# Properties

 Label 4225.2.a.v.1.2 Level $4225$ Weight $2$ Character 4225.1 Self dual yes Analytic conductor $33.737$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4225,2,Mod(1,4225)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4225, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4225.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4225 = 5^{2} \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4225.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$33.7367948540$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{12})^+$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 3$$ x^2 - 3 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 13) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.2 Root $$1.73205$$ of defining polynomial Character $$\chi$$ $$=$$ 4225.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+1.73205 q^{2} -2.00000 q^{3} +1.00000 q^{4} -3.46410 q^{6} -1.73205 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q+1.73205 q^{2} -2.00000 q^{3} +1.00000 q^{4} -3.46410 q^{6} -1.73205 q^{8} +1.00000 q^{9} -2.00000 q^{12} -5.00000 q^{16} -3.00000 q^{17} +1.73205 q^{18} +3.46410 q^{19} -6.00000 q^{23} +3.46410 q^{24} +4.00000 q^{27} +3.00000 q^{29} -3.46410 q^{31} -5.19615 q^{32} -5.19615 q^{34} +1.00000 q^{36} +8.66025 q^{37} +6.00000 q^{38} -5.19615 q^{41} +8.00000 q^{43} -10.3923 q^{46} +3.46410 q^{47} +10.0000 q^{48} -7.00000 q^{49} +6.00000 q^{51} +3.00000 q^{53} +6.92820 q^{54} -6.92820 q^{57} +5.19615 q^{58} +6.92820 q^{59} +1.00000 q^{61} -6.00000 q^{62} +1.00000 q^{64} -3.46410 q^{67} -3.00000 q^{68} +12.0000 q^{69} -3.46410 q^{71} -1.73205 q^{72} -1.73205 q^{73} +15.0000 q^{74} +3.46410 q^{76} +4.00000 q^{79} -11.0000 q^{81} -9.00000 q^{82} +13.8564 q^{83} +13.8564 q^{86} -6.00000 q^{87} +6.92820 q^{89} -6.00000 q^{92} +6.92820 q^{93} +6.00000 q^{94} +10.3923 q^{96} +6.92820 q^{97} -12.1244 q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 4 q^{3} + 2 q^{4} + 2 q^{9}+O(q^{10})$$ 2 * q - 4 * q^3 + 2 * q^4 + 2 * q^9 $$2 q - 4 q^{3} + 2 q^{4} + 2 q^{9} - 4 q^{12} - 10 q^{16} - 6 q^{17} - 12 q^{23} + 8 q^{27} + 6 q^{29} + 2 q^{36} + 12 q^{38} + 16 q^{43} + 20 q^{48} - 14 q^{49} + 12 q^{51} + 6 q^{53} + 2 q^{61} - 12 q^{62} + 2 q^{64} - 6 q^{68} + 24 q^{69} + 30 q^{74} + 8 q^{79} - 22 q^{81} - 18 q^{82} - 12 q^{87} - 12 q^{92} + 12 q^{94}+O(q^{100})$$ 2 * q - 4 * q^3 + 2 * q^4 + 2 * q^9 - 4 * q^12 - 10 * q^16 - 6 * q^17 - 12 * q^23 + 8 * q^27 + 6 * q^29 + 2 * q^36 + 12 * q^38 + 16 * q^43 + 20 * q^48 - 14 * q^49 + 12 * q^51 + 6 * q^53 + 2 * q^61 - 12 * q^62 + 2 * q^64 - 6 * q^68 + 24 * q^69 + 30 * q^74 + 8 * q^79 - 22 * q^81 - 18 * q^82 - 12 * q^87 - 12 * q^92 + 12 * q^94

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.73205 1.22474 0.612372 0.790569i $$-0.290215\pi$$
0.612372 + 0.790569i $$0.290215\pi$$
$$3$$ −2.00000 −1.15470 −0.577350 0.816497i $$-0.695913\pi$$
−0.577350 + 0.816497i $$0.695913\pi$$
$$4$$ 1.00000 0.500000
$$5$$ 0 0
$$6$$ −3.46410 −1.41421
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ −1.73205 −0.612372
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ −2.00000 −0.577350
$$13$$ 0 0
$$14$$ 0 0
$$15$$ 0 0
$$16$$ −5.00000 −1.25000
$$17$$ −3.00000 −0.727607 −0.363803 0.931476i $$-0.618522\pi$$
−0.363803 + 0.931476i $$0.618522\pi$$
$$18$$ 1.73205 0.408248
$$19$$ 3.46410 0.794719 0.397360 0.917663i $$-0.369927\pi$$
0.397360 + 0.917663i $$0.369927\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −6.00000 −1.25109 −0.625543 0.780189i $$-0.715123\pi$$
−0.625543 + 0.780189i $$0.715123\pi$$
$$24$$ 3.46410 0.707107
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 4.00000 0.769800
$$28$$ 0 0
$$29$$ 3.00000 0.557086 0.278543 0.960424i $$-0.410149\pi$$
0.278543 + 0.960424i $$0.410149\pi$$
$$30$$ 0 0
$$31$$ −3.46410 −0.622171 −0.311086 0.950382i $$-0.600693\pi$$
−0.311086 + 0.950382i $$0.600693\pi$$
$$32$$ −5.19615 −0.918559
$$33$$ 0 0
$$34$$ −5.19615 −0.891133
$$35$$ 0 0
$$36$$ 1.00000 0.166667
$$37$$ 8.66025 1.42374 0.711868 0.702313i $$-0.247849\pi$$
0.711868 + 0.702313i $$0.247849\pi$$
$$38$$ 6.00000 0.973329
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −5.19615 −0.811503 −0.405751 0.913984i $$-0.632990\pi$$
−0.405751 + 0.913984i $$0.632990\pi$$
$$42$$ 0 0
$$43$$ 8.00000 1.21999 0.609994 0.792406i $$-0.291172\pi$$
0.609994 + 0.792406i $$0.291172\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ −10.3923 −1.53226
$$47$$ 3.46410 0.505291 0.252646 0.967559i $$-0.418699\pi$$
0.252646 + 0.967559i $$0.418699\pi$$
$$48$$ 10.0000 1.44338
$$49$$ −7.00000 −1.00000
$$50$$ 0 0
$$51$$ 6.00000 0.840168
$$52$$ 0 0
$$53$$ 3.00000 0.412082 0.206041 0.978543i $$-0.433942\pi$$
0.206041 + 0.978543i $$0.433942\pi$$
$$54$$ 6.92820 0.942809
$$55$$ 0 0
$$56$$ 0 0
$$57$$ −6.92820 −0.917663
$$58$$ 5.19615 0.682288
$$59$$ 6.92820 0.901975 0.450988 0.892530i $$-0.351072\pi$$
0.450988 + 0.892530i $$0.351072\pi$$
$$60$$ 0 0
$$61$$ 1.00000 0.128037 0.0640184 0.997949i $$-0.479608\pi$$
0.0640184 + 0.997949i $$0.479608\pi$$
$$62$$ −6.00000 −0.762001
$$63$$ 0 0
$$64$$ 1.00000 0.125000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ −3.46410 −0.423207 −0.211604 0.977356i $$-0.567869\pi$$
−0.211604 + 0.977356i $$0.567869\pi$$
$$68$$ −3.00000 −0.363803
$$69$$ 12.0000 1.44463
$$70$$ 0 0
$$71$$ −3.46410 −0.411113 −0.205557 0.978645i $$-0.565900\pi$$
−0.205557 + 0.978645i $$0.565900\pi$$
$$72$$ −1.73205 −0.204124
$$73$$ −1.73205 −0.202721 −0.101361 0.994850i $$-0.532320\pi$$
−0.101361 + 0.994850i $$0.532320\pi$$
$$74$$ 15.0000 1.74371
$$75$$ 0 0
$$76$$ 3.46410 0.397360
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 4.00000 0.450035 0.225018 0.974355i $$-0.427756\pi$$
0.225018 + 0.974355i $$0.427756\pi$$
$$80$$ 0 0
$$81$$ −11.0000 −1.22222
$$82$$ −9.00000 −0.993884
$$83$$ 13.8564 1.52094 0.760469 0.649374i $$-0.224969\pi$$
0.760469 + 0.649374i $$0.224969\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 13.8564 1.49417
$$87$$ −6.00000 −0.643268
$$88$$ 0 0
$$89$$ 6.92820 0.734388 0.367194 0.930144i $$-0.380318\pi$$
0.367194 + 0.930144i $$0.380318\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ −6.00000 −0.625543
$$93$$ 6.92820 0.718421
$$94$$ 6.00000 0.618853
$$95$$ 0 0
$$96$$ 10.3923 1.06066
$$97$$ 6.92820 0.703452 0.351726 0.936103i $$-0.385595\pi$$
0.351726 + 0.936103i $$0.385595\pi$$
$$98$$ −12.1244 −1.22474
$$99$$ 0 0
$$100$$ 0 0
$$101$$ 3.00000 0.298511 0.149256 0.988799i $$-0.452312\pi$$
0.149256 + 0.988799i $$0.452312\pi$$
$$102$$ 10.3923 1.02899
$$103$$ −10.0000 −0.985329 −0.492665 0.870219i $$-0.663977\pi$$
−0.492665 + 0.870219i $$0.663977\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 5.19615 0.504695
$$107$$ −6.00000 −0.580042 −0.290021 0.957020i $$-0.593662\pi$$
−0.290021 + 0.957020i $$0.593662\pi$$
$$108$$ 4.00000 0.384900
$$109$$ 13.8564 1.32720 0.663602 0.748086i $$-0.269027\pi$$
0.663602 + 0.748086i $$0.269027\pi$$
$$110$$ 0 0
$$111$$ −17.3205 −1.64399
$$112$$ 0 0
$$113$$ 15.0000 1.41108 0.705541 0.708669i $$-0.250704\pi$$
0.705541 + 0.708669i $$0.250704\pi$$
$$114$$ −12.0000 −1.12390
$$115$$ 0 0
$$116$$ 3.00000 0.278543
$$117$$ 0 0
$$118$$ 12.0000 1.10469
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −11.0000 −1.00000
$$122$$ 1.73205 0.156813
$$123$$ 10.3923 0.937043
$$124$$ −3.46410 −0.311086
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −2.00000 −0.177471 −0.0887357 0.996055i $$-0.528283\pi$$
−0.0887357 + 0.996055i $$0.528283\pi$$
$$128$$ 12.1244 1.07165
$$129$$ −16.0000 −1.40872
$$130$$ 0 0
$$131$$ 18.0000 1.57267 0.786334 0.617802i $$-0.211977\pi$$
0.786334 + 0.617802i $$0.211977\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ −6.00000 −0.518321
$$135$$ 0 0
$$136$$ 5.19615 0.445566
$$137$$ 15.5885 1.33181 0.665906 0.746036i $$-0.268045\pi$$
0.665906 + 0.746036i $$0.268045\pi$$
$$138$$ 20.7846 1.76930
$$139$$ −4.00000 −0.339276 −0.169638 0.985506i $$-0.554260\pi$$
−0.169638 + 0.985506i $$0.554260\pi$$
$$140$$ 0 0
$$141$$ −6.92820 −0.583460
$$142$$ −6.00000 −0.503509
$$143$$ 0 0
$$144$$ −5.00000 −0.416667
$$145$$ 0 0
$$146$$ −3.00000 −0.248282
$$147$$ 14.0000 1.15470
$$148$$ 8.66025 0.711868
$$149$$ 19.0526 1.56085 0.780423 0.625252i $$-0.215004\pi$$
0.780423 + 0.625252i $$0.215004\pi$$
$$150$$ 0 0
$$151$$ 17.3205 1.40952 0.704761 0.709444i $$-0.251054\pi$$
0.704761 + 0.709444i $$0.251054\pi$$
$$152$$ −6.00000 −0.486664
$$153$$ −3.00000 −0.242536
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 13.0000 1.03751 0.518756 0.854922i $$-0.326395\pi$$
0.518756 + 0.854922i $$0.326395\pi$$
$$158$$ 6.92820 0.551178
$$159$$ −6.00000 −0.475831
$$160$$ 0 0
$$161$$ 0 0
$$162$$ −19.0526 −1.49691
$$163$$ −20.7846 −1.62798 −0.813988 0.580881i $$-0.802708\pi$$
−0.813988 + 0.580881i $$0.802708\pi$$
$$164$$ −5.19615 −0.405751
$$165$$ 0 0
$$166$$ 24.0000 1.86276
$$167$$ −13.8564 −1.07224 −0.536120 0.844141i $$-0.680111\pi$$
−0.536120 + 0.844141i $$0.680111\pi$$
$$168$$ 0 0
$$169$$ 0 0
$$170$$ 0 0
$$171$$ 3.46410 0.264906
$$172$$ 8.00000 0.609994
$$173$$ 6.00000 0.456172 0.228086 0.973641i $$-0.426753\pi$$
0.228086 + 0.973641i $$0.426753\pi$$
$$174$$ −10.3923 −0.787839
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −13.8564 −1.04151
$$178$$ 12.0000 0.899438
$$179$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$180$$ 0 0
$$181$$ −11.0000 −0.817624 −0.408812 0.912619i $$-0.634057\pi$$
−0.408812 + 0.912619i $$0.634057\pi$$
$$182$$ 0 0
$$183$$ −2.00000 −0.147844
$$184$$ 10.3923 0.766131
$$185$$ 0 0
$$186$$ 12.0000 0.879883
$$187$$ 0 0
$$188$$ 3.46410 0.252646
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 18.0000 1.30243 0.651217 0.758891i $$-0.274259\pi$$
0.651217 + 0.758891i $$0.274259\pi$$
$$192$$ −2.00000 −0.144338
$$193$$ −5.19615 −0.374027 −0.187014 0.982357i $$-0.559881\pi$$
−0.187014 + 0.982357i $$0.559881\pi$$
$$194$$ 12.0000 0.861550
$$195$$ 0 0
$$196$$ −7.00000 −0.500000
$$197$$ −13.8564 −0.987228 −0.493614 0.869681i $$-0.664324\pi$$
−0.493614 + 0.869681i $$0.664324\pi$$
$$198$$ 0 0
$$199$$ 2.00000 0.141776 0.0708881 0.997484i $$-0.477417\pi$$
0.0708881 + 0.997484i $$0.477417\pi$$
$$200$$ 0 0
$$201$$ 6.92820 0.488678
$$202$$ 5.19615 0.365600
$$203$$ 0 0
$$204$$ 6.00000 0.420084
$$205$$ 0 0
$$206$$ −17.3205 −1.20678
$$207$$ −6.00000 −0.417029
$$208$$ 0 0
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 10.0000 0.688428 0.344214 0.938891i $$-0.388145\pi$$
0.344214 + 0.938891i $$0.388145\pi$$
$$212$$ 3.00000 0.206041
$$213$$ 6.92820 0.474713
$$214$$ −10.3923 −0.710403
$$215$$ 0 0
$$216$$ −6.92820 −0.471405
$$217$$ 0 0
$$218$$ 24.0000 1.62549
$$219$$ 3.46410 0.234082
$$220$$ 0 0
$$221$$ 0 0
$$222$$ −30.0000 −2.01347
$$223$$ 10.3923 0.695920 0.347960 0.937509i $$-0.386874\pi$$
0.347960 + 0.937509i $$0.386874\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 25.9808 1.72821
$$227$$ 24.2487 1.60944 0.804722 0.593652i $$-0.202314\pi$$
0.804722 + 0.593652i $$0.202314\pi$$
$$228$$ −6.92820 −0.458831
$$229$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ −5.19615 −0.341144
$$233$$ 6.00000 0.393073 0.196537 0.980497i $$-0.437031\pi$$
0.196537 + 0.980497i $$0.437031\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 6.92820 0.450988
$$237$$ −8.00000 −0.519656
$$238$$ 0 0
$$239$$ 20.7846 1.34444 0.672222 0.740349i $$-0.265340\pi$$
0.672222 + 0.740349i $$0.265340\pi$$
$$240$$ 0 0
$$241$$ −1.73205 −0.111571 −0.0557856 0.998443i $$-0.517766\pi$$
−0.0557856 + 0.998443i $$0.517766\pi$$
$$242$$ −19.0526 −1.22474
$$243$$ 10.0000 0.641500
$$244$$ 1.00000 0.0640184
$$245$$ 0 0
$$246$$ 18.0000 1.14764
$$247$$ 0 0
$$248$$ 6.00000 0.381000
$$249$$ −27.7128 −1.75623
$$250$$ 0 0
$$251$$ 18.0000 1.13615 0.568075 0.822977i $$-0.307688\pi$$
0.568075 + 0.822977i $$0.307688\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ −3.46410 −0.217357
$$255$$ 0 0
$$256$$ 19.0000 1.18750
$$257$$ 3.00000 0.187135 0.0935674 0.995613i $$-0.470173\pi$$
0.0935674 + 0.995613i $$0.470173\pi$$
$$258$$ −27.7128 −1.72532
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 3.00000 0.185695
$$262$$ 31.1769 1.92612
$$263$$ −12.0000 −0.739952 −0.369976 0.929041i $$-0.620634\pi$$
−0.369976 + 0.929041i $$0.620634\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ −13.8564 −0.847998
$$268$$ −3.46410 −0.211604
$$269$$ −6.00000 −0.365826 −0.182913 0.983129i $$-0.558553\pi$$
−0.182913 + 0.983129i $$0.558553\pi$$
$$270$$ 0 0
$$271$$ −20.7846 −1.26258 −0.631288 0.775549i $$-0.717473\pi$$
−0.631288 + 0.775549i $$0.717473\pi$$
$$272$$ 15.0000 0.909509
$$273$$ 0 0
$$274$$ 27.0000 1.63113
$$275$$ 0 0
$$276$$ 12.0000 0.722315
$$277$$ −7.00000 −0.420589 −0.210295 0.977638i $$-0.567442\pi$$
−0.210295 + 0.977638i $$0.567442\pi$$
$$278$$ −6.92820 −0.415526
$$279$$ −3.46410 −0.207390
$$280$$ 0 0
$$281$$ −22.5167 −1.34323 −0.671616 0.740900i $$-0.734399\pi$$
−0.671616 + 0.740900i $$0.734399\pi$$
$$282$$ −12.0000 −0.714590
$$283$$ 4.00000 0.237775 0.118888 0.992908i $$-0.462067\pi$$
0.118888 + 0.992908i $$0.462067\pi$$
$$284$$ −3.46410 −0.205557
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ −5.19615 −0.306186
$$289$$ −8.00000 −0.470588
$$290$$ 0 0
$$291$$ −13.8564 −0.812277
$$292$$ −1.73205 −0.101361
$$293$$ −5.19615 −0.303562 −0.151781 0.988414i $$-0.548501\pi$$
−0.151781 + 0.988414i $$0.548501\pi$$
$$294$$ 24.2487 1.41421
$$295$$ 0 0
$$296$$ −15.0000 −0.871857
$$297$$ 0 0
$$298$$ 33.0000 1.91164
$$299$$ 0 0
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 30.0000 1.72631
$$303$$ −6.00000 −0.344691
$$304$$ −17.3205 −0.993399
$$305$$ 0 0
$$306$$ −5.19615 −0.297044
$$307$$ 17.3205 0.988534 0.494267 0.869310i $$-0.335437\pi$$
0.494267 + 0.869310i $$0.335437\pi$$
$$308$$ 0 0
$$309$$ 20.0000 1.13776
$$310$$ 0 0
$$311$$ 30.0000 1.70114 0.850572 0.525859i $$-0.176256\pi$$
0.850572 + 0.525859i $$0.176256\pi$$
$$312$$ 0 0
$$313$$ −10.0000 −0.565233 −0.282617 0.959233i $$-0.591202\pi$$
−0.282617 + 0.959233i $$0.591202\pi$$
$$314$$ 22.5167 1.27069
$$315$$ 0 0
$$316$$ 4.00000 0.225018
$$317$$ −5.19615 −0.291845 −0.145922 0.989296i $$-0.546615\pi$$
−0.145922 + 0.989296i $$0.546615\pi$$
$$318$$ −10.3923 −0.582772
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ −10.3923 −0.578243
$$324$$ −11.0000 −0.611111
$$325$$ 0 0
$$326$$ −36.0000 −1.99386
$$327$$ −27.7128 −1.53252
$$328$$ 9.00000 0.496942
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 27.7128 1.52323 0.761617 0.648027i $$-0.224406\pi$$
0.761617 + 0.648027i $$0.224406\pi$$
$$332$$ 13.8564 0.760469
$$333$$ 8.66025 0.474579
$$334$$ −24.0000 −1.31322
$$335$$ 0 0
$$336$$ 0 0
$$337$$ −23.0000 −1.25289 −0.626445 0.779466i $$-0.715491\pi$$
−0.626445 + 0.779466i $$0.715491\pi$$
$$338$$ 0 0
$$339$$ −30.0000 −1.62938
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 6.00000 0.324443
$$343$$ 0 0
$$344$$ −13.8564 −0.747087
$$345$$ 0 0
$$346$$ 10.3923 0.558694
$$347$$ 30.0000 1.61048 0.805242 0.592946i $$-0.202035\pi$$
0.805242 + 0.592946i $$0.202035\pi$$
$$348$$ −6.00000 −0.321634
$$349$$ −13.8564 −0.741716 −0.370858 0.928689i $$-0.620936\pi$$
−0.370858 + 0.928689i $$0.620936\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −32.9090 −1.75157 −0.875784 0.482704i $$-0.839655\pi$$
−0.875784 + 0.482704i $$0.839655\pi$$
$$354$$ −24.0000 −1.27559
$$355$$ 0 0
$$356$$ 6.92820 0.367194
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −6.92820 −0.365657 −0.182828 0.983145i $$-0.558525\pi$$
−0.182828 + 0.983145i $$0.558525\pi$$
$$360$$ 0 0
$$361$$ −7.00000 −0.368421
$$362$$ −19.0526 −1.00138
$$363$$ 22.0000 1.15470
$$364$$ 0 0
$$365$$ 0 0
$$366$$ −3.46410 −0.181071
$$367$$ 22.0000 1.14839 0.574195 0.818718i $$-0.305315\pi$$
0.574195 + 0.818718i $$0.305315\pi$$
$$368$$ 30.0000 1.56386
$$369$$ −5.19615 −0.270501
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 6.92820 0.359211
$$373$$ −19.0000 −0.983783 −0.491891 0.870657i $$-0.663694\pi$$
−0.491891 + 0.870657i $$0.663694\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ −6.00000 −0.309426
$$377$$ 0 0
$$378$$ 0 0
$$379$$ −24.2487 −1.24557 −0.622786 0.782392i $$-0.713999\pi$$
−0.622786 + 0.782392i $$0.713999\pi$$
$$380$$ 0 0
$$381$$ 4.00000 0.204926
$$382$$ 31.1769 1.59515
$$383$$ −20.7846 −1.06204 −0.531022 0.847358i $$-0.678192\pi$$
−0.531022 + 0.847358i $$0.678192\pi$$
$$384$$ −24.2487 −1.23744
$$385$$ 0 0
$$386$$ −9.00000 −0.458088
$$387$$ 8.00000 0.406663
$$388$$ 6.92820 0.351726
$$389$$ 9.00000 0.456318 0.228159 0.973624i $$-0.426729\pi$$
0.228159 + 0.973624i $$0.426729\pi$$
$$390$$ 0 0
$$391$$ 18.0000 0.910299
$$392$$ 12.1244 0.612372
$$393$$ −36.0000 −1.81596
$$394$$ −24.0000 −1.20910
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 13.8564 0.695433 0.347717 0.937600i $$-0.386957\pi$$
0.347717 + 0.937600i $$0.386957\pi$$
$$398$$ 3.46410 0.173640
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 1.73205 0.0864945 0.0432472 0.999064i $$-0.486230\pi$$
0.0432472 + 0.999064i $$0.486230\pi$$
$$402$$ 12.0000 0.598506
$$403$$ 0 0
$$404$$ 3.00000 0.149256
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ −10.3923 −0.514496
$$409$$ −15.5885 −0.770800 −0.385400 0.922750i $$-0.625936\pi$$
−0.385400 + 0.922750i $$0.625936\pi$$
$$410$$ 0 0
$$411$$ −31.1769 −1.53784
$$412$$ −10.0000 −0.492665
$$413$$ 0 0
$$414$$ −10.3923 −0.510754
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 8.00000 0.391762
$$418$$ 0 0
$$419$$ 18.0000 0.879358 0.439679 0.898155i $$-0.355092\pi$$
0.439679 + 0.898155i $$0.355092\pi$$
$$420$$ 0 0
$$421$$ −15.5885 −0.759735 −0.379867 0.925041i $$-0.624030\pi$$
−0.379867 + 0.925041i $$0.624030\pi$$
$$422$$ 17.3205 0.843149
$$423$$ 3.46410 0.168430
$$424$$ −5.19615 −0.252347
$$425$$ 0 0
$$426$$ 12.0000 0.581402
$$427$$ 0 0
$$428$$ −6.00000 −0.290021
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −6.92820 −0.333720 −0.166860 0.985981i $$-0.553363\pi$$
−0.166860 + 0.985981i $$0.553363\pi$$
$$432$$ −20.0000 −0.962250
$$433$$ −17.0000 −0.816968 −0.408484 0.912766i $$-0.633942\pi$$
−0.408484 + 0.912766i $$0.633942\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 13.8564 0.663602
$$437$$ −20.7846 −0.994263
$$438$$ 6.00000 0.286691
$$439$$ 28.0000 1.33637 0.668184 0.743996i $$-0.267072\pi$$
0.668184 + 0.743996i $$0.267072\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ 0 0
$$443$$ 12.0000 0.570137 0.285069 0.958507i $$-0.407984\pi$$
0.285069 + 0.958507i $$0.407984\pi$$
$$444$$ −17.3205 −0.821995
$$445$$ 0 0
$$446$$ 18.0000 0.852325
$$447$$ −38.1051 −1.80231
$$448$$ 0 0
$$449$$ −6.92820 −0.326962 −0.163481 0.986546i $$-0.552272\pi$$
−0.163481 + 0.986546i $$0.552272\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 15.0000 0.705541
$$453$$ −34.6410 −1.62758
$$454$$ 42.0000 1.97116
$$455$$ 0 0
$$456$$ 12.0000 0.561951
$$457$$ −1.73205 −0.0810219 −0.0405110 0.999179i $$-0.512899\pi$$
−0.0405110 + 0.999179i $$0.512899\pi$$
$$458$$ 0 0
$$459$$ −12.0000 −0.560112
$$460$$ 0 0
$$461$$ −22.5167 −1.04871 −0.524353 0.851501i $$-0.675693\pi$$
−0.524353 + 0.851501i $$0.675693\pi$$
$$462$$ 0 0
$$463$$ −13.8564 −0.643962 −0.321981 0.946746i $$-0.604349\pi$$
−0.321981 + 0.946746i $$0.604349\pi$$
$$464$$ −15.0000 −0.696358
$$465$$ 0 0
$$466$$ 10.3923 0.481414
$$467$$ 12.0000 0.555294 0.277647 0.960683i $$-0.410445\pi$$
0.277647 + 0.960683i $$0.410445\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ −26.0000 −1.19802
$$472$$ −12.0000 −0.552345
$$473$$ 0 0
$$474$$ −13.8564 −0.636446
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 3.00000 0.137361
$$478$$ 36.0000 1.64660
$$479$$ −24.2487 −1.10795 −0.553976 0.832533i $$-0.686890\pi$$
−0.553976 + 0.832533i $$0.686890\pi$$
$$480$$ 0 0
$$481$$ 0 0
$$482$$ −3.00000 −0.136646
$$483$$ 0 0
$$484$$ −11.0000 −0.500000
$$485$$ 0 0
$$486$$ 17.3205 0.785674
$$487$$ −6.92820 −0.313947 −0.156973 0.987603i $$-0.550174\pi$$
−0.156973 + 0.987603i $$0.550174\pi$$
$$488$$ −1.73205 −0.0784063
$$489$$ 41.5692 1.87983
$$490$$ 0 0
$$491$$ −12.0000 −0.541552 −0.270776 0.962642i $$-0.587280\pi$$
−0.270776 + 0.962642i $$0.587280\pi$$
$$492$$ 10.3923 0.468521
$$493$$ −9.00000 −0.405340
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 17.3205 0.777714
$$497$$ 0 0
$$498$$ −48.0000 −2.15093
$$499$$ −31.1769 −1.39567 −0.697835 0.716258i $$-0.745853\pi$$
−0.697835 + 0.716258i $$0.745853\pi$$
$$500$$ 0 0
$$501$$ 27.7128 1.23812
$$502$$ 31.1769 1.39149
$$503$$ −36.0000 −1.60516 −0.802580 0.596544i $$-0.796540\pi$$
−0.802580 + 0.596544i $$0.796540\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ −2.00000 −0.0887357
$$509$$ 19.0526 0.844490 0.422245 0.906482i $$-0.361242\pi$$
0.422245 + 0.906482i $$0.361242\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 8.66025 0.382733
$$513$$ 13.8564 0.611775
$$514$$ 5.19615 0.229192
$$515$$ 0 0
$$516$$ −16.0000 −0.704361
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −12.0000 −0.526742
$$520$$ 0 0
$$521$$ 9.00000 0.394297 0.197149 0.980374i $$-0.436832\pi$$
0.197149 + 0.980374i $$0.436832\pi$$
$$522$$ 5.19615 0.227429
$$523$$ 16.0000 0.699631 0.349816 0.936819i $$-0.386244\pi$$
0.349816 + 0.936819i $$0.386244\pi$$
$$524$$ 18.0000 0.786334
$$525$$ 0 0
$$526$$ −20.7846 −0.906252
$$527$$ 10.3923 0.452696
$$528$$ 0 0
$$529$$ 13.0000 0.565217
$$530$$ 0 0
$$531$$ 6.92820 0.300658
$$532$$ 0 0
$$533$$ 0 0
$$534$$ −24.0000 −1.03858
$$535$$ 0 0
$$536$$ 6.00000 0.259161
$$537$$ 0 0
$$538$$ −10.3923 −0.448044
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 29.4449 1.26593 0.632967 0.774179i $$-0.281837\pi$$
0.632967 + 0.774179i $$0.281837\pi$$
$$542$$ −36.0000 −1.54633
$$543$$ 22.0000 0.944110
$$544$$ 15.5885 0.668350
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 22.0000 0.940652 0.470326 0.882493i $$-0.344136\pi$$
0.470326 + 0.882493i $$0.344136\pi$$
$$548$$ 15.5885 0.665906
$$549$$ 1.00000 0.0426790
$$550$$ 0 0
$$551$$ 10.3923 0.442727
$$552$$ −20.7846 −0.884652
$$553$$ 0 0
$$554$$ −12.1244 −0.515115
$$555$$ 0 0
$$556$$ −4.00000 −0.169638
$$557$$ −15.5885 −0.660504 −0.330252 0.943893i $$-0.607134\pi$$
−0.330252 + 0.943893i $$0.607134\pi$$
$$558$$ −6.00000 −0.254000
$$559$$ 0 0
$$560$$ 0 0
$$561$$ 0 0
$$562$$ −39.0000 −1.64512
$$563$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$564$$ −6.92820 −0.291730
$$565$$ 0 0
$$566$$ 6.92820 0.291214
$$567$$ 0 0
$$568$$ 6.00000 0.251754
$$569$$ 42.0000 1.76073 0.880366 0.474295i $$-0.157297\pi$$
0.880366 + 0.474295i $$0.157297\pi$$
$$570$$ 0 0
$$571$$ −40.0000 −1.67395 −0.836974 0.547243i $$-0.815677\pi$$
−0.836974 + 0.547243i $$0.815677\pi$$
$$572$$ 0 0
$$573$$ −36.0000 −1.50392
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 1.00000 0.0416667
$$577$$ −19.0526 −0.793168 −0.396584 0.917998i $$-0.629805\pi$$
−0.396584 + 0.917998i $$0.629805\pi$$
$$578$$ −13.8564 −0.576351
$$579$$ 10.3923 0.431889
$$580$$ 0 0
$$581$$ 0 0
$$582$$ −24.0000 −0.994832
$$583$$ 0 0
$$584$$ 3.00000 0.124141
$$585$$ 0 0
$$586$$ −9.00000 −0.371787
$$587$$ 20.7846 0.857873 0.428936 0.903335i $$-0.358888\pi$$
0.428936 + 0.903335i $$0.358888\pi$$
$$588$$ 14.0000 0.577350
$$589$$ −12.0000 −0.494451
$$590$$ 0 0
$$591$$ 27.7128 1.13995
$$592$$ −43.3013 −1.77967
$$593$$ 25.9808 1.06690 0.533451 0.845831i $$-0.320895\pi$$
0.533451 + 0.845831i $$0.320895\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 19.0526 0.780423
$$597$$ −4.00000 −0.163709
$$598$$ 0 0
$$599$$ 30.0000 1.22577 0.612883 0.790173i $$-0.290010\pi$$
0.612883 + 0.790173i $$0.290010\pi$$
$$600$$ 0 0
$$601$$ 25.0000 1.01977 0.509886 0.860242i $$-0.329688\pi$$
0.509886 + 0.860242i $$0.329688\pi$$
$$602$$ 0 0
$$603$$ −3.46410 −0.141069
$$604$$ 17.3205 0.704761
$$605$$ 0 0
$$606$$ −10.3923 −0.422159
$$607$$ 34.0000 1.38002 0.690009 0.723801i $$-0.257607\pi$$
0.690009 + 0.723801i $$0.257607\pi$$
$$608$$ −18.0000 −0.729996
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ −3.00000 −0.121268
$$613$$ 12.1244 0.489698 0.244849 0.969561i $$-0.421262\pi$$
0.244849 + 0.969561i $$0.421262\pi$$
$$614$$ 30.0000 1.21070
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −22.5167 −0.906487 −0.453243 0.891387i $$-0.649733\pi$$
−0.453243 + 0.891387i $$0.649733\pi$$
$$618$$ 34.6410 1.39347
$$619$$ −20.7846 −0.835404 −0.417702 0.908584i $$-0.637164\pi$$
−0.417702 + 0.908584i $$0.637164\pi$$
$$620$$ 0 0
$$621$$ −24.0000 −0.963087
$$622$$ 51.9615 2.08347
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 0 0
$$626$$ −17.3205 −0.692267
$$627$$ 0 0
$$628$$ 13.0000 0.518756
$$629$$ −25.9808 −1.03592
$$630$$ 0 0
$$631$$ −48.4974 −1.93065 −0.965326 0.261048i $$-0.915932\pi$$
−0.965326 + 0.261048i $$0.915932\pi$$
$$632$$ −6.92820 −0.275589
$$633$$ −20.0000 −0.794929
$$634$$ −9.00000 −0.357436
$$635$$ 0 0
$$636$$ −6.00000 −0.237915
$$637$$ 0 0
$$638$$ 0 0
$$639$$ −3.46410 −0.137038
$$640$$ 0 0
$$641$$ −33.0000 −1.30342 −0.651711 0.758468i $$-0.725948\pi$$
−0.651711 + 0.758468i $$0.725948\pi$$
$$642$$ 20.7846 0.820303
$$643$$ 13.8564 0.546443 0.273222 0.961951i $$-0.411911\pi$$
0.273222 + 0.961951i $$0.411911\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ −18.0000 −0.708201
$$647$$ 18.0000 0.707653 0.353827 0.935311i $$-0.384880\pi$$
0.353827 + 0.935311i $$0.384880\pi$$
$$648$$ 19.0526 0.748455
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ −20.7846 −0.813988
$$653$$ 30.0000 1.17399 0.586995 0.809590i $$-0.300311\pi$$
0.586995 + 0.809590i $$0.300311\pi$$
$$654$$ −48.0000 −1.87695
$$655$$ 0 0
$$656$$ 25.9808 1.01438
$$657$$ −1.73205 −0.0675737
$$658$$ 0 0
$$659$$ −12.0000 −0.467454 −0.233727 0.972302i $$-0.575092\pi$$
−0.233727 + 0.972302i $$0.575092\pi$$
$$660$$ 0 0
$$661$$ 46.7654 1.81896 0.909481 0.415745i $$-0.136479\pi$$
0.909481 + 0.415745i $$0.136479\pi$$
$$662$$ 48.0000 1.86557
$$663$$ 0 0
$$664$$ −24.0000 −0.931381
$$665$$ 0 0
$$666$$ 15.0000 0.581238
$$667$$ −18.0000 −0.696963
$$668$$ −13.8564 −0.536120
$$669$$ −20.7846 −0.803579
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ −19.0000 −0.732396 −0.366198 0.930537i $$-0.619341\pi$$
−0.366198 + 0.930537i $$0.619341\pi$$
$$674$$ −39.8372 −1.53447
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 6.00000 0.230599 0.115299 0.993331i $$-0.463217\pi$$
0.115299 + 0.993331i $$0.463217\pi$$
$$678$$ −51.9615 −1.99557
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −48.4974 −1.85843
$$682$$ 0 0
$$683$$ −24.2487 −0.927851 −0.463926 0.885874i $$-0.653559\pi$$
−0.463926 + 0.885874i $$0.653559\pi$$
$$684$$ 3.46410 0.132453
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 0 0
$$688$$ −40.0000 −1.52499
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 13.8564 0.527123 0.263561 0.964643i $$-0.415103\pi$$
0.263561 + 0.964643i $$0.415103\pi$$
$$692$$ 6.00000 0.228086
$$693$$ 0 0
$$694$$ 51.9615 1.97243
$$695$$ 0 0
$$696$$ 10.3923 0.393919
$$697$$ 15.5885 0.590455
$$698$$ −24.0000 −0.908413
$$699$$ −12.0000 −0.453882
$$700$$ 0 0
$$701$$ −18.0000 −0.679851 −0.339925 0.940452i $$-0.610402\pi$$
−0.339925 + 0.940452i $$0.610402\pi$$
$$702$$ 0 0
$$703$$ 30.0000 1.13147
$$704$$ 0 0
$$705$$ 0 0
$$706$$ −57.0000 −2.14522
$$707$$ 0 0
$$708$$ −13.8564 −0.520756
$$709$$ −5.19615 −0.195146 −0.0975728 0.995228i $$-0.531108\pi$$
−0.0975728 + 0.995228i $$0.531108\pi$$
$$710$$ 0 0
$$711$$ 4.00000 0.150012
$$712$$ −12.0000 −0.449719
$$713$$ 20.7846 0.778390
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ −41.5692 −1.55243
$$718$$ −12.0000 −0.447836
$$719$$ 48.0000 1.79010 0.895049 0.445968i $$-0.147140\pi$$
0.895049 + 0.445968i $$0.147140\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ −12.1244 −0.451222
$$723$$ 3.46410 0.128831
$$724$$ −11.0000 −0.408812
$$725$$ 0 0
$$726$$ 38.1051 1.41421
$$727$$ −32.0000 −1.18681 −0.593407 0.804902i $$-0.702218\pi$$
−0.593407 + 0.804902i $$0.702218\pi$$
$$728$$ 0 0
$$729$$ 13.0000 0.481481
$$730$$ 0 0
$$731$$ −24.0000 −0.887672
$$732$$ −2.00000 −0.0739221
$$733$$ 12.1244 0.447823 0.223912 0.974609i $$-0.428117\pi$$
0.223912 + 0.974609i $$0.428117\pi$$
$$734$$ 38.1051 1.40649
$$735$$ 0 0
$$736$$ 31.1769 1.14920
$$737$$ 0 0
$$738$$ −9.00000 −0.331295
$$739$$ 20.7846 0.764574 0.382287 0.924044i $$-0.375137\pi$$
0.382287 + 0.924044i $$0.375137\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 34.6410 1.27086 0.635428 0.772160i $$-0.280824\pi$$
0.635428 + 0.772160i $$0.280824\pi$$
$$744$$ −12.0000 −0.439941
$$745$$ 0 0
$$746$$ −32.9090 −1.20488
$$747$$ 13.8564 0.506979
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 16.0000 0.583848 0.291924 0.956441i $$-0.405705\pi$$
0.291924 + 0.956441i $$0.405705\pi$$
$$752$$ −17.3205 −0.631614
$$753$$ −36.0000 −1.31191
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ 26.0000 0.944986 0.472493 0.881334i $$-0.343354\pi$$
0.472493 + 0.881334i $$0.343354\pi$$
$$758$$ −42.0000 −1.52551
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 34.6410 1.25574 0.627868 0.778320i $$-0.283928\pi$$
0.627868 + 0.778320i $$0.283928\pi$$
$$762$$ 6.92820 0.250982
$$763$$ 0 0
$$764$$ 18.0000 0.651217
$$765$$ 0 0
$$766$$ −36.0000 −1.30073
$$767$$ 0 0
$$768$$ −38.0000 −1.37121
$$769$$ 6.92820 0.249837 0.124919 0.992167i $$-0.460133\pi$$
0.124919 + 0.992167i $$0.460133\pi$$
$$770$$ 0 0
$$771$$ −6.00000 −0.216085
$$772$$ −5.19615 −0.187014
$$773$$ −34.6410 −1.24595 −0.622975 0.782241i $$-0.714076\pi$$
−0.622975 + 0.782241i $$0.714076\pi$$
$$774$$ 13.8564 0.498058
$$775$$ 0 0
$$776$$ −12.0000 −0.430775
$$777$$ 0 0
$$778$$ 15.5885 0.558873
$$779$$ −18.0000 −0.644917
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 31.1769 1.11488
$$783$$ 12.0000 0.428845
$$784$$ 35.0000 1.25000
$$785$$ 0 0
$$786$$ −62.3538 −2.22409
$$787$$ −38.1051 −1.35830 −0.679150 0.733999i $$-0.737652\pi$$
−0.679150 + 0.733999i $$0.737652\pi$$
$$788$$ −13.8564 −0.493614
$$789$$ 24.0000 0.854423
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 0 0
$$794$$ 24.0000 0.851728
$$795$$ 0 0
$$796$$ 2.00000 0.0708881
$$797$$ 42.0000 1.48772 0.743858 0.668338i $$-0.232994\pi$$
0.743858 + 0.668338i $$0.232994\pi$$
$$798$$ 0 0
$$799$$ −10.3923 −0.367653
$$800$$ 0 0
$$801$$ 6.92820 0.244796
$$802$$ 3.00000 0.105934
$$803$$ 0 0
$$804$$ 6.92820 0.244339
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 12.0000 0.422420
$$808$$ −5.19615 −0.182800
$$809$$ 33.0000 1.16022 0.580109 0.814539i $$-0.303010\pi$$
0.580109 + 0.814539i $$0.303010\pi$$
$$810$$ 0 0
$$811$$ 38.1051 1.33805 0.669026 0.743239i $$-0.266712\pi$$
0.669026 + 0.743239i $$0.266712\pi$$
$$812$$ 0 0
$$813$$ 41.5692 1.45790
$$814$$ 0 0
$$815$$ 0 0
$$816$$ −30.0000 −1.05021
$$817$$ 27.7128 0.969549
$$818$$ −27.0000 −0.944033
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −41.5692 −1.45078 −0.725388 0.688340i $$-0.758340\pi$$
−0.725388 + 0.688340i $$0.758340\pi$$
$$822$$ −54.0000 −1.88347
$$823$$ −4.00000 −0.139431 −0.0697156 0.997567i $$-0.522209\pi$$
−0.0697156 + 0.997567i $$0.522209\pi$$
$$824$$ 17.3205 0.603388
$$825$$ 0 0
$$826$$ 0 0
$$827$$ −20.7846 −0.722752 −0.361376 0.932420i $$-0.617693\pi$$
−0.361376 + 0.932420i $$0.617693\pi$$
$$828$$ −6.00000 −0.208514
$$829$$ −25.0000 −0.868286 −0.434143 0.900844i $$-0.642949\pi$$
−0.434143 + 0.900844i $$0.642949\pi$$
$$830$$ 0 0
$$831$$ 14.0000 0.485655
$$832$$ 0 0
$$833$$ 21.0000 0.727607
$$834$$ 13.8564 0.479808
$$835$$ 0 0
$$836$$ 0 0
$$837$$ −13.8564 −0.478947
$$838$$ 31.1769 1.07699
$$839$$ 45.0333 1.55472 0.777361 0.629054i $$-0.216558\pi$$
0.777361 + 0.629054i $$0.216558\pi$$
$$840$$ 0 0
$$841$$ −20.0000 −0.689655
$$842$$ −27.0000 −0.930481
$$843$$ 45.0333 1.55103
$$844$$ 10.0000 0.344214
$$845$$ 0 0
$$846$$ 6.00000 0.206284
$$847$$ 0 0
$$848$$ −15.0000 −0.515102
$$849$$ −8.00000 −0.274559
$$850$$ 0 0
$$851$$ −51.9615 −1.78122
$$852$$ 6.92820 0.237356
$$853$$ −25.9808 −0.889564 −0.444782 0.895639i $$-0.646719\pi$$
−0.444782 + 0.895639i $$0.646719\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 10.3923 0.355202
$$857$$ 3.00000 0.102478 0.0512390 0.998686i $$-0.483683\pi$$
0.0512390 + 0.998686i $$0.483683\pi$$
$$858$$ 0 0
$$859$$ −14.0000 −0.477674 −0.238837 0.971060i $$-0.576766\pi$$
−0.238837 + 0.971060i $$0.576766\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ −12.0000 −0.408722
$$863$$ −27.7128 −0.943355 −0.471678 0.881771i $$-0.656351\pi$$
−0.471678 + 0.881771i $$0.656351\pi$$
$$864$$ −20.7846 −0.707107
$$865$$ 0 0
$$866$$ −29.4449 −1.00058
$$867$$ 16.0000 0.543388
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 0 0
$$872$$ −24.0000 −0.812743
$$873$$ 6.92820 0.234484
$$874$$ −36.0000 −1.21772
$$875$$ 0 0
$$876$$ 3.46410 0.117041
$$877$$ 12.1244 0.409410 0.204705 0.978824i $$-0.434376\pi$$
0.204705 + 0.978824i $$0.434376\pi$$
$$878$$ 48.4974 1.63671
$$879$$ 10.3923 0.350524
$$880$$ 0 0
$$881$$ −27.0000 −0.909653 −0.454827 0.890580i $$-0.650299\pi$$
−0.454827 + 0.890580i $$0.650299\pi$$
$$882$$ −12.1244 −0.408248
$$883$$ 10.0000 0.336527 0.168263 0.985742i $$-0.446184\pi$$
0.168263 + 0.985742i $$0.446184\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 20.7846 0.698273
$$887$$ −36.0000 −1.20876 −0.604381 0.796696i $$-0.706579\pi$$
−0.604381 + 0.796696i $$0.706579\pi$$
$$888$$ 30.0000 1.00673
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 10.3923 0.347960
$$893$$ 12.0000 0.401565
$$894$$ −66.0000 −2.20737
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ −12.0000 −0.400445
$$899$$ −10.3923 −0.346603
$$900$$ 0 0
$$901$$ −9.00000 −0.299833
$$902$$ 0 0
$$903$$ 0 0
$$904$$ −25.9808 −0.864107
$$905$$ 0 0
$$906$$ −60.0000 −1.99337
$$907$$ 28.0000 0.929725 0.464862 0.885383i $$-0.346104\pi$$
0.464862 + 0.885383i $$0.346104\pi$$
$$908$$ 24.2487 0.804722
$$909$$ 3.00000 0.0995037
$$910$$ 0 0
$$911$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$912$$ 34.6410 1.14708
$$913$$ 0 0
$$914$$ −3.00000 −0.0992312
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ −20.7846 −0.685994
$$919$$ 22.0000 0.725713 0.362857 0.931845i $$-0.381802\pi$$
0.362857 + 0.931845i $$0.381802\pi$$
$$920$$ 0 0
$$921$$ −34.6410 −1.14146
$$922$$ −39.0000 −1.28440
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ −24.0000 −0.788689
$$927$$ −10.0000 −0.328443
$$928$$ −15.5885 −0.511716
$$929$$ 46.7654 1.53432 0.767161 0.641455i $$-0.221669\pi$$
0.767161 + 0.641455i $$0.221669\pi$$
$$930$$ 0 0
$$931$$ −24.2487 −0.794719
$$932$$ 6.00000 0.196537
$$933$$ −60.0000 −1.96431
$$934$$ 20.7846 0.680093
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −7.00000 −0.228680 −0.114340 0.993442i $$-0.536475\pi$$
−0.114340 + 0.993442i $$0.536475\pi$$
$$938$$ 0 0
$$939$$ 20.0000 0.652675
$$940$$ 0 0
$$941$$ −20.7846 −0.677559 −0.338779 0.940866i $$-0.610014\pi$$
−0.338779 + 0.940866i $$0.610014\pi$$
$$942$$ −45.0333 −1.46726
$$943$$ 31.1769 1.01526
$$944$$ −34.6410 −1.12747
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −17.3205 −0.562841 −0.281420 0.959585i $$-0.590806\pi$$
−0.281420 + 0.959585i $$0.590806\pi$$
$$948$$ −8.00000 −0.259828
$$949$$ 0 0
$$950$$ 0 0
$$951$$ 10.3923 0.336994
$$952$$ 0 0
$$953$$ −6.00000 −0.194359 −0.0971795 0.995267i $$-0.530982\pi$$
−0.0971795 + 0.995267i $$0.530982\pi$$
$$954$$ 5.19615 0.168232
$$955$$ 0 0
$$956$$ 20.7846 0.672222
$$957$$ 0 0
$$958$$ −42.0000 −1.35696
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −19.0000 −0.612903
$$962$$ 0 0
$$963$$ −6.00000 −0.193347
$$964$$ −1.73205 −0.0557856
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 58.8897 1.89377 0.946883 0.321578i $$-0.104213\pi$$
0.946883 + 0.321578i $$0.104213\pi$$
$$968$$ 19.0526 0.612372
$$969$$ 20.7846 0.667698
$$970$$ 0 0
$$971$$ 6.00000 0.192549 0.0962746 0.995355i $$-0.469307\pi$$
0.0962746 + 0.995355i $$0.469307\pi$$
$$972$$ 10.0000 0.320750
$$973$$ 0 0
$$974$$ −12.0000 −0.384505
$$975$$ 0 0
$$976$$ −5.00000 −0.160046
$$977$$ −43.3013 −1.38533 −0.692665 0.721259i $$-0.743564\pi$$
−0.692665 + 0.721259i $$0.743564\pi$$
$$978$$ 72.0000 2.30231
$$979$$ 0 0
$$980$$ 0 0
$$981$$ 13.8564 0.442401
$$982$$ −20.7846 −0.663264
$$983$$ −51.9615 −1.65732 −0.828658 0.559756i $$-0.810895\pi$$
−0.828658 + 0.559756i $$0.810895\pi$$
$$984$$ −18.0000 −0.573819
$$985$$ 0 0
$$986$$ −15.5885 −0.496438
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −48.0000 −1.52631
$$990$$ 0 0
$$991$$ 2.00000 0.0635321 0.0317660 0.999495i $$-0.489887\pi$$
0.0317660 + 0.999495i $$0.489887\pi$$
$$992$$ 18.0000 0.571501
$$993$$ −55.4256 −1.75888
$$994$$ 0 0
$$995$$ 0 0
$$996$$ −27.7128 −0.878114
$$997$$ −17.0000 −0.538395 −0.269198 0.963085i $$-0.586759\pi$$
−0.269198 + 0.963085i $$0.586759\pi$$
$$998$$ −54.0000 −1.70934
$$999$$ 34.6410 1.09599
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.v.1.2 2
5.4 even 2 169.2.a.a.1.1 2
13.2 odd 12 325.2.n.a.251.1 2
13.7 odd 12 325.2.n.a.101.1 2
13.12 even 2 inner 4225.2.a.v.1.1 2
15.14 odd 2 1521.2.a.k.1.2 2
20.19 odd 2 2704.2.a.o.1.2 2
35.34 odd 2 8281.2.a.q.1.1 2
65.2 even 12 325.2.m.a.199.1 4
65.4 even 6 169.2.c.a.146.1 4
65.7 even 12 325.2.m.a.49.2 4
65.9 even 6 169.2.c.a.146.2 4
65.19 odd 12 169.2.e.a.23.1 2
65.24 odd 12 169.2.e.a.147.1 2
65.28 even 12 325.2.m.a.199.2 4
65.29 even 6 169.2.c.a.22.2 4
65.33 even 12 325.2.m.a.49.1 4
65.34 odd 4 169.2.b.a.168.1 2
65.44 odd 4 169.2.b.a.168.2 2
65.49 even 6 169.2.c.a.22.1 4
65.54 odd 12 13.2.e.a.4.1 2
65.59 odd 12 13.2.e.a.10.1 yes 2
65.64 even 2 169.2.a.a.1.2 2
195.44 even 4 1521.2.b.a.1351.1 2
195.59 even 12 117.2.q.c.10.1 2
195.119 even 12 117.2.q.c.82.1 2
195.164 even 4 1521.2.b.a.1351.2 2
195.194 odd 2 1521.2.a.k.1.1 2
260.59 even 12 208.2.w.b.49.1 2
260.99 even 4 2704.2.f.b.337.2 2
260.119 even 12 208.2.w.b.17.1 2
260.239 even 4 2704.2.f.b.337.1 2
260.259 odd 2 2704.2.a.o.1.1 2
455.54 even 12 637.2.k.c.459.1 2
455.59 even 12 637.2.k.c.569.1 2
455.124 even 12 637.2.u.b.361.1 2
455.184 odd 12 637.2.k.a.459.1 2
455.249 odd 12 637.2.u.c.30.1 2
455.254 odd 12 637.2.u.c.361.1 2
455.314 even 12 637.2.q.a.589.1 2
455.319 odd 12 637.2.k.a.569.1 2
455.384 even 12 637.2.q.a.491.1 2
455.444 even 12 637.2.u.b.30.1 2
455.454 odd 2 8281.2.a.q.1.2 2
520.59 even 12 832.2.w.a.257.1 2
520.189 odd 12 832.2.w.d.257.1 2
520.379 even 12 832.2.w.a.641.1 2
520.509 odd 12 832.2.w.d.641.1 2
780.59 odd 12 1872.2.by.d.1297.1 2
780.119 odd 12 1872.2.by.d.433.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
13.2.e.a.4.1 2 65.54 odd 12
13.2.e.a.10.1 yes 2 65.59 odd 12
117.2.q.c.10.1 2 195.59 even 12
117.2.q.c.82.1 2 195.119 even 12
169.2.a.a.1.1 2 5.4 even 2
169.2.a.a.1.2 2 65.64 even 2
169.2.b.a.168.1 2 65.34 odd 4
169.2.b.a.168.2 2 65.44 odd 4
169.2.c.a.22.1 4 65.49 even 6
169.2.c.a.22.2 4 65.29 even 6
169.2.c.a.146.1 4 65.4 even 6
169.2.c.a.146.2 4 65.9 even 6
169.2.e.a.23.1 2 65.19 odd 12
169.2.e.a.147.1 2 65.24 odd 12
208.2.w.b.17.1 2 260.119 even 12
208.2.w.b.49.1 2 260.59 even 12
325.2.m.a.49.1 4 65.33 even 12
325.2.m.a.49.2 4 65.7 even 12
325.2.m.a.199.1 4 65.2 even 12
325.2.m.a.199.2 4 65.28 even 12
325.2.n.a.101.1 2 13.7 odd 12
325.2.n.a.251.1 2 13.2 odd 12
637.2.k.a.459.1 2 455.184 odd 12
637.2.k.a.569.1 2 455.319 odd 12
637.2.k.c.459.1 2 455.54 even 12
637.2.k.c.569.1 2 455.59 even 12
637.2.q.a.491.1 2 455.384 even 12
637.2.q.a.589.1 2 455.314 even 12
637.2.u.b.30.1 2 455.444 even 12
637.2.u.b.361.1 2 455.124 even 12
637.2.u.c.30.1 2 455.249 odd 12
637.2.u.c.361.1 2 455.254 odd 12
832.2.w.a.257.1 2 520.59 even 12
832.2.w.a.641.1 2 520.379 even 12
832.2.w.d.257.1 2 520.189 odd 12
832.2.w.d.641.1 2 520.509 odd 12
1521.2.a.k.1.1 2 195.194 odd 2
1521.2.a.k.1.2 2 15.14 odd 2
1521.2.b.a.1351.1 2 195.44 even 4
1521.2.b.a.1351.2 2 195.164 even 4
1872.2.by.d.433.1 2 780.119 odd 12
1872.2.by.d.1297.1 2 780.59 odd 12
2704.2.a.o.1.1 2 260.259 odd 2
2704.2.a.o.1.2 2 20.19 odd 2
2704.2.f.b.337.1 2 260.239 even 4
2704.2.f.b.337.2 2 260.99 even 4
4225.2.a.v.1.1 2 13.12 even 2 inner
4225.2.a.v.1.2 2 1.1 even 1 trivial
8281.2.a.q.1.1 2 35.34 odd 2
8281.2.a.q.1.2 2 455.454 odd 2