Properties

Label 425.2.a.a.1.1
Level $425$
Weight $2$
Character 425.1
Self dual yes
Analytic conductor $3.394$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.39364208590\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -2.00000 q^{3} -1.00000 q^{4} +2.00000 q^{6} +2.00000 q^{7} +3.00000 q^{8} +1.00000 q^{9} +2.00000 q^{11} +2.00000 q^{12} -2.00000 q^{13} -2.00000 q^{14} -1.00000 q^{16} -1.00000 q^{17} -1.00000 q^{18} -4.00000 q^{21} -2.00000 q^{22} -6.00000 q^{23} -6.00000 q^{24} +2.00000 q^{26} +4.00000 q^{27} -2.00000 q^{28} -6.00000 q^{29} -10.0000 q^{31} -5.00000 q^{32} -4.00000 q^{33} +1.00000 q^{34} -1.00000 q^{36} -2.00000 q^{37} +4.00000 q^{39} +10.0000 q^{41} +4.00000 q^{42} -4.00000 q^{43} -2.00000 q^{44} +6.00000 q^{46} -12.0000 q^{47} +2.00000 q^{48} -3.00000 q^{49} +2.00000 q^{51} +2.00000 q^{52} +10.0000 q^{53} -4.00000 q^{54} +6.00000 q^{56} +6.00000 q^{58} +8.00000 q^{59} -14.0000 q^{61} +10.0000 q^{62} +2.00000 q^{63} +7.00000 q^{64} +4.00000 q^{66} -8.00000 q^{67} +1.00000 q^{68} +12.0000 q^{69} -2.00000 q^{71} +3.00000 q^{72} +14.0000 q^{73} +2.00000 q^{74} +4.00000 q^{77} -4.00000 q^{78} -14.0000 q^{79} -11.0000 q^{81} -10.0000 q^{82} -4.00000 q^{83} +4.00000 q^{84} +4.00000 q^{86} +12.0000 q^{87} +6.00000 q^{88} +6.00000 q^{89} -4.00000 q^{91} +6.00000 q^{92} +20.0000 q^{93} +12.0000 q^{94} +10.0000 q^{96} -2.00000 q^{97} +3.00000 q^{98} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.00000 0.816497
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 2.00000 0.577350
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −1.00000 −0.242536
\(18\) −1.00000 −0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) −2.00000 −0.426401
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) −6.00000 −1.22474
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 4.00000 0.769800
\(28\) −2.00000 −0.377964
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) −5.00000 −0.883883
\(33\) −4.00000 −0.696311
\(34\) 1.00000 0.171499
\(35\) 0 0
\(36\) −1.00000 −0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 4.00000 0.617213
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 2.00000 0.288675
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 2.00000 0.277350
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 8.00000 1.04151 0.520756 0.853706i \(-0.325650\pi\)
0.520756 + 0.853706i \(0.325650\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 10.0000 1.27000
\(63\) 2.00000 0.251976
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 1.00000 0.121268
\(69\) 12.0000 1.44463
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 3.00000 0.353553
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 2.00000 0.232495
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) −4.00000 −0.452911
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) −10.0000 −1.10432
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) 12.0000 1.28654
\(88\) 6.00000 0.639602
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 6.00000 0.625543
\(93\) 20.0000 2.07390
\(94\) 12.0000 1.23771
\(95\) 0 0
\(96\) 10.0000 1.02062
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 3.00000 0.303046
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) −2.00000 −0.198030
\(103\) −12.0000 −1.18240 −0.591198 0.806527i \(-0.701345\pi\)
−0.591198 + 0.806527i \(0.701345\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) −2.00000 −0.193347 −0.0966736 0.995316i \(-0.530820\pi\)
−0.0966736 + 0.995316i \(0.530820\pi\)
\(108\) −4.00000 −0.384900
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) −2.00000 −0.188982
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) −2.00000 −0.184900
\(118\) −8.00000 −0.736460
\(119\) −2.00000 −0.183340
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 14.0000 1.26750
\(123\) −20.0000 −1.80334
\(124\) 10.0000 0.898027
\(125\) 0 0
\(126\) −2.00000 −0.178174
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 3.00000 0.265165
\(129\) 8.00000 0.704361
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 4.00000 0.348155
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) 2.00000 0.170872 0.0854358 0.996344i \(-0.472772\pi\)
0.0854358 + 0.996344i \(0.472772\pi\)
\(138\) −12.0000 −1.02151
\(139\) 14.0000 1.18746 0.593732 0.804663i \(-0.297654\pi\)
0.593732 + 0.804663i \(0.297654\pi\)
\(140\) 0 0
\(141\) 24.0000 2.02116
\(142\) 2.00000 0.167836
\(143\) −4.00000 −0.334497
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) 6.00000 0.494872
\(148\) 2.00000 0.164399
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) −1.00000 −0.0808452
\(154\) −4.00000 −0.322329
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 14.0000 1.11378
\(159\) −20.0000 −1.58610
\(160\) 0 0
\(161\) −12.0000 −0.945732
\(162\) 11.0000 0.864242
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) 4.00000 0.310460
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) −12.0000 −0.925820
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −12.0000 −0.909718
\(175\) 0 0
\(176\) −2.00000 −0.150756
\(177\) −16.0000 −1.20263
\(178\) −6.00000 −0.449719
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 26.0000 1.93256 0.966282 0.257485i \(-0.0828937\pi\)
0.966282 + 0.257485i \(0.0828937\pi\)
\(182\) 4.00000 0.296500
\(183\) 28.0000 2.06982
\(184\) −18.0000 −1.32698
\(185\) 0 0
\(186\) −20.0000 −1.46647
\(187\) −2.00000 −0.146254
\(188\) 12.0000 0.875190
\(189\) 8.00000 0.581914
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) −14.0000 −1.01036
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) −2.00000 −0.142134
\(199\) 6.00000 0.425329 0.212664 0.977125i \(-0.431786\pi\)
0.212664 + 0.977125i \(0.431786\pi\)
\(200\) 0 0
\(201\) 16.0000 1.12855
\(202\) 6.00000 0.422159
\(203\) −12.0000 −0.842235
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 12.0000 0.836080
\(207\) −6.00000 −0.417029
\(208\) 2.00000 0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) −10.0000 −0.686803
\(213\) 4.00000 0.274075
\(214\) 2.00000 0.136717
\(215\) 0 0
\(216\) 12.0000 0.816497
\(217\) −20.0000 −1.35769
\(218\) −2.00000 −0.135457
\(219\) −28.0000 −1.89206
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) −4.00000 −0.268462
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −10.0000 −0.668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 2.00000 0.132745 0.0663723 0.997795i \(-0.478857\pi\)
0.0663723 + 0.997795i \(0.478857\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) −18.0000 −1.18176
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) −8.00000 −0.520756
\(237\) 28.0000 1.81880
\(238\) 2.00000 0.129641
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −6.00000 −0.386494 −0.193247 0.981150i \(-0.561902\pi\)
−0.193247 + 0.981150i \(0.561902\pi\)
\(242\) 7.00000 0.449977
\(243\) 10.0000 0.641500
\(244\) 14.0000 0.896258
\(245\) 0 0
\(246\) 20.0000 1.27515
\(247\) 0 0
\(248\) −30.0000 −1.90500
\(249\) 8.00000 0.506979
\(250\) 0 0
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) −2.00000 −0.125988
\(253\) −12.0000 −0.754434
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) −8.00000 −0.498058
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) −6.00000 −0.370681
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) −12.0000 −0.738549
\(265\) 0 0
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 8.00000 0.488678
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 1.00000 0.0606339
\(273\) 8.00000 0.484182
\(274\) −2.00000 −0.120824
\(275\) 0 0
\(276\) −12.0000 −0.722315
\(277\) 30.0000 1.80253 0.901263 0.433273i \(-0.142641\pi\)
0.901263 + 0.433273i \(0.142641\pi\)
\(278\) −14.0000 −0.839664
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) −24.0000 −1.42918
\(283\) −6.00000 −0.356663 −0.178331 0.983970i \(-0.557070\pi\)
−0.178331 + 0.983970i \(0.557070\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 20.0000 1.18056
\(288\) −5.00000 −0.294628
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 4.00000 0.234484
\(292\) −14.0000 −0.819288
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) −6.00000 −0.349927
\(295\) 0 0
\(296\) −6.00000 −0.348743
\(297\) 8.00000 0.464207
\(298\) −6.00000 −0.347571
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 12.0000 0.690522
\(303\) 12.0000 0.689382
\(304\) 0 0
\(305\) 0 0
\(306\) 1.00000 0.0571662
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) −4.00000 −0.227921
\(309\) 24.0000 1.36531
\(310\) 0 0
\(311\) 6.00000 0.340229 0.170114 0.985424i \(-0.445586\pi\)
0.170114 + 0.985424i \(0.445586\pi\)
\(312\) 12.0000 0.679366
\(313\) −2.00000 −0.113047 −0.0565233 0.998401i \(-0.518002\pi\)
−0.0565233 + 0.998401i \(0.518002\pi\)
\(314\) 6.00000 0.338600
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) −10.0000 −0.561656 −0.280828 0.959758i \(-0.590609\pi\)
−0.280828 + 0.959758i \(0.590609\pi\)
\(318\) 20.0000 1.12154
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 12.0000 0.668734
\(323\) 0 0
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) −2.00000 −0.110770
\(327\) −4.00000 −0.221201
\(328\) 30.0000 1.65647
\(329\) −24.0000 −1.32316
\(330\) 0 0
\(331\) 16.0000 0.879440 0.439720 0.898135i \(-0.355078\pi\)
0.439720 + 0.898135i \(0.355078\pi\)
\(332\) 4.00000 0.219529
\(333\) −2.00000 −0.109599
\(334\) 2.00000 0.109435
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 9.00000 0.489535
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) −20.0000 −1.08306
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 26.0000 1.39575 0.697877 0.716218i \(-0.254128\pi\)
0.697877 + 0.716218i \(0.254128\pi\)
\(348\) −12.0000 −0.643268
\(349\) 22.0000 1.17763 0.588817 0.808267i \(-0.299594\pi\)
0.588817 + 0.808267i \(0.299594\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) −10.0000 −0.533002
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 16.0000 0.850390
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 4.00000 0.211702
\(358\) 24.0000 1.26844
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −26.0000 −1.36653
\(363\) 14.0000 0.734809
\(364\) 4.00000 0.209657
\(365\) 0 0
\(366\) −28.0000 −1.46358
\(367\) 34.0000 1.77479 0.887393 0.461014i \(-0.152514\pi\)
0.887393 + 0.461014i \(0.152514\pi\)
\(368\) 6.00000 0.312772
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) 20.0000 1.03835
\(372\) −20.0000 −1.03695
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) −36.0000 −1.85656
\(377\) 12.0000 0.618031
\(378\) −8.00000 −0.411476
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) −8.00000 −0.409316
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) −6.00000 −0.306186
\(385\) 0 0
\(386\) 18.0000 0.916176
\(387\) −4.00000 −0.203331
\(388\) 2.00000 0.101535
\(389\) 26.0000 1.31825 0.659126 0.752032i \(-0.270926\pi\)
0.659126 + 0.752032i \(0.270926\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) −9.00000 −0.454569
\(393\) −12.0000 −0.605320
\(394\) 2.00000 0.100759
\(395\) 0 0
\(396\) −2.00000 −0.100504
\(397\) 14.0000 0.702640 0.351320 0.936255i \(-0.385733\pi\)
0.351320 + 0.936255i \(0.385733\pi\)
\(398\) −6.00000 −0.300753
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) −16.0000 −0.798007
\(403\) 20.0000 0.996271
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) −4.00000 −0.198273
\(408\) 6.00000 0.297044
\(409\) −38.0000 −1.87898 −0.939490 0.342578i \(-0.888700\pi\)
−0.939490 + 0.342578i \(0.888700\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) 12.0000 0.591198
\(413\) 16.0000 0.787309
\(414\) 6.00000 0.294884
\(415\) 0 0
\(416\) 10.0000 0.490290
\(417\) −28.0000 −1.37117
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) −2.00000 −0.0973585
\(423\) −12.0000 −0.583460
\(424\) 30.0000 1.45693
\(425\) 0 0
\(426\) −4.00000 −0.193801
\(427\) −28.0000 −1.35501
\(428\) 2.00000 0.0966736
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) −38.0000 −1.83040 −0.915198 0.403005i \(-0.867966\pi\)
−0.915198 + 0.403005i \(0.867966\pi\)
\(432\) −4.00000 −0.192450
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 20.0000 0.960031
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) 0 0
\(438\) 28.0000 1.33789
\(439\) 6.00000 0.286364 0.143182 0.989696i \(-0.454267\pi\)
0.143182 + 0.989696i \(0.454267\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) −2.00000 −0.0951303
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) −4.00000 −0.189832
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) −12.0000 −0.567581
\(448\) 14.0000 0.661438
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) −6.00000 −0.282216
\(453\) 24.0000 1.12762
\(454\) −2.00000 −0.0938647
\(455\) 0 0
\(456\) 0 0
\(457\) −6.00000 −0.280668 −0.140334 0.990104i \(-0.544818\pi\)
−0.140334 + 0.990104i \(0.544818\pi\)
\(458\) −10.0000 −0.467269
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 8.00000 0.372194
\(463\) 36.0000 1.67306 0.836531 0.547920i \(-0.184580\pi\)
0.836531 + 0.547920i \(0.184580\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) −14.0000 −0.648537
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 2.00000 0.0924500
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 12.0000 0.552931
\(472\) 24.0000 1.10469
\(473\) −8.00000 −0.367840
\(474\) −28.0000 −1.28608
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 10.0000 0.457869
\(478\) 8.00000 0.365911
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 6.00000 0.273293
\(483\) 24.0000 1.09204
\(484\) 7.00000 0.318182
\(485\) 0 0
\(486\) −10.0000 −0.453609
\(487\) −22.0000 −0.996915 −0.498458 0.866914i \(-0.666100\pi\)
−0.498458 + 0.866914i \(0.666100\pi\)
\(488\) −42.0000 −1.90125
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −16.0000 −0.722070 −0.361035 0.932552i \(-0.617576\pi\)
−0.361035 + 0.932552i \(0.617576\pi\)
\(492\) 20.0000 0.901670
\(493\) 6.00000 0.270226
\(494\) 0 0
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) −4.00000 −0.179425
\(498\) −8.00000 −0.358489
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 0 0
\(501\) 4.00000 0.178707
\(502\) −28.0000 −1.24970
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 6.00000 0.267261
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 18.0000 0.799408
\(508\) 8.00000 0.354943
\(509\) −34.0000 −1.50702 −0.753512 0.657434i \(-0.771642\pi\)
−0.753512 + 0.657434i \(0.771642\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −2.00000 −0.0882162
\(515\) 0 0
\(516\) −8.00000 −0.352180
\(517\) −24.0000 −1.05552
\(518\) 4.00000 0.175750
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 6.00000 0.262613
\(523\) −32.0000 −1.39926 −0.699631 0.714504i \(-0.746652\pi\)
−0.699631 + 0.714504i \(0.746652\pi\)
\(524\) −6.00000 −0.262111
\(525\) 0 0
\(526\) −8.00000 −0.348817
\(527\) 10.0000 0.435607
\(528\) 4.00000 0.174078
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 0 0
\(533\) −20.0000 −0.866296
\(534\) 12.0000 0.519291
\(535\) 0 0
\(536\) −24.0000 −1.03664
\(537\) 48.0000 2.07135
\(538\) −10.0000 −0.431131
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 16.0000 0.687259
\(543\) −52.0000 −2.23153
\(544\) 5.00000 0.214373
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) −2.00000 −0.0854358
\(549\) −14.0000 −0.597505
\(550\) 0 0
\(551\) 0 0
\(552\) 36.0000 1.53226
\(553\) −28.0000 −1.19068
\(554\) −30.0000 −1.27458
\(555\) 0 0
\(556\) −14.0000 −0.593732
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 10.0000 0.423334
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 6.00000 0.253095
\(563\) −4.00000 −0.168580 −0.0842900 0.996441i \(-0.526862\pi\)
−0.0842900 + 0.996441i \(0.526862\pi\)
\(564\) −24.0000 −1.01058
\(565\) 0 0
\(566\) 6.00000 0.252199
\(567\) −22.0000 −0.923913
\(568\) −6.00000 −0.251754
\(569\) −38.0000 −1.59304 −0.796521 0.604610i \(-0.793329\pi\)
−0.796521 + 0.604610i \(0.793329\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) 4.00000 0.167248
\(573\) −16.0000 −0.668410
\(574\) −20.0000 −0.834784
\(575\) 0 0
\(576\) 7.00000 0.291667
\(577\) −6.00000 −0.249783 −0.124892 0.992170i \(-0.539858\pi\)
−0.124892 + 0.992170i \(0.539858\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 36.0000 1.49611
\(580\) 0 0
\(581\) −8.00000 −0.331896
\(582\) −4.00000 −0.165805
\(583\) 20.0000 0.828315
\(584\) 42.0000 1.73797
\(585\) 0 0
\(586\) 30.0000 1.23929
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) −6.00000 −0.247436
\(589\) 0 0
\(590\) 0 0
\(591\) 4.00000 0.164538
\(592\) 2.00000 0.0821995
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) −8.00000 −0.328244
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) −12.0000 −0.491127
\(598\) −12.0000 −0.490716
\(599\) 16.0000 0.653742 0.326871 0.945069i \(-0.394006\pi\)
0.326871 + 0.945069i \(0.394006\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 8.00000 0.326056
\(603\) −8.00000 −0.325785
\(604\) 12.0000 0.488273
\(605\) 0 0
\(606\) −12.0000 −0.487467
\(607\) −18.0000 −0.730597 −0.365299 0.930890i \(-0.619033\pi\)
−0.365299 + 0.930890i \(0.619033\pi\)
\(608\) 0 0
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 1.00000 0.0404226
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) −16.0000 −0.645707
\(615\) 0 0
\(616\) 12.0000 0.483494
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) −24.0000 −0.965422
\(619\) −14.0000 −0.562708 −0.281354 0.959604i \(-0.590783\pi\)
−0.281354 + 0.959604i \(0.590783\pi\)
\(620\) 0 0
\(621\) −24.0000 −0.963087
\(622\) −6.00000 −0.240578
\(623\) 12.0000 0.480770
\(624\) −4.00000 −0.160128
\(625\) 0 0
\(626\) 2.00000 0.0799361
\(627\) 0 0
\(628\) 6.00000 0.239426
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) −4.00000 −0.159237 −0.0796187 0.996825i \(-0.525370\pi\)
−0.0796187 + 0.996825i \(0.525370\pi\)
\(632\) −42.0000 −1.67067
\(633\) −4.00000 −0.158986
\(634\) 10.0000 0.397151
\(635\) 0 0
\(636\) 20.0000 0.793052
\(637\) 6.00000 0.237729
\(638\) 12.0000 0.475085
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) −4.00000 −0.157867
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 12.0000 0.472866
\(645\) 0 0
\(646\) 0 0
\(647\) −28.0000 −1.10079 −0.550397 0.834903i \(-0.685524\pi\)
−0.550397 + 0.834903i \(0.685524\pi\)
\(648\) −33.0000 −1.29636
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 40.0000 1.56772
\(652\) −2.00000 −0.0783260
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 4.00000 0.156412
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) 14.0000 0.546192
\(658\) 24.0000 0.935617
\(659\) −44.0000 −1.71400 −0.856998 0.515319i \(-0.827673\pi\)
−0.856998 + 0.515319i \(0.827673\pi\)
\(660\) 0 0
\(661\) 46.0000 1.78919 0.894596 0.446875i \(-0.147463\pi\)
0.894596 + 0.446875i \(0.147463\pi\)
\(662\) −16.0000 −0.621858
\(663\) −4.00000 −0.155347
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 2.00000 0.0774984
\(667\) 36.0000 1.39393
\(668\) 2.00000 0.0773823
\(669\) 32.0000 1.23719
\(670\) 0 0
\(671\) −28.0000 −1.08093
\(672\) 20.0000 0.771517
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) −6.00000 −0.231111
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) 12.0000 0.460857
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 20.0000 0.765840
\(683\) −18.0000 −0.688751 −0.344375 0.938832i \(-0.611909\pi\)
−0.344375 + 0.938832i \(0.611909\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) −20.0000 −0.763048
\(688\) 4.00000 0.152499
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) 2.00000 0.0760836 0.0380418 0.999276i \(-0.487888\pi\)
0.0380418 + 0.999276i \(0.487888\pi\)
\(692\) −6.00000 −0.228086
\(693\) 4.00000 0.151947
\(694\) −26.0000 −0.986947
\(695\) 0 0
\(696\) 36.0000 1.36458
\(697\) −10.0000 −0.378777
\(698\) −22.0000 −0.832712
\(699\) −28.0000 −1.05906
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 8.00000 0.301941
\(703\) 0 0
\(704\) 14.0000 0.527645
\(705\) 0 0
\(706\) −14.0000 −0.526897
\(707\) −12.0000 −0.451306
\(708\) 16.0000 0.601317
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) −14.0000 −0.525041
\(712\) 18.0000 0.674579
\(713\) 60.0000 2.24702
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) 16.0000 0.597531
\(718\) −20.0000 −0.746393
\(719\) 14.0000 0.522112 0.261056 0.965324i \(-0.415929\pi\)
0.261056 + 0.965324i \(0.415929\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 19.0000 0.707107
\(723\) 12.0000 0.446285
\(724\) −26.0000 −0.966282
\(725\) 0 0
\(726\) −14.0000 −0.519589
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) −12.0000 −0.444750
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 4.00000 0.147945
\(732\) −28.0000 −1.03491
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) −34.0000 −1.25496
\(735\) 0 0
\(736\) 30.0000 1.10581
\(737\) −16.0000 −0.589368
\(738\) −10.0000 −0.368105
\(739\) −8.00000 −0.294285 −0.147142 0.989115i \(-0.547008\pi\)
−0.147142 + 0.989115i \(0.547008\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −20.0000 −0.734223
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 60.0000 2.19971
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) −4.00000 −0.146352
\(748\) 2.00000 0.0731272
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) −2.00000 −0.0729810 −0.0364905 0.999334i \(-0.511618\pi\)
−0.0364905 + 0.999334i \(0.511618\pi\)
\(752\) 12.0000 0.437595
\(753\) −56.0000 −2.04075
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) −8.00000 −0.290957
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 2.00000 0.0726433
\(759\) 24.0000 0.871145
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) −16.0000 −0.579619
\(763\) 4.00000 0.144810
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 0 0
\(767\) −16.0000 −0.577727
\(768\) 34.0000 1.22687
\(769\) −18.0000 −0.649097 −0.324548 0.945869i \(-0.605212\pi\)
−0.324548 + 0.945869i \(0.605212\pi\)
\(770\) 0 0
\(771\) −4.00000 −0.144056
\(772\) 18.0000 0.647834
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 8.00000 0.286998
\(778\) −26.0000 −0.932145
\(779\) 0 0
\(780\) 0 0
\(781\) −4.00000 −0.143131
\(782\) −6.00000 −0.214560
\(783\) −24.0000 −0.857690
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 12.0000 0.428026
\(787\) 6.00000 0.213877 0.106938 0.994266i \(-0.465895\pi\)
0.106938 + 0.994266i \(0.465895\pi\)
\(788\) 2.00000 0.0712470
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 6.00000 0.213201
\(793\) 28.0000 0.994309
\(794\) −14.0000 −0.496841
\(795\) 0 0
\(796\) −6.00000 −0.212664
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) −18.0000 −0.635602
\(803\) 28.0000 0.988099
\(804\) −16.0000 −0.564276
\(805\) 0 0
\(806\) −20.0000 −0.704470
\(807\) −20.0000 −0.704033
\(808\) −18.0000 −0.633238
\(809\) 26.0000 0.914111 0.457056 0.889438i \(-0.348904\pi\)
0.457056 + 0.889438i \(0.348904\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 12.0000 0.421117
\(813\) 32.0000 1.12229
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) 0 0
\(818\) 38.0000 1.32864
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 2.00000 0.0698005 0.0349002 0.999391i \(-0.488889\pi\)
0.0349002 + 0.999391i \(0.488889\pi\)
\(822\) 4.00000 0.139516
\(823\) 34.0000 1.18517 0.592583 0.805510i \(-0.298108\pi\)
0.592583 + 0.805510i \(0.298108\pi\)
\(824\) −36.0000 −1.25412
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 6.00000 0.208514
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −60.0000 −2.08138
\(832\) −14.0000 −0.485363
\(833\) 3.00000 0.103944
\(834\) 28.0000 0.969561
\(835\) 0 0
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) −18.0000 −0.621800
\(839\) 26.0000 0.897620 0.448810 0.893627i \(-0.351848\pi\)
0.448810 + 0.893627i \(0.351848\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) −26.0000 −0.896019
\(843\) 12.0000 0.413302
\(844\) −2.00000 −0.0688428
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) −14.0000 −0.481046
\(848\) −10.0000 −0.343401
\(849\) 12.0000 0.411839
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) −4.00000 −0.137038
\(853\) −34.0000 −1.16414 −0.582069 0.813139i \(-0.697757\pi\)
−0.582069 + 0.813139i \(0.697757\pi\)
\(854\) 28.0000 0.958140
\(855\) 0 0
\(856\) −6.00000 −0.205076
\(857\) −34.0000 −1.16142 −0.580709 0.814111i \(-0.697225\pi\)
−0.580709 + 0.814111i \(0.697225\pi\)
\(858\) −8.00000 −0.273115
\(859\) −24.0000 −0.818869 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(860\) 0 0
\(861\) −40.0000 −1.36320
\(862\) 38.0000 1.29429
\(863\) 4.00000 0.136162 0.0680808 0.997680i \(-0.478312\pi\)
0.0680808 + 0.997680i \(0.478312\pi\)
\(864\) −20.0000 −0.680414
\(865\) 0 0
\(866\) −34.0000 −1.15537
\(867\) −2.00000 −0.0679236
\(868\) 20.0000 0.678844
\(869\) −28.0000 −0.949835
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 6.00000 0.203186
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) 0 0
\(876\) 28.0000 0.946032
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) −6.00000 −0.202490
\(879\) 60.0000 2.02375
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 3.00000 0.101015
\(883\) −16.0000 −0.538443 −0.269221 0.963078i \(-0.586766\pi\)
−0.269221 + 0.963078i \(0.586766\pi\)
\(884\) −2.00000 −0.0672673
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) 22.0000 0.738688 0.369344 0.929293i \(-0.379582\pi\)
0.369344 + 0.929293i \(0.379582\pi\)
\(888\) 12.0000 0.402694
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) −22.0000 −0.737028
\(892\) 16.0000 0.535720
\(893\) 0 0
\(894\) 12.0000 0.401340
\(895\) 0 0
\(896\) 6.00000 0.200446
\(897\) −24.0000 −0.801337
\(898\) −18.0000 −0.600668
\(899\) 60.0000 2.00111
\(900\) 0 0
\(901\) −10.0000 −0.333148
\(902\) −20.0000 −0.665927
\(903\) 16.0000 0.532447
\(904\) 18.0000 0.598671
\(905\) 0 0
\(906\) −24.0000 −0.797347
\(907\) −30.0000 −0.996134 −0.498067 0.867139i \(-0.665957\pi\)
−0.498067 + 0.867139i \(0.665957\pi\)
\(908\) −2.00000 −0.0663723
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) −38.0000 −1.25900 −0.629498 0.777002i \(-0.716739\pi\)
−0.629498 + 0.777002i \(0.716739\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 6.00000 0.198462
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 12.0000 0.396275
\(918\) 4.00000 0.132020
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) −32.0000 −1.05444
\(922\) 26.0000 0.856264
\(923\) 4.00000 0.131662
\(924\) 8.00000 0.263181
\(925\) 0 0
\(926\) −36.0000 −1.18303
\(927\) −12.0000 −0.394132
\(928\) 30.0000 0.984798
\(929\) 58.0000 1.90292 0.951459 0.307775i \(-0.0995844\pi\)
0.951459 + 0.307775i \(0.0995844\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −14.0000 −0.458585
\(933\) −12.0000 −0.392862
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 16.0000 0.522419
\(939\) 4.00000 0.130535
\(940\) 0 0
\(941\) 34.0000 1.10837 0.554184 0.832394i \(-0.313030\pi\)
0.554184 + 0.832394i \(0.313030\pi\)
\(942\) −12.0000 −0.390981
\(943\) −60.0000 −1.95387
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) −26.0000 −0.844886 −0.422443 0.906389i \(-0.638827\pi\)
−0.422443 + 0.906389i \(0.638827\pi\)
\(948\) −28.0000 −0.909398
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) 20.0000 0.648544
\(952\) −6.00000 −0.194461
\(953\) 18.0000 0.583077 0.291539 0.956559i \(-0.405833\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(954\) −10.0000 −0.323762
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) 24.0000 0.775810
\(958\) 18.0000 0.581554
\(959\) 4.00000 0.129167
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) −4.00000 −0.128965
\(963\) −2.00000 −0.0644491
\(964\) 6.00000 0.193247
\(965\) 0 0
\(966\) −24.0000 −0.772187
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) −21.0000 −0.674966
\(969\) 0 0
\(970\) 0 0
\(971\) −8.00000 −0.256732 −0.128366 0.991727i \(-0.540973\pi\)
−0.128366 + 0.991727i \(0.540973\pi\)
\(972\) −10.0000 −0.320750
\(973\) 28.0000 0.897639
\(974\) 22.0000 0.704925
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −34.0000 −1.08776 −0.543878 0.839164i \(-0.683045\pi\)
−0.543878 + 0.839164i \(0.683045\pi\)
\(978\) 4.00000 0.127906
\(979\) 12.0000 0.383522
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 16.0000 0.510581
\(983\) 6.00000 0.191370 0.0956851 0.995412i \(-0.469496\pi\)
0.0956851 + 0.995412i \(0.469496\pi\)
\(984\) −60.0000 −1.91273
\(985\) 0 0
\(986\) −6.00000 −0.191079
\(987\) 48.0000 1.52786
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −58.0000 −1.84243 −0.921215 0.389053i \(-0.872802\pi\)
−0.921215 + 0.389053i \(0.872802\pi\)
\(992\) 50.0000 1.58750
\(993\) −32.0000 −1.01549
\(994\) 4.00000 0.126872
\(995\) 0 0
\(996\) −8.00000 −0.253490
\(997\) 62.0000 1.96356 0.981780 0.190022i \(-0.0608559\pi\)
0.981780 + 0.190022i \(0.0608559\pi\)
\(998\) 14.0000 0.443162
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.a.a.1.1 1
3.2 odd 2 3825.2.a.l.1.1 1
4.3 odd 2 6800.2.a.v.1.1 1
5.2 odd 4 425.2.b.c.324.1 2
5.3 odd 4 425.2.b.c.324.2 2
5.4 even 2 85.2.a.a.1.1 1
15.14 odd 2 765.2.a.a.1.1 1
17.16 even 2 7225.2.a.d.1.1 1
20.19 odd 2 1360.2.a.b.1.1 1
35.34 odd 2 4165.2.a.l.1.1 1
40.19 odd 2 5440.2.a.x.1.1 1
40.29 even 2 5440.2.a.e.1.1 1
85.4 even 4 1445.2.d.a.866.1 2
85.64 even 4 1445.2.d.a.866.2 2
85.84 even 2 1445.2.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.a.1.1 1 5.4 even 2
425.2.a.a.1.1 1 1.1 even 1 trivial
425.2.b.c.324.1 2 5.2 odd 4
425.2.b.c.324.2 2 5.3 odd 4
765.2.a.a.1.1 1 15.14 odd 2
1360.2.a.b.1.1 1 20.19 odd 2
1445.2.a.c.1.1 1 85.84 even 2
1445.2.d.a.866.1 2 85.4 even 4
1445.2.d.a.866.2 2 85.64 even 4
3825.2.a.l.1.1 1 3.2 odd 2
4165.2.a.l.1.1 1 35.34 odd 2
5440.2.a.e.1.1 1 40.29 even 2
5440.2.a.x.1.1 1 40.19 odd 2
6800.2.a.v.1.1 1 4.3 odd 2
7225.2.a.d.1.1 1 17.16 even 2