Properties

Label 4205.2.a.j.1.3
Level $4205$
Weight $2$
Character 4205.1
Self dual yes
Analytic conductor $33.577$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4205,2,Mod(1,4205)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4205.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4205 = 5 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4205.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.5770940499\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.942577.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 7x^{3} + 8x^{2} + 5x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.423235\) of defining polynomial
Character \(\chi\) \(=\) 4205.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.423235 q^{2} +2.22702 q^{3} -1.82087 q^{4} -1.00000 q^{5} +0.942555 q^{6} +3.43800 q^{7} -1.61713 q^{8} +1.95964 q^{9} -0.423235 q^{10} +3.47836 q^{11} -4.05513 q^{12} -7.04790 q^{13} +1.45508 q^{14} -2.22702 q^{15} +2.95732 q^{16} -0.423235 q^{17} +0.829387 q^{18} -6.35496 q^{19} +1.82087 q^{20} +7.65651 q^{21} +1.47216 q^{22} -8.44553 q^{23} -3.60138 q^{24} +1.00000 q^{25} -2.98292 q^{26} -2.31691 q^{27} -6.26016 q^{28} -0.942555 q^{30} +3.41472 q^{31} +4.48590 q^{32} +7.74640 q^{33} -0.179128 q^{34} -3.43800 q^{35} -3.56825 q^{36} -2.69166 q^{37} -2.68964 q^{38} -15.6958 q^{39} +1.61713 q^{40} -0.715531 q^{41} +3.24050 q^{42} -8.55013 q^{43} -6.33365 q^{44} -1.95964 q^{45} -3.57445 q^{46} +8.52454 q^{47} +6.58602 q^{48} +4.81984 q^{49} +0.423235 q^{50} -0.942555 q^{51} +12.8333 q^{52} -0.0380437 q^{53} -0.980599 q^{54} -3.47836 q^{55} -5.55968 q^{56} -14.1526 q^{57} -13.6168 q^{59} +4.05513 q^{60} +2.64071 q^{61} +1.44523 q^{62} +6.73723 q^{63} -4.01605 q^{64} +7.04790 q^{65} +3.27855 q^{66} +0.311101 q^{67} +0.770657 q^{68} -18.8084 q^{69} -1.45508 q^{70} -12.1690 q^{71} -3.16898 q^{72} +10.5672 q^{73} -1.13920 q^{74} +2.22702 q^{75} +11.5716 q^{76} +11.9586 q^{77} -6.64303 q^{78} +4.35392 q^{79} -2.95732 q^{80} -11.0387 q^{81} -0.302838 q^{82} -0.361153 q^{83} -13.9415 q^{84} +0.423235 q^{85} -3.61872 q^{86} -5.62495 q^{88} -5.02230 q^{89} -0.829387 q^{90} -24.2307 q^{91} +15.3782 q^{92} +7.60466 q^{93} +3.60788 q^{94} +6.35496 q^{95} +9.99020 q^{96} -4.77367 q^{97} +2.03993 q^{98} +6.81633 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 2 q^{3} + 5 q^{4} - 5 q^{5} + 10 q^{6} + q^{7} - 6 q^{8} + 13 q^{9} - q^{10} - 2 q^{11} - 2 q^{12} - 8 q^{13} - 11 q^{14} + 2 q^{15} + 5 q^{16} - q^{17} + 4 q^{18} - 9 q^{19} - 5 q^{20}+ \cdots - 59 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.423235 0.299272 0.149636 0.988741i \(-0.452190\pi\)
0.149636 + 0.988741i \(0.452190\pi\)
\(3\) 2.22702 1.28577 0.642887 0.765961i \(-0.277737\pi\)
0.642887 + 0.765961i \(0.277737\pi\)
\(4\) −1.82087 −0.910436
\(5\) −1.00000 −0.447214
\(6\) 0.942555 0.384796
\(7\) 3.43800 1.29944 0.649721 0.760173i \(-0.274886\pi\)
0.649721 + 0.760173i \(0.274886\pi\)
\(8\) −1.61713 −0.571741
\(9\) 1.95964 0.653213
\(10\) −0.423235 −0.133839
\(11\) 3.47836 1.04877 0.524383 0.851483i \(-0.324296\pi\)
0.524383 + 0.851483i \(0.324296\pi\)
\(12\) −4.05513 −1.17061
\(13\) −7.04790 −1.95473 −0.977367 0.211549i \(-0.932149\pi\)
−0.977367 + 0.211549i \(0.932149\pi\)
\(14\) 1.45508 0.388887
\(15\) −2.22702 −0.575015
\(16\) 2.95732 0.739330
\(17\) −0.423235 −0.102650 −0.0513248 0.998682i \(-0.516344\pi\)
−0.0513248 + 0.998682i \(0.516344\pi\)
\(18\) 0.829387 0.195489
\(19\) −6.35496 −1.45793 −0.728963 0.684553i \(-0.759998\pi\)
−0.728963 + 0.684553i \(0.759998\pi\)
\(20\) 1.82087 0.407159
\(21\) 7.65651 1.67079
\(22\) 1.47216 0.313867
\(23\) −8.44553 −1.76102 −0.880508 0.474032i \(-0.842798\pi\)
−0.880508 + 0.474032i \(0.842798\pi\)
\(24\) −3.60138 −0.735129
\(25\) 1.00000 0.200000
\(26\) −2.98292 −0.584998
\(27\) −2.31691 −0.445890
\(28\) −6.26016 −1.18306
\(29\) 0 0
\(30\) −0.942555 −0.172086
\(31\) 3.41472 0.613302 0.306651 0.951822i \(-0.400792\pi\)
0.306651 + 0.951822i \(0.400792\pi\)
\(32\) 4.48590 0.793002
\(33\) 7.74640 1.34847
\(34\) −0.179128 −0.0307202
\(35\) −3.43800 −0.581128
\(36\) −3.56825 −0.594708
\(37\) −2.69166 −0.442505 −0.221253 0.975217i \(-0.571015\pi\)
−0.221253 + 0.975217i \(0.571015\pi\)
\(38\) −2.68964 −0.436317
\(39\) −15.6958 −2.51335
\(40\) 1.61713 0.255690
\(41\) −0.715531 −0.111747 −0.0558735 0.998438i \(-0.517794\pi\)
−0.0558735 + 0.998438i \(0.517794\pi\)
\(42\) 3.24050 0.500020
\(43\) −8.55013 −1.30388 −0.651942 0.758269i \(-0.726045\pi\)
−0.651942 + 0.758269i \(0.726045\pi\)
\(44\) −6.33365 −0.954834
\(45\) −1.95964 −0.292126
\(46\) −3.57445 −0.527023
\(47\) 8.52454 1.24343 0.621716 0.783243i \(-0.286436\pi\)
0.621716 + 0.783243i \(0.286436\pi\)
\(48\) 6.58602 0.950610
\(49\) 4.81984 0.688548
\(50\) 0.423235 0.0598545
\(51\) −0.942555 −0.131984
\(52\) 12.8333 1.77966
\(53\) −0.0380437 −0.00522571 −0.00261285 0.999997i \(-0.500832\pi\)
−0.00261285 + 0.999997i \(0.500832\pi\)
\(54\) −0.980599 −0.133443
\(55\) −3.47836 −0.469022
\(56\) −5.55968 −0.742944
\(57\) −14.1526 −1.87456
\(58\) 0 0
\(59\) −13.6168 −1.77276 −0.886380 0.462957i \(-0.846788\pi\)
−0.886380 + 0.462957i \(0.846788\pi\)
\(60\) 4.05513 0.523515
\(61\) 2.64071 0.338108 0.169054 0.985607i \(-0.445929\pi\)
0.169054 + 0.985607i \(0.445929\pi\)
\(62\) 1.44523 0.183544
\(63\) 6.73723 0.848812
\(64\) −4.01605 −0.502006
\(65\) 7.04790 0.874184
\(66\) 3.27855 0.403561
\(67\) 0.311101 0.0380070 0.0190035 0.999819i \(-0.493951\pi\)
0.0190035 + 0.999819i \(0.493951\pi\)
\(68\) 0.770657 0.0934559
\(69\) −18.8084 −2.26427
\(70\) −1.45508 −0.173916
\(71\) −12.1690 −1.44419 −0.722096 0.691793i \(-0.756821\pi\)
−0.722096 + 0.691793i \(0.756821\pi\)
\(72\) −3.16898 −0.373468
\(73\) 10.5672 1.23680 0.618400 0.785864i \(-0.287781\pi\)
0.618400 + 0.785864i \(0.287781\pi\)
\(74\) −1.13920 −0.132430
\(75\) 2.22702 0.257155
\(76\) 11.5716 1.32735
\(77\) 11.9586 1.36281
\(78\) −6.64303 −0.752175
\(79\) 4.35392 0.489855 0.244927 0.969541i \(-0.421236\pi\)
0.244927 + 0.969541i \(0.421236\pi\)
\(80\) −2.95732 −0.330638
\(81\) −11.0387 −1.22653
\(82\) −0.302838 −0.0334428
\(83\) −0.361153 −0.0396417 −0.0198208 0.999804i \(-0.506310\pi\)
−0.0198208 + 0.999804i \(0.506310\pi\)
\(84\) −13.9415 −1.52114
\(85\) 0.423235 0.0459063
\(86\) −3.61872 −0.390216
\(87\) 0 0
\(88\) −5.62495 −0.599622
\(89\) −5.02230 −0.532363 −0.266181 0.963923i \(-0.585762\pi\)
−0.266181 + 0.963923i \(0.585762\pi\)
\(90\) −0.829387 −0.0874251
\(91\) −24.2307 −2.54006
\(92\) 15.3782 1.60329
\(93\) 7.60466 0.788567
\(94\) 3.60788 0.372125
\(95\) 6.35496 0.652005
\(96\) 9.99020 1.01962
\(97\) −4.77367 −0.484692 −0.242346 0.970190i \(-0.577917\pi\)
−0.242346 + 0.970190i \(0.577917\pi\)
\(98\) 2.03993 0.206064
\(99\) 6.81633 0.685067
\(100\) −1.82087 −0.182087
\(101\) 2.10465 0.209421 0.104710 0.994503i \(-0.466608\pi\)
0.104710 + 0.994503i \(0.466608\pi\)
\(102\) −0.398922 −0.0394992
\(103\) −5.03933 −0.496540 −0.248270 0.968691i \(-0.579862\pi\)
−0.248270 + 0.968691i \(0.579862\pi\)
\(104\) 11.3973 1.11760
\(105\) −7.65651 −0.747199
\(106\) −0.0161014 −0.00156391
\(107\) −5.64273 −0.545503 −0.272751 0.962085i \(-0.587934\pi\)
−0.272751 + 0.962085i \(0.587934\pi\)
\(108\) 4.21880 0.405954
\(109\) −2.77238 −0.265546 −0.132773 0.991146i \(-0.542388\pi\)
−0.132773 + 0.991146i \(0.542388\pi\)
\(110\) −1.47216 −0.140365
\(111\) −5.99438 −0.568962
\(112\) 10.1673 0.960716
\(113\) 10.8920 1.02464 0.512319 0.858795i \(-0.328787\pi\)
0.512319 + 0.858795i \(0.328787\pi\)
\(114\) −5.98990 −0.561005
\(115\) 8.44553 0.787550
\(116\) 0 0
\(117\) −13.8113 −1.27686
\(118\) −5.76312 −0.530538
\(119\) −1.45508 −0.133387
\(120\) 3.60138 0.328760
\(121\) 1.09900 0.0999090
\(122\) 1.11764 0.101187
\(123\) −1.59350 −0.143681
\(124\) −6.21777 −0.558372
\(125\) −1.00000 −0.0894427
\(126\) 2.85143 0.254026
\(127\) −4.88683 −0.433636 −0.216818 0.976212i \(-0.569568\pi\)
−0.216818 + 0.976212i \(0.569568\pi\)
\(128\) −10.6715 −0.943238
\(129\) −19.0414 −1.67650
\(130\) 2.98292 0.261619
\(131\) −6.69166 −0.584653 −0.292326 0.956319i \(-0.594429\pi\)
−0.292326 + 0.956319i \(0.594429\pi\)
\(132\) −14.1052 −1.22770
\(133\) −21.8483 −1.89449
\(134\) 0.131669 0.0113745
\(135\) 2.31691 0.199408
\(136\) 0.684425 0.0586890
\(137\) 0.422546 0.0361005 0.0180503 0.999837i \(-0.494254\pi\)
0.0180503 + 0.999837i \(0.494254\pi\)
\(138\) −7.96038 −0.677632
\(139\) 15.4758 1.31264 0.656318 0.754484i \(-0.272113\pi\)
0.656318 + 0.754484i \(0.272113\pi\)
\(140\) 6.26016 0.529080
\(141\) 18.9843 1.59877
\(142\) −5.15034 −0.432207
\(143\) −24.5151 −2.05006
\(144\) 5.79527 0.482939
\(145\) 0 0
\(146\) 4.47242 0.370140
\(147\) 10.7339 0.885317
\(148\) 4.90116 0.402873
\(149\) 12.8077 1.04925 0.524625 0.851334i \(-0.324206\pi\)
0.524625 + 0.851334i \(0.324206\pi\)
\(150\) 0.942555 0.0769593
\(151\) 7.82781 0.637018 0.318509 0.947920i \(-0.396818\pi\)
0.318509 + 0.947920i \(0.396818\pi\)
\(152\) 10.2768 0.833556
\(153\) −0.829387 −0.0670520
\(154\) 5.06130 0.407851
\(155\) −3.41472 −0.274277
\(156\) 28.5801 2.28824
\(157\) 3.62422 0.289245 0.144622 0.989487i \(-0.453803\pi\)
0.144622 + 0.989487i \(0.453803\pi\)
\(158\) 1.84273 0.146600
\(159\) −0.0847243 −0.00671907
\(160\) −4.48590 −0.354641
\(161\) −29.0357 −2.28834
\(162\) −4.67198 −0.367065
\(163\) 8.13585 0.637249 0.318625 0.947881i \(-0.396779\pi\)
0.318625 + 0.947881i \(0.396779\pi\)
\(164\) 1.30289 0.101739
\(165\) −7.74640 −0.603056
\(166\) −0.152853 −0.0118637
\(167\) −5.84377 −0.452204 −0.226102 0.974104i \(-0.572598\pi\)
−0.226102 + 0.974104i \(0.572598\pi\)
\(168\) −12.3815 −0.955257
\(169\) 36.6728 2.82099
\(170\) 0.179128 0.0137385
\(171\) −12.4534 −0.952336
\(172\) 15.5687 1.18710
\(173\) 14.8170 1.12651 0.563257 0.826282i \(-0.309548\pi\)
0.563257 + 0.826282i \(0.309548\pi\)
\(174\) 0 0
\(175\) 3.43800 0.259888
\(176\) 10.2866 0.775384
\(177\) −30.3250 −2.27937
\(178\) −2.12561 −0.159321
\(179\) −7.12114 −0.532259 −0.266129 0.963937i \(-0.585745\pi\)
−0.266129 + 0.963937i \(0.585745\pi\)
\(180\) 3.56825 0.265962
\(181\) −0.930688 −0.0691775 −0.0345887 0.999402i \(-0.511012\pi\)
−0.0345887 + 0.999402i \(0.511012\pi\)
\(182\) −10.2553 −0.760171
\(183\) 5.88093 0.434731
\(184\) 13.6575 1.00684
\(185\) 2.69166 0.197894
\(186\) 3.21856 0.235996
\(187\) −1.47216 −0.107655
\(188\) −15.5221 −1.13206
\(189\) −7.96554 −0.579408
\(190\) 2.68964 0.195127
\(191\) −23.6437 −1.71080 −0.855398 0.517972i \(-0.826687\pi\)
−0.855398 + 0.517972i \(0.826687\pi\)
\(192\) −8.94384 −0.645466
\(193\) 9.31430 0.670458 0.335229 0.942137i \(-0.391186\pi\)
0.335229 + 0.942137i \(0.391186\pi\)
\(194\) −2.02038 −0.145055
\(195\) 15.6958 1.12400
\(196\) −8.77631 −0.626879
\(197\) 8.27724 0.589729 0.294864 0.955539i \(-0.404726\pi\)
0.294864 + 0.955539i \(0.404726\pi\)
\(198\) 2.88491 0.205022
\(199\) −7.80074 −0.552980 −0.276490 0.961017i \(-0.589171\pi\)
−0.276490 + 0.961017i \(0.589171\pi\)
\(200\) −1.61713 −0.114348
\(201\) 0.692829 0.0488684
\(202\) 0.890763 0.0626738
\(203\) 0 0
\(204\) 1.71627 0.120163
\(205\) 0.715531 0.0499748
\(206\) −2.13282 −0.148601
\(207\) −16.5502 −1.15032
\(208\) −20.8429 −1.44519
\(209\) −22.1048 −1.52902
\(210\) −3.24050 −0.223616
\(211\) −27.0322 −1.86098 −0.930488 0.366322i \(-0.880617\pi\)
−0.930488 + 0.366322i \(0.880617\pi\)
\(212\) 0.0692727 0.00475767
\(213\) −27.1006 −1.85690
\(214\) −2.38820 −0.163254
\(215\) 8.55013 0.583114
\(216\) 3.74674 0.254933
\(217\) 11.7398 0.796950
\(218\) −1.17337 −0.0794705
\(219\) 23.5334 1.59024
\(220\) 6.33365 0.427015
\(221\) 2.98292 0.200653
\(222\) −2.53703 −0.170274
\(223\) −17.4088 −1.16578 −0.582890 0.812551i \(-0.698078\pi\)
−0.582890 + 0.812551i \(0.698078\pi\)
\(224\) 15.4225 1.03046
\(225\) 1.95964 0.130643
\(226\) 4.60990 0.306646
\(227\) −15.0614 −0.999659 −0.499829 0.866124i \(-0.666604\pi\)
−0.499829 + 0.866124i \(0.666604\pi\)
\(228\) 25.7702 1.70667
\(229\) −8.67359 −0.573167 −0.286584 0.958055i \(-0.592520\pi\)
−0.286584 + 0.958055i \(0.592520\pi\)
\(230\) 3.57445 0.235692
\(231\) 26.6321 1.75226
\(232\) 0 0
\(233\) 14.1622 0.927799 0.463900 0.885888i \(-0.346450\pi\)
0.463900 + 0.885888i \(0.346450\pi\)
\(234\) −5.84544 −0.382128
\(235\) −8.52454 −0.556079
\(236\) 24.7945 1.61399
\(237\) 9.69629 0.629842
\(238\) −0.615842 −0.0399191
\(239\) −8.49634 −0.549583 −0.274791 0.961504i \(-0.588609\pi\)
−0.274791 + 0.961504i \(0.588609\pi\)
\(240\) −6.58602 −0.425126
\(241\) 18.0167 1.16056 0.580278 0.814418i \(-0.302944\pi\)
0.580278 + 0.814418i \(0.302944\pi\)
\(242\) 0.465135 0.0299000
\(243\) −17.6328 −1.13114
\(244\) −4.80840 −0.307826
\(245\) −4.81984 −0.307928
\(246\) −0.674427 −0.0429999
\(247\) 44.7891 2.84986
\(248\) −5.52204 −0.350650
\(249\) −0.804296 −0.0509702
\(250\) −0.423235 −0.0267677
\(251\) −25.3036 −1.59715 −0.798574 0.601897i \(-0.794412\pi\)
−0.798574 + 0.601897i \(0.794412\pi\)
\(252\) −12.2676 −0.772789
\(253\) −29.3766 −1.84689
\(254\) −2.06828 −0.129775
\(255\) 0.942555 0.0590251
\(256\) 3.51554 0.219721
\(257\) −11.9109 −0.742979 −0.371489 0.928437i \(-0.621153\pi\)
−0.371489 + 0.928437i \(0.621153\pi\)
\(258\) −8.05897 −0.501730
\(259\) −9.25391 −0.575010
\(260\) −12.8333 −0.795889
\(261\) 0 0
\(262\) −2.83214 −0.174970
\(263\) 9.01777 0.556060 0.278030 0.960572i \(-0.410319\pi\)
0.278030 + 0.960572i \(0.410319\pi\)
\(264\) −12.5269 −0.770978
\(265\) 0.0380437 0.00233701
\(266\) −9.24698 −0.566969
\(267\) −11.1848 −0.684497
\(268\) −0.566475 −0.0346030
\(269\) −6.88934 −0.420051 −0.210025 0.977696i \(-0.567355\pi\)
−0.210025 + 0.977696i \(0.567355\pi\)
\(270\) 0.980599 0.0596773
\(271\) 15.6511 0.950739 0.475370 0.879786i \(-0.342314\pi\)
0.475370 + 0.879786i \(0.342314\pi\)
\(272\) −1.25164 −0.0758919
\(273\) −53.9623 −3.26595
\(274\) 0.178836 0.0108039
\(275\) 3.47836 0.209753
\(276\) 34.2477 2.06147
\(277\) −17.6949 −1.06318 −0.531590 0.847002i \(-0.678405\pi\)
−0.531590 + 0.847002i \(0.678405\pi\)
\(278\) 6.54988 0.392836
\(279\) 6.69161 0.400616
\(280\) 5.55968 0.332255
\(281\) 8.34222 0.497655 0.248828 0.968548i \(-0.419955\pi\)
0.248828 + 0.968548i \(0.419955\pi\)
\(282\) 8.03484 0.478468
\(283\) 16.8894 1.00397 0.501986 0.864875i \(-0.332603\pi\)
0.501986 + 0.864875i \(0.332603\pi\)
\(284\) 22.1582 1.31484
\(285\) 14.1526 0.838330
\(286\) −10.3757 −0.613526
\(287\) −2.45999 −0.145209
\(288\) 8.79073 0.517999
\(289\) −16.8209 −0.989463
\(290\) 0 0
\(291\) −10.6311 −0.623204
\(292\) −19.2415 −1.12603
\(293\) −5.11549 −0.298850 −0.149425 0.988773i \(-0.547742\pi\)
−0.149425 + 0.988773i \(0.547742\pi\)
\(294\) 4.54296 0.264951
\(295\) 13.6168 0.792803
\(296\) 4.35275 0.252998
\(297\) −8.05906 −0.467634
\(298\) 5.42068 0.314011
\(299\) 59.5232 3.44232
\(300\) −4.05513 −0.234123
\(301\) −29.3954 −1.69432
\(302\) 3.31300 0.190642
\(303\) 4.68711 0.269268
\(304\) −18.7936 −1.07789
\(305\) −2.64071 −0.151207
\(306\) −0.351026 −0.0200668
\(307\) −18.1953 −1.03846 −0.519229 0.854635i \(-0.673781\pi\)
−0.519229 + 0.854635i \(0.673781\pi\)
\(308\) −21.7751 −1.24075
\(309\) −11.2227 −0.638438
\(310\) −1.44523 −0.0820835
\(311\) −16.3179 −0.925302 −0.462651 0.886541i \(-0.653102\pi\)
−0.462651 + 0.886541i \(0.653102\pi\)
\(312\) 25.3822 1.43698
\(313\) 0.735317 0.0415626 0.0207813 0.999784i \(-0.493385\pi\)
0.0207813 + 0.999784i \(0.493385\pi\)
\(314\) 1.53390 0.0865629
\(315\) −6.73723 −0.379600
\(316\) −7.92794 −0.445981
\(317\) −21.2027 −1.19086 −0.595431 0.803406i \(-0.703019\pi\)
−0.595431 + 0.803406i \(0.703019\pi\)
\(318\) −0.0358583 −0.00201083
\(319\) 0 0
\(320\) 4.01605 0.224504
\(321\) −12.5665 −0.701393
\(322\) −12.2889 −0.684836
\(323\) 2.68964 0.149656
\(324\) 20.1001 1.11667
\(325\) −7.04790 −0.390947
\(326\) 3.44338 0.190711
\(327\) −6.17416 −0.341432
\(328\) 1.15710 0.0638904
\(329\) 29.3073 1.61577
\(330\) −3.27855 −0.180478
\(331\) −20.4678 −1.12501 −0.562505 0.826794i \(-0.690162\pi\)
−0.562505 + 0.826794i \(0.690162\pi\)
\(332\) 0.657613 0.0360912
\(333\) −5.27467 −0.289050
\(334\) −2.47329 −0.135332
\(335\) −0.311101 −0.0169973
\(336\) 22.6427 1.23526
\(337\) −28.3715 −1.54550 −0.772748 0.634713i \(-0.781118\pi\)
−0.772748 + 0.634713i \(0.781118\pi\)
\(338\) 15.5212 0.844244
\(339\) 24.2569 1.31745
\(340\) −0.770657 −0.0417947
\(341\) 11.8776 0.643210
\(342\) −5.27072 −0.285008
\(343\) −7.49539 −0.404713
\(344\) 13.8267 0.745483
\(345\) 18.8084 1.01261
\(346\) 6.27106 0.337135
\(347\) 20.5902 1.10534 0.552670 0.833400i \(-0.313609\pi\)
0.552670 + 0.833400i \(0.313609\pi\)
\(348\) 0 0
\(349\) −17.6161 −0.942971 −0.471485 0.881874i \(-0.656282\pi\)
−0.471485 + 0.881874i \(0.656282\pi\)
\(350\) 1.45508 0.0777774
\(351\) 16.3294 0.871597
\(352\) 15.6036 0.831673
\(353\) −10.3899 −0.552999 −0.276499 0.961014i \(-0.589174\pi\)
−0.276499 + 0.961014i \(0.589174\pi\)
\(354\) −12.8346 −0.682152
\(355\) 12.1690 0.645863
\(356\) 9.14496 0.484682
\(357\) −3.24050 −0.171506
\(358\) −3.01392 −0.159290
\(359\) 15.7219 0.829771 0.414886 0.909874i \(-0.363822\pi\)
0.414886 + 0.909874i \(0.363822\pi\)
\(360\) 3.16898 0.167020
\(361\) 21.3855 1.12555
\(362\) −0.393900 −0.0207029
\(363\) 2.44750 0.128460
\(364\) 44.1209 2.31257
\(365\) −10.5672 −0.553113
\(366\) 2.48902 0.130103
\(367\) 24.8925 1.29938 0.649690 0.760199i \(-0.274899\pi\)
0.649690 + 0.760199i \(0.274899\pi\)
\(368\) −24.9761 −1.30197
\(369\) −1.40218 −0.0729946
\(370\) 1.13920 0.0592243
\(371\) −0.130794 −0.00679050
\(372\) −13.8471 −0.717940
\(373\) −11.7536 −0.608580 −0.304290 0.952579i \(-0.598419\pi\)
−0.304290 + 0.952579i \(0.598419\pi\)
\(374\) −0.623072 −0.0322183
\(375\) −2.22702 −0.115003
\(376\) −13.7853 −0.710920
\(377\) 0 0
\(378\) −3.37130 −0.173401
\(379\) −12.5028 −0.642227 −0.321114 0.947041i \(-0.604057\pi\)
−0.321114 + 0.947041i \(0.604057\pi\)
\(380\) −11.5716 −0.593609
\(381\) −10.8831 −0.557558
\(382\) −10.0068 −0.511994
\(383\) 22.6951 1.15967 0.579833 0.814735i \(-0.303118\pi\)
0.579833 + 0.814735i \(0.303118\pi\)
\(384\) −23.7657 −1.21279
\(385\) −11.9586 −0.609467
\(386\) 3.94214 0.200650
\(387\) −16.7552 −0.851713
\(388\) 8.69223 0.441281
\(389\) 20.8880 1.05906 0.529532 0.848290i \(-0.322367\pi\)
0.529532 + 0.848290i \(0.322367\pi\)
\(390\) 6.64303 0.336383
\(391\) 3.57445 0.180768
\(392\) −7.79429 −0.393671
\(393\) −14.9025 −0.751731
\(394\) 3.50322 0.176490
\(395\) −4.35392 −0.219070
\(396\) −12.4117 −0.623709
\(397\) 9.65226 0.484433 0.242216 0.970222i \(-0.422126\pi\)
0.242216 + 0.970222i \(0.422126\pi\)
\(398\) −3.30155 −0.165492
\(399\) −48.6568 −2.43589
\(400\) 2.95732 0.147866
\(401\) 8.66079 0.432499 0.216250 0.976338i \(-0.430618\pi\)
0.216250 + 0.976338i \(0.430618\pi\)
\(402\) 0.293230 0.0146250
\(403\) −24.0666 −1.19884
\(404\) −3.83230 −0.190664
\(405\) 11.0387 0.548519
\(406\) 0 0
\(407\) −9.36255 −0.464084
\(408\) 1.52423 0.0754607
\(409\) −19.8447 −0.981259 −0.490629 0.871368i \(-0.663233\pi\)
−0.490629 + 0.871368i \(0.663233\pi\)
\(410\) 0.302838 0.0149561
\(411\) 0.941019 0.0464171
\(412\) 9.17597 0.452068
\(413\) −46.8147 −2.30360
\(414\) −7.00462 −0.344258
\(415\) 0.361153 0.0177283
\(416\) −31.6161 −1.55011
\(417\) 34.4649 1.68775
\(418\) −9.35554 −0.457595
\(419\) 13.4996 0.659500 0.329750 0.944068i \(-0.393036\pi\)
0.329750 + 0.944068i \(0.393036\pi\)
\(420\) 13.9415 0.680277
\(421\) 1.53657 0.0748876 0.0374438 0.999299i \(-0.488078\pi\)
0.0374438 + 0.999299i \(0.488078\pi\)
\(422\) −11.4410 −0.556939
\(423\) 16.7050 0.812225
\(424\) 0.0615215 0.00298775
\(425\) −0.423235 −0.0205299
\(426\) −11.4699 −0.555720
\(427\) 9.07876 0.439352
\(428\) 10.2747 0.496645
\(429\) −54.5958 −2.63591
\(430\) 3.61872 0.174510
\(431\) 37.2536 1.79444 0.897220 0.441583i \(-0.145583\pi\)
0.897220 + 0.441583i \(0.145583\pi\)
\(432\) −6.85185 −0.329660
\(433\) −28.2772 −1.35892 −0.679458 0.733714i \(-0.737785\pi\)
−0.679458 + 0.733714i \(0.737785\pi\)
\(434\) 4.96870 0.238505
\(435\) 0 0
\(436\) 5.04815 0.241762
\(437\) 53.6710 2.56743
\(438\) 9.96018 0.475916
\(439\) 26.0676 1.24414 0.622069 0.782962i \(-0.286292\pi\)
0.622069 + 0.782962i \(0.286292\pi\)
\(440\) 5.62495 0.268159
\(441\) 9.44514 0.449768
\(442\) 1.26248 0.0600498
\(443\) 24.4309 1.16075 0.580373 0.814351i \(-0.302907\pi\)
0.580373 + 0.814351i \(0.302907\pi\)
\(444\) 10.9150 0.518003
\(445\) 5.02230 0.238080
\(446\) −7.36802 −0.348886
\(447\) 28.5231 1.34910
\(448\) −13.8072 −0.652328
\(449\) 9.17312 0.432906 0.216453 0.976293i \(-0.430551\pi\)
0.216453 + 0.976293i \(0.430551\pi\)
\(450\) 0.829387 0.0390977
\(451\) −2.48887 −0.117196
\(452\) −19.8330 −0.932867
\(453\) 17.4327 0.819061
\(454\) −6.37450 −0.299170
\(455\) 24.2307 1.13595
\(456\) 22.8866 1.07176
\(457\) 23.4235 1.09570 0.547852 0.836575i \(-0.315446\pi\)
0.547852 + 0.836575i \(0.315446\pi\)
\(458\) −3.67097 −0.171533
\(459\) 0.980599 0.0457704
\(460\) −15.3782 −0.717014
\(461\) 27.7980 1.29468 0.647341 0.762201i \(-0.275881\pi\)
0.647341 + 0.762201i \(0.275881\pi\)
\(462\) 11.2716 0.524404
\(463\) 30.3570 1.41081 0.705405 0.708804i \(-0.250765\pi\)
0.705405 + 0.708804i \(0.250765\pi\)
\(464\) 0 0
\(465\) −7.60466 −0.352658
\(466\) 5.99396 0.277665
\(467\) 42.6987 1.97586 0.987929 0.154907i \(-0.0495079\pi\)
0.987929 + 0.154907i \(0.0495079\pi\)
\(468\) 25.1487 1.16250
\(469\) 1.06956 0.0493879
\(470\) −3.60788 −0.166419
\(471\) 8.07124 0.371903
\(472\) 22.0202 1.01356
\(473\) −29.7405 −1.36747
\(474\) 4.10381 0.188494
\(475\) −6.35496 −0.291585
\(476\) 2.64952 0.121440
\(477\) −0.0745519 −0.00341350
\(478\) −3.59595 −0.164475
\(479\) −17.8461 −0.815410 −0.407705 0.913114i \(-0.633671\pi\)
−0.407705 + 0.913114i \(0.633671\pi\)
\(480\) −9.99020 −0.455988
\(481\) 18.9705 0.864981
\(482\) 7.62529 0.347323
\(483\) −64.6633 −2.94228
\(484\) −2.00114 −0.0909608
\(485\) 4.77367 0.216761
\(486\) −7.46282 −0.338520
\(487\) 3.64836 0.165323 0.0826614 0.996578i \(-0.473658\pi\)
0.0826614 + 0.996578i \(0.473658\pi\)
\(488\) −4.27037 −0.193310
\(489\) 18.1187 0.819358
\(490\) −2.03993 −0.0921544
\(491\) −4.08821 −0.184498 −0.0922491 0.995736i \(-0.529406\pi\)
−0.0922491 + 0.995736i \(0.529406\pi\)
\(492\) 2.90157 0.130813
\(493\) 0 0
\(494\) 18.9563 0.852885
\(495\) −6.81633 −0.306371
\(496\) 10.0984 0.453432
\(497\) −41.8370 −1.87664
\(498\) −0.340406 −0.0152540
\(499\) −8.15097 −0.364888 −0.182444 0.983216i \(-0.558401\pi\)
−0.182444 + 0.983216i \(0.558401\pi\)
\(500\) 1.82087 0.0814319
\(501\) −13.0142 −0.581432
\(502\) −10.7094 −0.477982
\(503\) 31.9551 1.42481 0.712403 0.701771i \(-0.247607\pi\)
0.712403 + 0.701771i \(0.247607\pi\)
\(504\) −10.8950 −0.485300
\(505\) −2.10465 −0.0936558
\(506\) −12.4332 −0.552724
\(507\) 81.6713 3.62715
\(508\) 8.89830 0.394798
\(509\) 43.7200 1.93786 0.968928 0.247345i \(-0.0795580\pi\)
0.968928 + 0.247345i \(0.0795580\pi\)
\(510\) 0.398922 0.0176646
\(511\) 36.3301 1.60715
\(512\) 22.8309 1.00899
\(513\) 14.7239 0.650075
\(514\) −5.04109 −0.222353
\(515\) 5.03933 0.222059
\(516\) 34.6719 1.52634
\(517\) 29.6514 1.30407
\(518\) −3.91658 −0.172085
\(519\) 32.9978 1.44844
\(520\) −11.3973 −0.499807
\(521\) −22.4604 −0.984010 −0.492005 0.870592i \(-0.663736\pi\)
−0.492005 + 0.870592i \(0.663736\pi\)
\(522\) 0 0
\(523\) −6.08703 −0.266167 −0.133084 0.991105i \(-0.542488\pi\)
−0.133084 + 0.991105i \(0.542488\pi\)
\(524\) 12.1846 0.532289
\(525\) 7.65651 0.334157
\(526\) 3.81664 0.166413
\(527\) −1.44523 −0.0629552
\(528\) 22.9086 0.996967
\(529\) 48.3270 2.10118
\(530\) 0.0161014 0.000699402 0
\(531\) −26.6841 −1.15799
\(532\) 39.7830 1.72481
\(533\) 5.04299 0.218436
\(534\) −4.73379 −0.204851
\(535\) 5.64273 0.243956
\(536\) −0.503090 −0.0217302
\(537\) −15.8589 −0.684364
\(538\) −2.91581 −0.125710
\(539\) 16.7651 0.722126
\(540\) −4.21880 −0.181548
\(541\) 37.1228 1.59603 0.798017 0.602635i \(-0.205883\pi\)
0.798017 + 0.602635i \(0.205883\pi\)
\(542\) 6.62411 0.284530
\(543\) −2.07266 −0.0889465
\(544\) −1.89859 −0.0814013
\(545\) 2.77238 0.118756
\(546\) −22.8387 −0.977407
\(547\) −28.2162 −1.20644 −0.603218 0.797577i \(-0.706115\pi\)
−0.603218 + 0.797577i \(0.706115\pi\)
\(548\) −0.769401 −0.0328672
\(549\) 5.17484 0.220857
\(550\) 1.47216 0.0627733
\(551\) 0 0
\(552\) 30.4156 1.29457
\(553\) 14.9688 0.636537
\(554\) −7.48908 −0.318181
\(555\) 5.99438 0.254447
\(556\) −28.1794 −1.19507
\(557\) −23.0897 −0.978344 −0.489172 0.872187i \(-0.662701\pi\)
−0.489172 + 0.872187i \(0.662701\pi\)
\(558\) 2.83213 0.119893
\(559\) 60.2605 2.54875
\(560\) −10.1673 −0.429645
\(561\) −3.27855 −0.138420
\(562\) 3.53072 0.148934
\(563\) 8.98400 0.378630 0.189315 0.981916i \(-0.439373\pi\)
0.189315 + 0.981916i \(0.439373\pi\)
\(564\) −34.5681 −1.45558
\(565\) −10.8920 −0.458232
\(566\) 7.14820 0.300461
\(567\) −37.9512 −1.59380
\(568\) 19.6788 0.825704
\(569\) 21.4554 0.899458 0.449729 0.893165i \(-0.351521\pi\)
0.449729 + 0.893165i \(0.351521\pi\)
\(570\) 5.98990 0.250889
\(571\) −0.850307 −0.0355842 −0.0177921 0.999842i \(-0.505664\pi\)
−0.0177921 + 0.999842i \(0.505664\pi\)
\(572\) 44.6389 1.86645
\(573\) −52.6550 −2.19969
\(574\) −1.04116 −0.0434570
\(575\) −8.44553 −0.352203
\(576\) −7.87000 −0.327917
\(577\) 21.5697 0.897959 0.448980 0.893542i \(-0.351788\pi\)
0.448980 + 0.893542i \(0.351788\pi\)
\(578\) −7.11918 −0.296119
\(579\) 20.7432 0.862057
\(580\) 0 0
\(581\) −1.24164 −0.0515120
\(582\) −4.49944 −0.186508
\(583\) −0.132330 −0.00548054
\(584\) −17.0885 −0.707129
\(585\) 13.8113 0.571028
\(586\) −2.16505 −0.0894375
\(587\) 39.6266 1.63557 0.817783 0.575527i \(-0.195203\pi\)
0.817783 + 0.575527i \(0.195203\pi\)
\(588\) −19.5451 −0.806025
\(589\) −21.7004 −0.894149
\(590\) 5.76312 0.237264
\(591\) 18.4336 0.758258
\(592\) −7.96008 −0.327157
\(593\) 6.91287 0.283877 0.141939 0.989875i \(-0.454666\pi\)
0.141939 + 0.989875i \(0.454666\pi\)
\(594\) −3.41088 −0.139950
\(595\) 1.45508 0.0596525
\(596\) −23.3212 −0.955274
\(597\) −17.3724 −0.711007
\(598\) 25.1923 1.03019
\(599\) −36.0897 −1.47458 −0.737292 0.675574i \(-0.763896\pi\)
−0.737292 + 0.675574i \(0.763896\pi\)
\(600\) −3.60138 −0.147026
\(601\) −20.4150 −0.832746 −0.416373 0.909194i \(-0.636699\pi\)
−0.416373 + 0.909194i \(0.636699\pi\)
\(602\) −12.4411 −0.507063
\(603\) 0.609645 0.0248267
\(604\) −14.2534 −0.579964
\(605\) −1.09900 −0.0446807
\(606\) 1.98375 0.0805843
\(607\) 13.6972 0.555953 0.277976 0.960588i \(-0.410336\pi\)
0.277976 + 0.960588i \(0.410336\pi\)
\(608\) −28.5077 −1.15614
\(609\) 0 0
\(610\) −1.11764 −0.0452520
\(611\) −60.0800 −2.43058
\(612\) 1.51021 0.0610466
\(613\) −8.86537 −0.358069 −0.179035 0.983843i \(-0.557297\pi\)
−0.179035 + 0.983843i \(0.557297\pi\)
\(614\) −7.70088 −0.310782
\(615\) 1.59350 0.0642563
\(616\) −19.3386 −0.779174
\(617\) 30.5406 1.22952 0.614759 0.788715i \(-0.289253\pi\)
0.614759 + 0.788715i \(0.289253\pi\)
\(618\) −4.74984 −0.191067
\(619\) −35.3049 −1.41902 −0.709512 0.704694i \(-0.751085\pi\)
−0.709512 + 0.704694i \(0.751085\pi\)
\(620\) 6.21777 0.249712
\(621\) 19.5676 0.785219
\(622\) −6.90630 −0.276917
\(623\) −17.2667 −0.691774
\(624\) −46.4176 −1.85819
\(625\) 1.00000 0.0400000
\(626\) 0.311212 0.0124385
\(627\) −49.2280 −1.96598
\(628\) −6.59925 −0.263339
\(629\) 1.13920 0.0454230
\(630\) −2.85143 −0.113604
\(631\) 31.5705 1.25680 0.628400 0.777890i \(-0.283710\pi\)
0.628400 + 0.777890i \(0.283710\pi\)
\(632\) −7.04085 −0.280070
\(633\) −60.2015 −2.39279
\(634\) −8.97372 −0.356392
\(635\) 4.88683 0.193928
\(636\) 0.154272 0.00611728
\(637\) −33.9697 −1.34593
\(638\) 0 0
\(639\) −23.8468 −0.943365
\(640\) 10.6715 0.421829
\(641\) −15.5707 −0.615006 −0.307503 0.951547i \(-0.599493\pi\)
−0.307503 + 0.951547i \(0.599493\pi\)
\(642\) −5.31858 −0.209908
\(643\) 20.9016 0.824278 0.412139 0.911121i \(-0.364782\pi\)
0.412139 + 0.911121i \(0.364782\pi\)
\(644\) 52.8704 2.08338
\(645\) 19.0414 0.749753
\(646\) 1.13835 0.0447878
\(647\) −8.18361 −0.321731 −0.160866 0.986976i \(-0.551429\pi\)
−0.160866 + 0.986976i \(0.551429\pi\)
\(648\) 17.8510 0.701255
\(649\) −47.3643 −1.85921
\(650\) −2.98292 −0.117000
\(651\) 26.1448 1.02470
\(652\) −14.8143 −0.580174
\(653\) −10.9265 −0.427586 −0.213793 0.976879i \(-0.568582\pi\)
−0.213793 + 0.976879i \(0.568582\pi\)
\(654\) −2.61312 −0.102181
\(655\) 6.69166 0.261465
\(656\) −2.11605 −0.0826180
\(657\) 20.7079 0.807893
\(658\) 12.4039 0.483554
\(659\) 2.14934 0.0837265 0.0418632 0.999123i \(-0.486671\pi\)
0.0418632 + 0.999123i \(0.486671\pi\)
\(660\) 14.1052 0.549044
\(661\) −8.58990 −0.334108 −0.167054 0.985948i \(-0.553425\pi\)
−0.167054 + 0.985948i \(0.553425\pi\)
\(662\) −8.66268 −0.336685
\(663\) 6.64303 0.257994
\(664\) 0.584030 0.0226648
\(665\) 21.8483 0.847242
\(666\) −2.23242 −0.0865047
\(667\) 0 0
\(668\) 10.6408 0.411703
\(669\) −38.7698 −1.49893
\(670\) −0.131669 −0.00508681
\(671\) 9.18535 0.354596
\(672\) 34.3463 1.32494
\(673\) −29.9690 −1.15522 −0.577610 0.816313i \(-0.696014\pi\)
−0.577610 + 0.816313i \(0.696014\pi\)
\(674\) −12.0078 −0.462524
\(675\) −2.31691 −0.0891780
\(676\) −66.7766 −2.56833
\(677\) −46.4832 −1.78649 −0.893247 0.449566i \(-0.851579\pi\)
−0.893247 + 0.449566i \(0.851579\pi\)
\(678\) 10.2664 0.394277
\(679\) −16.4119 −0.629829
\(680\) −0.684425 −0.0262465
\(681\) −33.5420 −1.28533
\(682\) 5.02703 0.192495
\(683\) 24.2294 0.927111 0.463556 0.886068i \(-0.346573\pi\)
0.463556 + 0.886068i \(0.346573\pi\)
\(684\) 22.6761 0.867041
\(685\) −0.422546 −0.0161446
\(686\) −3.17231 −0.121119
\(687\) −19.3163 −0.736963
\(688\) −25.2855 −0.964000
\(689\) 0.268128 0.0102149
\(690\) 7.96038 0.303046
\(691\) −7.32074 −0.278494 −0.139247 0.990258i \(-0.544468\pi\)
−0.139247 + 0.990258i \(0.544468\pi\)
\(692\) −26.9798 −1.02562
\(693\) 23.4345 0.890204
\(694\) 8.71450 0.330798
\(695\) −15.4758 −0.587029
\(696\) 0 0
\(697\) 0.302838 0.0114708
\(698\) −7.45577 −0.282205
\(699\) 31.5396 1.19294
\(700\) −6.26016 −0.236612
\(701\) 20.7603 0.784105 0.392052 0.919943i \(-0.371765\pi\)
0.392052 + 0.919943i \(0.371765\pi\)
\(702\) 6.91116 0.260845
\(703\) 17.1053 0.645140
\(704\) −13.9693 −0.526487
\(705\) −18.9843 −0.714992
\(706\) −4.39737 −0.165497
\(707\) 7.23579 0.272130
\(708\) 55.2180 2.07522
\(709\) −23.9455 −0.899291 −0.449645 0.893207i \(-0.648450\pi\)
−0.449645 + 0.893207i \(0.648450\pi\)
\(710\) 5.15034 0.193289
\(711\) 8.53211 0.319979
\(712\) 8.12170 0.304373
\(713\) −28.8391 −1.08003
\(714\) −1.37149 −0.0513269
\(715\) 24.5151 0.916814
\(716\) 12.9667 0.484588
\(717\) −18.9216 −0.706639
\(718\) 6.65407 0.248328
\(719\) 44.3444 1.65377 0.826883 0.562374i \(-0.190112\pi\)
0.826883 + 0.562374i \(0.190112\pi\)
\(720\) −5.79527 −0.215977
\(721\) −17.3252 −0.645225
\(722\) 9.05108 0.336846
\(723\) 40.1236 1.49221
\(724\) 1.69466 0.0629817
\(725\) 0 0
\(726\) 1.03587 0.0384446
\(727\) 25.2973 0.938223 0.469112 0.883139i \(-0.344574\pi\)
0.469112 + 0.883139i \(0.344574\pi\)
\(728\) 39.1841 1.45226
\(729\) −6.15246 −0.227869
\(730\) −4.47242 −0.165532
\(731\) 3.61872 0.133843
\(732\) −10.7084 −0.395794
\(733\) −18.1893 −0.671837 −0.335918 0.941891i \(-0.609047\pi\)
−0.335918 + 0.941891i \(0.609047\pi\)
\(734\) 10.5354 0.388869
\(735\) −10.7339 −0.395926
\(736\) −37.8858 −1.39649
\(737\) 1.08212 0.0398605
\(738\) −0.593452 −0.0218453
\(739\) −41.9470 −1.54304 −0.771522 0.636202i \(-0.780504\pi\)
−0.771522 + 0.636202i \(0.780504\pi\)
\(740\) −4.90116 −0.180170
\(741\) 99.7464 3.66427
\(742\) −0.0553567 −0.00203221
\(743\) 6.84909 0.251269 0.125634 0.992077i \(-0.459903\pi\)
0.125634 + 0.992077i \(0.459903\pi\)
\(744\) −12.2977 −0.450856
\(745\) −12.8077 −0.469239
\(746\) −4.97455 −0.182131
\(747\) −0.707729 −0.0258944
\(748\) 2.68062 0.0980133
\(749\) −19.3997 −0.708849
\(750\) −0.942555 −0.0344172
\(751\) 30.3234 1.10652 0.553259 0.833009i \(-0.313384\pi\)
0.553259 + 0.833009i \(0.313384\pi\)
\(752\) 25.2098 0.919306
\(753\) −56.3517 −2.05357
\(754\) 0 0
\(755\) −7.82781 −0.284883
\(756\) 14.5042 0.527514
\(757\) 18.1401 0.659314 0.329657 0.944101i \(-0.393067\pi\)
0.329657 + 0.944101i \(0.393067\pi\)
\(758\) −5.29164 −0.192201
\(759\) −65.4224 −2.37468
\(760\) −10.2768 −0.372778
\(761\) 22.8124 0.826951 0.413475 0.910515i \(-0.364315\pi\)
0.413475 + 0.910515i \(0.364315\pi\)
\(762\) −4.60611 −0.166862
\(763\) −9.53144 −0.345061
\(764\) 43.0521 1.55757
\(765\) 0.829387 0.0299866
\(766\) 9.60537 0.347056
\(767\) 95.9700 3.46528
\(768\) 7.82918 0.282511
\(769\) −23.4081 −0.844117 −0.422058 0.906569i \(-0.638692\pi\)
−0.422058 + 0.906569i \(0.638692\pi\)
\(770\) −5.06130 −0.182397
\(771\) −26.5258 −0.955302
\(772\) −16.9602 −0.610409
\(773\) 31.3406 1.12724 0.563622 0.826033i \(-0.309407\pi\)
0.563622 + 0.826033i \(0.309407\pi\)
\(774\) −7.09137 −0.254894
\(775\) 3.41472 0.122660
\(776\) 7.71962 0.277118
\(777\) −20.6087 −0.739332
\(778\) 8.84054 0.316949
\(779\) 4.54716 0.162919
\(780\) −28.5801 −1.02333
\(781\) −42.3281 −1.51462
\(782\) 1.51283 0.0540987
\(783\) 0 0
\(784\) 14.2538 0.509064
\(785\) −3.62422 −0.129354
\(786\) −6.30725 −0.224972
\(787\) 22.1597 0.789909 0.394954 0.918701i \(-0.370760\pi\)
0.394954 + 0.918701i \(0.370760\pi\)
\(788\) −15.0718 −0.536910
\(789\) 20.0828 0.714967
\(790\) −1.84273 −0.0655615
\(791\) 37.4469 1.33146
\(792\) −11.0229 −0.391681
\(793\) −18.6115 −0.660912
\(794\) 4.08517 0.144977
\(795\) 0.0847243 0.00300486
\(796\) 14.2042 0.503453
\(797\) 3.86966 0.137070 0.0685351 0.997649i \(-0.478167\pi\)
0.0685351 + 0.997649i \(0.478167\pi\)
\(798\) −20.5933 −0.728993
\(799\) −3.60788 −0.127638
\(800\) 4.48590 0.158600
\(801\) −9.84188 −0.347746
\(802\) 3.66555 0.129435
\(803\) 36.7566 1.29711
\(804\) −1.26155 −0.0444916
\(805\) 29.0357 1.02338
\(806\) −10.1858 −0.358780
\(807\) −15.3427 −0.540090
\(808\) −3.40349 −0.119734
\(809\) −44.8201 −1.57579 −0.787895 0.615810i \(-0.788829\pi\)
−0.787895 + 0.615810i \(0.788829\pi\)
\(810\) 4.67198 0.164157
\(811\) −26.8646 −0.943343 −0.471671 0.881774i \(-0.656349\pi\)
−0.471671 + 0.881774i \(0.656349\pi\)
\(812\) 0 0
\(813\) 34.8555 1.22243
\(814\) −3.96256 −0.138888
\(815\) −8.13585 −0.284986
\(816\) −2.78744 −0.0975798
\(817\) 54.3357 1.90097
\(818\) −8.39899 −0.293664
\(819\) −47.4833 −1.65920
\(820\) −1.30289 −0.0454989
\(821\) 2.53533 0.0884836 0.0442418 0.999021i \(-0.485913\pi\)
0.0442418 + 0.999021i \(0.485913\pi\)
\(822\) 0.398272 0.0138913
\(823\) −23.8799 −0.832403 −0.416201 0.909272i \(-0.636639\pi\)
−0.416201 + 0.909272i \(0.636639\pi\)
\(824\) 8.14924 0.283892
\(825\) 7.74640 0.269695
\(826\) −19.8136 −0.689404
\(827\) −28.1645 −0.979374 −0.489687 0.871898i \(-0.662889\pi\)
−0.489687 + 0.871898i \(0.662889\pi\)
\(828\) 30.1358 1.04729
\(829\) 17.6553 0.613194 0.306597 0.951839i \(-0.400810\pi\)
0.306597 + 0.951839i \(0.400810\pi\)
\(830\) 0.152853 0.00530559
\(831\) −39.4069 −1.36701
\(832\) 28.3047 0.981289
\(833\) −2.03993 −0.0706792
\(834\) 14.5867 0.505098
\(835\) 5.84377 0.202232
\(836\) 40.2501 1.39208
\(837\) −7.91161 −0.273465
\(838\) 5.71352 0.197370
\(839\) 12.6232 0.435802 0.217901 0.975971i \(-0.430079\pi\)
0.217901 + 0.975971i \(0.430079\pi\)
\(840\) 12.3815 0.427204
\(841\) 0 0
\(842\) 0.650329 0.0224118
\(843\) 18.5783 0.639871
\(844\) 49.2223 1.69430
\(845\) −36.6728 −1.26158
\(846\) 7.07014 0.243077
\(847\) 3.77836 0.129826
\(848\) −0.112507 −0.00386352
\(849\) 37.6132 1.29088
\(850\) −0.179128 −0.00614404
\(851\) 22.7325 0.779259
\(852\) 49.3468 1.69059
\(853\) 37.3362 1.27837 0.639184 0.769054i \(-0.279272\pi\)
0.639184 + 0.769054i \(0.279272\pi\)
\(854\) 3.84245 0.131486
\(855\) 12.4534 0.425898
\(856\) 9.12500 0.311886
\(857\) −14.8210 −0.506276 −0.253138 0.967430i \(-0.581463\pi\)
−0.253138 + 0.967430i \(0.581463\pi\)
\(858\) −23.1069 −0.788855
\(859\) −26.6683 −0.909911 −0.454955 0.890514i \(-0.650345\pi\)
−0.454955 + 0.890514i \(0.650345\pi\)
\(860\) −15.5687 −0.530888
\(861\) −5.47847 −0.186706
\(862\) 15.7670 0.537027
\(863\) −40.6824 −1.38484 −0.692422 0.721493i \(-0.743456\pi\)
−0.692422 + 0.721493i \(0.743456\pi\)
\(864\) −10.3934 −0.353592
\(865\) −14.8170 −0.503792
\(866\) −11.9679 −0.406686
\(867\) −37.4605 −1.27223
\(868\) −21.3767 −0.725572
\(869\) 15.1445 0.513743
\(870\) 0 0
\(871\) −2.19261 −0.0742936
\(872\) 4.48329 0.151823
\(873\) −9.35465 −0.316607
\(874\) 22.7154 0.768362
\(875\) −3.43800 −0.116226
\(876\) −42.8514 −1.44781
\(877\) 17.7793 0.600363 0.300182 0.953882i \(-0.402953\pi\)
0.300182 + 0.953882i \(0.402953\pi\)
\(878\) 11.0327 0.372336
\(879\) −11.3923 −0.384253
\(880\) −10.2866 −0.346762
\(881\) 40.9598 1.37997 0.689986 0.723823i \(-0.257617\pi\)
0.689986 + 0.723823i \(0.257617\pi\)
\(882\) 3.99751 0.134603
\(883\) 2.78146 0.0936036 0.0468018 0.998904i \(-0.485097\pi\)
0.0468018 + 0.998904i \(0.485097\pi\)
\(884\) −5.43151 −0.182681
\(885\) 30.3250 1.01936
\(886\) 10.3400 0.347379
\(887\) 3.65945 0.122872 0.0614362 0.998111i \(-0.480432\pi\)
0.0614362 + 0.998111i \(0.480432\pi\)
\(888\) 9.69368 0.325299
\(889\) −16.8009 −0.563485
\(890\) 2.12561 0.0712507
\(891\) −38.3967 −1.28634
\(892\) 31.6992 1.06137
\(893\) −54.1730 −1.81283
\(894\) 12.0720 0.403747
\(895\) 7.12114 0.238033
\(896\) −36.6887 −1.22568
\(897\) 132.560 4.42604
\(898\) 3.88239 0.129557
\(899\) 0 0
\(900\) −3.56825 −0.118942
\(901\) 0.0161014 0.000536416 0
\(902\) −1.05338 −0.0350737
\(903\) −65.4642 −2.17851
\(904\) −17.6138 −0.585827
\(905\) 0.930688 0.0309371
\(906\) 7.37814 0.245122
\(907\) −24.5644 −0.815647 −0.407824 0.913061i \(-0.633712\pi\)
−0.407824 + 0.913061i \(0.633712\pi\)
\(908\) 27.4248 0.910125
\(909\) 4.12436 0.136796
\(910\) 10.2553 0.339959
\(911\) −47.0200 −1.55784 −0.778921 0.627122i \(-0.784233\pi\)
−0.778921 + 0.627122i \(0.784233\pi\)
\(912\) −41.8539 −1.38592
\(913\) −1.25622 −0.0415748
\(914\) 9.91364 0.327914
\(915\) −5.88093 −0.194417
\(916\) 15.7935 0.521832
\(917\) −23.0059 −0.759722
\(918\) 0.415024 0.0136978
\(919\) 23.4152 0.772396 0.386198 0.922416i \(-0.373788\pi\)
0.386198 + 0.922416i \(0.373788\pi\)
\(920\) −13.6575 −0.450275
\(921\) −40.5213 −1.33522
\(922\) 11.7651 0.387462
\(923\) 85.7657 2.82301
\(924\) −48.4937 −1.59532
\(925\) −2.69166 −0.0885011
\(926\) 12.8482 0.422217
\(927\) −9.87526 −0.324346
\(928\) 0 0
\(929\) 35.4231 1.16219 0.581097 0.813834i \(-0.302624\pi\)
0.581097 + 0.813834i \(0.302624\pi\)
\(930\) −3.21856 −0.105541
\(931\) −30.6299 −1.00385
\(932\) −25.7876 −0.844702
\(933\) −36.3403 −1.18973
\(934\) 18.0716 0.591320
\(935\) 1.47216 0.0481449
\(936\) 22.3347 0.730031
\(937\) −57.9633 −1.89358 −0.946789 0.321855i \(-0.895694\pi\)
−0.946789 + 0.321855i \(0.895694\pi\)
\(938\) 0.452677 0.0147804
\(939\) 1.63757 0.0534401
\(940\) 15.5221 0.506275
\(941\) −38.1343 −1.24314 −0.621571 0.783358i \(-0.713505\pi\)
−0.621571 + 0.783358i \(0.713505\pi\)
\(942\) 3.41603 0.111300
\(943\) 6.04304 0.196788
\(944\) −40.2693 −1.31065
\(945\) 7.96554 0.259119
\(946\) −12.5872 −0.409245
\(947\) −50.8389 −1.65204 −0.826022 0.563638i \(-0.809401\pi\)
−0.826022 + 0.563638i \(0.809401\pi\)
\(948\) −17.6557 −0.573431
\(949\) −74.4766 −2.41761
\(950\) −2.68964 −0.0872635
\(951\) −47.2189 −1.53118
\(952\) 2.35305 0.0762629
\(953\) −15.8383 −0.513052 −0.256526 0.966537i \(-0.582578\pi\)
−0.256526 + 0.966537i \(0.582578\pi\)
\(954\) −0.0315530 −0.00102157
\(955\) 23.6437 0.765091
\(956\) 15.4708 0.500360
\(957\) 0 0
\(958\) −7.55311 −0.244030
\(959\) 1.45271 0.0469105
\(960\) 8.94384 0.288661
\(961\) −19.3397 −0.623861
\(962\) 8.02898 0.258865
\(963\) −11.0577 −0.356329
\(964\) −32.8061 −1.05661
\(965\) −9.31430 −0.299838
\(966\) −27.3678 −0.880544
\(967\) −2.86192 −0.0920332 −0.0460166 0.998941i \(-0.514653\pi\)
−0.0460166 + 0.998941i \(0.514653\pi\)
\(968\) −1.77722 −0.0571221
\(969\) 5.98990 0.192423
\(970\) 2.02038 0.0648706
\(971\) −0.472066 −0.0151493 −0.00757466 0.999971i \(-0.502411\pi\)
−0.00757466 + 0.999971i \(0.502411\pi\)
\(972\) 32.1071 1.02983
\(973\) 53.2056 1.70569
\(974\) 1.54411 0.0494766
\(975\) −15.6958 −0.502669
\(976\) 7.80942 0.249974
\(977\) −57.8393 −1.85044 −0.925222 0.379426i \(-0.876121\pi\)
−0.925222 + 0.379426i \(0.876121\pi\)
\(978\) 7.66849 0.245211
\(979\) −17.4694 −0.558323
\(980\) 8.77631 0.280349
\(981\) −5.43286 −0.173458
\(982\) −1.73027 −0.0552152
\(983\) 48.0654 1.53305 0.766524 0.642215i \(-0.221984\pi\)
0.766524 + 0.642215i \(0.221984\pi\)
\(984\) 2.57690 0.0821485
\(985\) −8.27724 −0.263735
\(986\) 0 0
\(987\) 65.2682 2.07751
\(988\) −81.5552 −2.59462
\(989\) 72.2104 2.29616
\(990\) −2.88491 −0.0916884
\(991\) −4.39885 −0.139734 −0.0698670 0.997556i \(-0.522257\pi\)
−0.0698670 + 0.997556i \(0.522257\pi\)
\(992\) 15.3181 0.486349
\(993\) −45.5822 −1.44651
\(994\) −17.7069 −0.561628
\(995\) 7.80074 0.247300
\(996\) 1.46452 0.0464051
\(997\) 7.53626 0.238676 0.119338 0.992854i \(-0.461923\pi\)
0.119338 + 0.992854i \(0.461923\pi\)
\(998\) −3.44978 −0.109201
\(999\) 6.23633 0.197309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4205.2.a.j.1.3 yes 5
29.28 even 2 4205.2.a.i.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4205.2.a.i.1.3 5 29.28 even 2
4205.2.a.j.1.3 yes 5 1.1 even 1 trivial