535 0.808472i \(-0.700295\pi\)
−0.588535 + 0.808472i \(0.700295\pi\)
\(734\) 78.3245 2.89101
\(735\) 0 0
\(736\) −107.950 −3.97910
\(737\) 2.90094 0.106858
\(738\) −84.8776 −3.12439
\(739\) 29.7808 1.09551 0.547753 0.836640i \(-0.315483\pi\)
0.547753 + 0.836640i \(0.315483\pi\)
\(740\) 0 0
\(741\) 22.7909 0.837245
\(742\) −29.2953 −1.07546
\(743\) −33.4684 −1.22784 −0.613918 0.789370i \(-0.710408\pi\)
−0.613918 + 0.789370i \(0.710408\pi\)
\(744\) −22.9264 −0.840522
\(745\) 0 0
\(746\) 26.3221 0.963721
\(747\) 17.7357 0.648914
\(748\) −6.40051 −0.234026
\(749\) 10.4919 0.383367
\(750\) 0 0
\(751\) 15.9989 0.583808 0.291904 0.956448i \(-0.405711\pi\)
0.291904 + 0.956448i \(0.405711\pi\)
\(752\) −10.6481 −0.388295
\(753\) −38.0747 −1.38752
\(754\) 1.59922 0.0582403
\(755\) 0 0
\(756\) −16.2797 −0.592085
\(757\) 20.6978 0.752275 0.376138 0.926564i \(-0.377252\pi\)
0.376138 + 0.926564i \(0.377252\pi\)
\(758\) 67.2123 2.44126
\(759\) 10.1964 0.370105
\(760\) 0 0
\(761\) −22.4458 −0.813660 −0.406830 0.913504i \(-0.633366\pi\)
−0.406830 + 0.913504i \(0.633366\pi\)
\(762\) −36.5935 −1.32564
\(763\) 18.2270 0.659861
\(764\) −93.1390 −3.36965
\(765\) 0 0
\(766\) −5.54300 −0.200277
\(767\) 30.9592 1.11787
\(768\) −285.667 −10.3081
\(769\) 30.6260 1.10440 0.552202 0.833711i \(-0.313788\pi\)
0.552202 + 0.833711i \(0.313788\pi\)
\(770\) 0 0
\(771\) 13.9449 0.502215
\(772\) 102.114 3.67516
\(773\) 10.9578 0.394126 0.197063 0.980391i \(-0.436860\pi\)
0.197063 + 0.980391i \(0.436860\pi\)
\(774\) −69.7169 −2.50592
\(775\) 0 0
\(776\) 132.164 4.74441
\(777\) 29.3680 1.05357
\(778\) −74.4354 −2.66864
\(779\) −21.9716 −0.787215
\(780\) 0 0
\(781\) 14.6835 0.525415
\(782\) 10.0029 0.357705
\(783\) 0.376161 0.0134429
\(784\) −96.5444 −3.44801
\(785\) 0 0
\(786\) −19.2770 −0.687590
\(787\) −31.1539 −1.11052 −0.555259 0.831677i \(-0.687381\pi\)
−0.555259 + 0.831677i \(0.687381\pi\)
\(788\) 82.0993 2.92467
\(789\) 47.9209 1.70603
\(790\) 0 0
\(791\) −26.0894 −0.927631
\(792\) 44.8329 1.59307
\(793\) 16.5383 0.587294
\(794\) −17.7035 −0.628274
\(795\) 0 0
\(796\) −26.8081 −0.950189
\(797\) −15.2518 −0.540246 −0.270123 0.962826i \(-0.587064\pi\)
−0.270123 + 0.962826i \(0.587064\pi\)
\(798\) −26.8372 −0.950026
\(799\) 0.576074 0.0203800
\(800\) 0 0
\(801\) 11.4392 0.404183
\(802\) −42.0148 −1.48359
\(803\) 13.4994 0.476383
\(804\) −40.3956 −1.42464
\(805\) 0 0
\(806\) −7.24784 −0.255294
\(807\) 39.3300 1.38448
\(808\) 32.1157 1.12983
\(809\) −2.66539 −0.0937100 −0.0468550 0.998902i \(-0.514920\pi\)
−0.0468550 + 0.998902i \(0.514920\pi\)
\(810\) 0 0
\(811\) 5.54482 0.194705 0.0973525 0.995250i \(-0.468963\pi\)
0.0973525 + 0.995250i \(0.468963\pi\)
\(812\) −1.40312 −0.0492399
\(813\) −53.7305 −1.88441
\(814\) −25.9085 −0.908091
\(815\) 0 0
\(816\) 48.2039 1.68747
\(817\) −18.0471 −0.631388
\(818\) 50.4564 1.76417
\(819\) −16.0658 −0.561385
\(820\) 0 0
\(821\) 31.2022 1.08896 0.544482 0.838773i \(-0.316726\pi\)
0.544482 + 0.838773i \(0.316726\pi\)
\(822\) −23.8917 −0.833318
\(823\) −50.4682 −1.75921 −0.879606 0.475703i \(-0.842194\pi\)
−0.879606 + 0.475703i \(0.842194\pi\)
\(824\) 149.141 5.19558
\(825\) 0 0
\(826\) −36.4557 −1.26845
\(827\) 25.7704 0.896123 0.448062 0.894003i \(-0.352114\pi\)
0.448062 + 0.894003i \(0.352114\pi\)
\(828\) −79.3542 −2.75775
\(829\) 4.34228 0.150814 0.0754068 0.997153i \(-0.475974\pi\)
0.0754068 + 0.997153i \(0.475974\pi\)
\(830\) 0 0
\(831\) −10.2599 −0.355911
\(832\) −151.265 −5.24418
\(833\) 5.22317 0.180972
\(834\) 75.8984 2.62815
\(835\) 0 0
\(836\) 17.6406 0.610114
\(837\) −1.70480 −0.0589264
\(838\) −31.4545 −1.08658
\(839\) 44.9482 1.55178 0.775892 0.630866i \(-0.217300\pi\)
0.775892 + 0.630866i \(0.217300\pi\)
\(840\) 0 0
\(841\) −28.9676 −0.998882
\(842\) 106.140 3.65784
\(843\) −64.6438 −2.22645
\(844\) 42.2869 1.45557
\(845\) 0 0
\(846\) −6.13351 −0.210874
\(847\) −13.0649 −0.448917
\(848\) −145.025 −4.98017
\(849\) 26.8331 0.920910
\(850\) 0 0
\(851\) 30.1693 1.03419
\(852\) −204.467 −7.00491
\(853\) 15.7009 0.537590 0.268795 0.963197i \(-0.413375\pi\)
0.268795 + 0.963197i \(0.413375\pi\)
\(854\) −19.4745 −0.666405
\(855\) 0 0
\(856\) 84.7945 2.89821
\(857\) −6.77401 −0.231396 −0.115698 0.993284i \(-0.536910\pi\)
−0.115698 + 0.993284i \(0.536910\pi\)
\(858\) 25.3595 0.865760
\(859\) 36.0071 1.22855 0.614273 0.789094i \(-0.289449\pi\)
0.614273 + 0.789094i \(0.289449\pi\)
\(860\) 0 0
\(861\) 27.7124 0.944437
\(862\) 41.2182 1.40390
\(863\) 35.5716 1.21087 0.605436 0.795894i \(-0.292999\pi\)
0.605436 + 0.795894i \(0.292999\pi\)
\(864\) −63.1513 −2.14845
\(865\) 0 0
\(866\) 105.090 3.57111
\(867\) −2.60789 −0.0885685
\(868\) 6.35909 0.215841
\(869\) 4.10289 0.139181
\(870\) 0 0
\(871\) −8.40152 −0.284675
\(872\) 147.308 4.98849
\(873\) 46.6320 1.57825
\(874\) −27.5694 −0.932550
\(875\) 0 0
\(876\) −187.979 −6.35121
\(877\) 24.1451 0.815321 0.407660 0.913134i \(-0.366345\pi\)
0.407660 + 0.913134i \(0.366345\pi\)
\(878\) 97.5733 3.29294
\(879\) −10.9648 −0.369834
\(880\) 0 0
\(881\) 32.9124 1.10885 0.554423 0.832235i \(-0.312939\pi\)
0.554423 + 0.832235i \(0.312939\pi\)
\(882\) −55.6115 −1.87254
\(883\) −15.5885 −0.524594 −0.262297 0.964987i \(-0.584480\pi\)
−0.262297 + 0.964987i \(0.584480\pi\)
\(884\) 18.5367 0.623458
\(885\) 0 0
\(886\) −27.5717 −0.926289
\(887\) −8.59951 −0.288743 −0.144372 0.989524i \(-0.546116\pi\)
−0.144372 + 0.989524i \(0.546116\pi\)
\(888\) 237.349 7.96490
\(889\) 6.67750 0.223956
\(890\) 0 0
\(891\) −6.51989 −0.218425
\(892\) 130.113 4.35649
\(893\) −1.58773 −0.0531315
\(894\) 82.2284 2.75013
\(895\) 0 0
\(896\) 97.5320 3.25832
\(897\) −29.5301 −0.985982
\(898\) 77.7127 2.59331
\(899\) −0.146934 −0.00490053
\(900\) 0 0
\(901\) 7.84602 0.261389
\(902\) −24.4479 −0.814025
\(903\) 22.7625 0.757488
\(904\) −210.851 −7.01280
\(905\) 0 0
\(906\) −52.1376 −1.73216
\(907\) 44.9819 1.49360 0.746800 0.665049i \(-0.231589\pi\)
0.746800 + 0.665049i \(0.231589\pi\)
\(908\) −78.0682 −2.59079
\(909\) 11.3315 0.375842
\(910\) 0 0
\(911\) 50.9800 1.68904 0.844522 0.535521i \(-0.179885\pi\)
0.844522 + 0.535521i \(0.179885\pi\)
\(912\) −132.856 −4.39931
\(913\) 5.10852 0.169067
\(914\) −78.6969 −2.60306
\(915\) 0 0
\(916\) −119.637 −3.95292
\(917\) 3.51763 0.116163
\(918\) 5.85176 0.193137
\(919\) −13.0346 −0.429973 −0.214986 0.976617i \(-0.568971\pi\)
−0.214986 + 0.976617i \(0.568971\pi\)
\(920\) 0 0
\(921\) 52.9321 1.74417
\(922\) 14.5776 0.480088
\(923\) −42.5252 −1.39974
\(924\) −22.2498 −0.731966
\(925\) 0 0
\(926\) 3.59276 0.118066
\(927\) 52.6221 1.72834
\(928\) −5.44292 −0.178673
\(929\) 37.8748 1.24263 0.621316 0.783560i \(-0.286598\pi\)
0.621316 + 0.783560i \(0.286598\pi\)
\(930\) 0 0
\(931\) −14.3957 −0.471801
\(932\) 94.2604 3.08760
\(933\) −20.9635 −0.686314
\(934\) −68.6280 −2.24558
\(935\) 0 0
\(936\) −129.842 −4.24402
\(937\) −22.9509 −0.749772 −0.374886 0.927071i \(-0.622318\pi\)
−0.374886 + 0.927071i \(0.622318\pi\)
\(938\) 9.89311 0.323022
\(939\) −77.3303 −2.52358
\(940\) 0 0
\(941\) −33.8175 −1.10242 −0.551209 0.834367i \(-0.685833\pi\)
−0.551209 + 0.834367i \(0.685833\pi\)
\(942\) −60.6740 −1.97687
\(943\) 28.4685 0.927064
\(944\) −180.472 −5.87387
\(945\) 0 0
\(946\) −20.0810 −0.652891
\(947\) −10.0614 −0.326953 −0.163476 0.986547i \(-0.552271\pi\)
−0.163476 + 0.986547i \(0.552271\pi\)
\(948\) −57.1327 −1.85558
\(949\) −39.0960 −1.26911
\(950\) 0 0
\(951\) 7.99082 0.259120
\(952\) −14.3602 −0.465416
\(953\) −38.8829 −1.25954 −0.629770 0.776781i \(-0.716851\pi\)
−0.629770 + 0.776781i \(0.716851\pi\)
\(954\) −83.5373 −2.70462
\(955\) 0 0
\(956\) −25.6428 −0.829348
\(957\) 0.514109 0.0166188
\(958\) −87.1612 −2.81605
\(959\) 4.35970 0.140782
\(960\) 0 0
\(961\) −30.3341 −0.978519
\(962\) 75.0344 2.41920
\(963\) 29.9184 0.964106
\(964\) −86.7213 −2.79311
\(965\) 0 0
\(966\) 34.7728 1.11880
\(967\) 5.40033 0.173663 0.0868315 0.996223i \(-0.472326\pi\)
0.0868315 + 0.996223i \(0.472326\pi\)
\(968\) −105.589 −3.39377
\(969\) 7.18768 0.230902
\(970\) 0 0
\(971\) 10.1469 0.325629 0.162815 0.986657i \(-0.447943\pi\)
0.162815 + 0.986657i \(0.447943\pi\)
\(972\) 127.428 4.08726
\(973\) −13.8498 −0.444004
\(974\) −55.6933 −1.78453
\(975\) 0 0
\(976\) −96.4077 −3.08594
\(977\) 9.09855 0.291088 0.145544 0.989352i \(-0.453507\pi\)
0.145544 + 0.989352i \(0.453507\pi\)
\(978\) 84.7795 2.71095
\(979\) 3.29490 0.105306
\(980\) 0 0
\(981\) 51.9754 1.65945
\(982\) 55.7121 1.77784
\(983\) −49.1437 −1.56744 −0.783721 0.621113i \(-0.786681\pi\)
−0.783721 + 0.621113i \(0.786681\pi\)
\(984\) 223.968 7.13985
\(985\) 0 0
\(986\) 0.504355 0.0160619
\(987\) 2.00258 0.0637429
\(988\) −51.0897 −1.62538
\(989\) 23.3836 0.743554
\(990\) 0 0
\(991\) 43.2065 1.37250 0.686249 0.727366i \(-0.259256\pi\)
0.686249 + 0.727366i \(0.259256\pi\)
\(992\) 24.6679 0.783205
\(993\) −30.2997 −0.961531
\(994\) 50.0751 1.58829
\(995\) 0 0
\(996\) −71.1361 −2.25403
\(997\) −48.5452 −1.53744 −0.768721 0.639584i \(-0.779107\pi\)
−0.768721 + 0.639584i \(0.779107\pi\)
\(998\) 13.1174 0.415224
\(999\) 17.6492 0.558395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.a.j.1.5 yes 5
3.2 odd 2 3825.2.a.bl.1.1 5
4.3 odd 2 6800.2.a.cd.1.5 5
5.2 odd 4 425.2.b.f.324.10 10
5.3 odd 4 425.2.b.f.324.1 10
5.4 even 2 425.2.a.i.1.1 5
15.14 odd 2 3825.2.a.bq.1.5 5
17.16 even 2 7225.2.a.y.1.5 5
20.19 odd 2 6800.2.a.bz.1.1 5
85.84 even 2 7225.2.a.x.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.1 5 5.4 even 2
425.2.a.j.1.5 yes 5 1.1 even 1 trivial
425.2.b.f.324.1 10 5.3 odd 4
425.2.b.f.324.10 10 5.2 odd 4
3825.2.a.bl.1.1 5 3.2 odd 2
3825.2.a.bq.1.5 5 15.14 odd 2
6800.2.a.bz.1.1 5 20.19 odd 2
6800.2.a.cd.1.5 5 4.3 odd 2
7225.2.a.x.1.1 5 85.84 even 2
7225.2.a.y.1.5 5 17.16 even 2