## Defining parameters

Level: | \( N \) | \(=\) | \( 4235 = 5 \cdot 7 \cdot 11^{2} \) |

Weight: | \( k \) | \(=\) | \( 2 \) |

Character orbit: | \([\chi]\) | \(=\) | 4235.c (of order \(2\) and degree \(1\)) |

Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |

Character field: | \(\Q\) | ||

Sturm bound: | \(1056\) |

## Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4235, [\chi])\).

Total | New | Old | |
---|---|---|---|

Modular forms | 552 | 288 | 264 |

Cusp forms | 504 | 288 | 216 |

Eisenstein series | 48 | 0 | 48 |

## Decomposition of \(S_{2}^{\mathrm{new}}(4235, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

## Decomposition of \(S_{2}^{\mathrm{old}}(4235, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4235, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(385, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(847, [\chi])\)\(^{\oplus 2}\)