Defining parameters
Level: | \( N \) | \(=\) | \( 4205 = 5 \cdot 29^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4205.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(870\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4205))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 464 | 271 | 193 |
Cusp forms | 405 | 271 | 134 |
Eisenstein series | 59 | 0 | 59 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(29\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(61\) |
\(+\) | \(-\) | \(-\) | \(75\) |
\(-\) | \(+\) | \(-\) | \(74\) |
\(-\) | \(-\) | \(+\) | \(61\) |
Plus space | \(+\) | \(122\) | |
Minus space | \(-\) | \(149\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4205))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4205))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4205)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(841))\)\(^{\oplus 2}\)