Defining parameters
Level: | \( N \) | \(=\) | \( 4200 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4200.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 43 \) | ||
Sturm bound: | \(1920\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(11\), \(13\), \(17\), \(19\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4200))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1008 | 58 | 950 |
Cusp forms | 913 | 58 | 855 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Dim. |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(4\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(5\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(5\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(4\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(4\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(4\) |
Plus space | \(+\) | \(24\) | |||
Minus space | \(-\) | \(34\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4200))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4200))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4200)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(84))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(140))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(280))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(600))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(700))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(840))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1400))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2100))\)\(^{\oplus 2}\)