Properties

Label 420.2.q.b.121.1
Level $420$
Weight $2$
Character 420.121
Analytic conductor $3.354$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(121,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 420.121
Dual form 420.2.q.b.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(0.500000 - 0.866025i) q^{5} +(-2.50000 + 0.866025i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(2.00000 + 3.46410i) q^{11} +7.00000 q^{13} +1.00000 q^{15} +(3.00000 + 5.19615i) q^{17} +(-1.50000 + 2.59808i) q^{19} +(-2.00000 - 1.73205i) q^{21} +(1.00000 - 1.73205i) q^{23} +(-0.500000 - 0.866025i) q^{25} -1.00000 q^{27} -2.00000 q^{29} +(-3.50000 - 6.06218i) q^{31} +(-2.00000 + 3.46410i) q^{33} +(-0.500000 + 2.59808i) q^{35} +(3.50000 - 6.06218i) q^{37} +(3.50000 + 6.06218i) q^{39} -8.00000 q^{41} +5.00000 q^{43} +(0.500000 + 0.866025i) q^{45} +(-5.00000 + 8.66025i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-3.00000 + 5.19615i) q^{51} +(4.00000 + 6.92820i) q^{53} +4.00000 q^{55} -3.00000 q^{57} +(-5.00000 - 8.66025i) q^{59} +(3.00000 - 5.19615i) q^{61} +(0.500000 - 2.59808i) q^{63} +(3.50000 - 6.06218i) q^{65} +(-1.50000 - 2.59808i) q^{67} +2.00000 q^{69} +(-7.50000 - 12.9904i) q^{73} +(0.500000 - 0.866025i) q^{75} +(-8.00000 - 6.92820i) q^{77} +(-0.500000 + 0.866025i) q^{79} +(-0.500000 - 0.866025i) q^{81} +8.00000 q^{83} +6.00000 q^{85} +(-1.00000 - 1.73205i) q^{87} +(-1.00000 + 1.73205i) q^{89} +(-17.5000 + 6.06218i) q^{91} +(3.50000 - 6.06218i) q^{93} +(1.50000 + 2.59808i) q^{95} -10.0000 q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + q^{5} - 5 q^{7} - q^{9} + 4 q^{11} + 14 q^{13} + 2 q^{15} + 6 q^{17} - 3 q^{19} - 4 q^{21} + 2 q^{23} - q^{25} - 2 q^{27} - 4 q^{29} - 7 q^{31} - 4 q^{33} - q^{35} + 7 q^{37} + 7 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) 7.00000 1.94145 0.970725 0.240192i \(-0.0772105\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) 3.00000 + 5.19615i 0.727607 + 1.26025i 0.957892 + 0.287129i \(0.0927008\pi\)
−0.230285 + 0.973123i \(0.573966\pi\)
\(18\) 0 0
\(19\) −1.50000 + 2.59808i −0.344124 + 0.596040i −0.985194 0.171442i \(-0.945157\pi\)
0.641071 + 0.767482i \(0.278491\pi\)
\(20\) 0 0
\(21\) −2.00000 1.73205i −0.436436 0.377964i
\(22\) 0 0
\(23\) 1.00000 1.73205i 0.208514 0.361158i −0.742732 0.669588i \(-0.766471\pi\)
0.951247 + 0.308431i \(0.0998038\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −3.50000 6.06218i −0.628619 1.08880i −0.987829 0.155543i \(-0.950287\pi\)
0.359211 0.933257i \(-0.383046\pi\)
\(32\) 0 0
\(33\) −2.00000 + 3.46410i −0.348155 + 0.603023i
\(34\) 0 0
\(35\) −0.500000 + 2.59808i −0.0845154 + 0.439155i
\(36\) 0 0
\(37\) 3.50000 6.06218i 0.575396 0.996616i −0.420602 0.907245i \(-0.638181\pi\)
0.995998 0.0893706i \(-0.0284856\pi\)
\(38\) 0 0
\(39\) 3.50000 + 6.06218i 0.560449 + 0.970725i
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) 0.500000 + 0.866025i 0.0745356 + 0.129099i
\(46\) 0 0
\(47\) −5.00000 + 8.66025i −0.729325 + 1.26323i 0.227844 + 0.973698i \(0.426832\pi\)
−0.957169 + 0.289530i \(0.906501\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0 0
\(53\) 4.00000 + 6.92820i 0.549442 + 0.951662i 0.998313 + 0.0580651i \(0.0184931\pi\)
−0.448871 + 0.893597i \(0.648174\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) −3.00000 −0.397360
\(58\) 0 0
\(59\) −5.00000 8.66025i −0.650945 1.12747i −0.982894 0.184172i \(-0.941040\pi\)
0.331949 0.943297i \(-0.392294\pi\)
\(60\) 0 0
\(61\) 3.00000 5.19615i 0.384111 0.665299i −0.607535 0.794293i \(-0.707841\pi\)
0.991645 + 0.128994i \(0.0411748\pi\)
\(62\) 0 0
\(63\) 0.500000 2.59808i 0.0629941 0.327327i
\(64\) 0 0
\(65\) 3.50000 6.06218i 0.434122 0.751921i
\(66\) 0 0
\(67\) −1.50000 2.59808i −0.183254 0.317406i 0.759733 0.650236i \(-0.225330\pi\)
−0.942987 + 0.332830i \(0.891996\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −7.50000 12.9904i −0.877809 1.52041i −0.853740 0.520699i \(-0.825671\pi\)
−0.0240681 0.999710i \(-0.507662\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) −8.00000 6.92820i −0.911685 0.789542i
\(78\) 0 0
\(79\) −0.500000 + 0.866025i −0.0562544 + 0.0974355i −0.892781 0.450490i \(-0.851249\pi\)
0.836527 + 0.547926i \(0.184582\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 0 0
\(87\) −1.00000 1.73205i −0.107211 0.185695i
\(88\) 0 0
\(89\) −1.00000 + 1.73205i −0.106000 + 0.183597i −0.914146 0.405385i \(-0.867138\pi\)
0.808146 + 0.588982i \(0.200471\pi\)
\(90\) 0 0
\(91\) −17.5000 + 6.06218i −1.83450 + 0.635489i
\(92\) 0 0
\(93\) 3.50000 6.06218i 0.362933 0.628619i
\(94\) 0 0
\(95\) 1.50000 + 2.59808i 0.153897 + 0.266557i
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −6.00000 10.3923i −0.597022 1.03407i −0.993258 0.115924i \(-0.963017\pi\)
0.396236 0.918149i \(-0.370316\pi\)
\(102\) 0 0
\(103\) 3.50000 6.06218i 0.344865 0.597324i −0.640464 0.767988i \(-0.721258\pi\)
0.985329 + 0.170664i \(0.0545913\pi\)
\(104\) 0 0
\(105\) −2.50000 + 0.866025i −0.243975 + 0.0845154i
\(106\) 0 0
\(107\) −1.00000 + 1.73205i −0.0966736 + 0.167444i −0.910306 0.413936i \(-0.864154\pi\)
0.813632 + 0.581380i \(0.197487\pi\)
\(108\) 0 0
\(109\) 1.50000 + 2.59808i 0.143674 + 0.248851i 0.928877 0.370387i \(-0.120775\pi\)
−0.785203 + 0.619238i \(0.787442\pi\)
\(110\) 0 0
\(111\) 7.00000 0.664411
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) −1.00000 1.73205i −0.0932505 0.161515i
\(116\) 0 0
\(117\) −3.50000 + 6.06218i −0.323575 + 0.560449i
\(118\) 0 0
\(119\) −12.0000 10.3923i −1.10004 0.952661i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) 0 0
\(123\) −4.00000 6.92820i −0.360668 0.624695i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 0 0
\(129\) 2.50000 + 4.33013i 0.220113 + 0.381246i
\(130\) 0 0
\(131\) −11.0000 + 19.0526i −0.961074 + 1.66463i −0.241264 + 0.970460i \(0.577562\pi\)
−0.719811 + 0.694170i \(0.755772\pi\)
\(132\) 0 0
\(133\) 1.50000 7.79423i 0.130066 0.675845i
\(134\) 0 0
\(135\) −0.500000 + 0.866025i −0.0430331 + 0.0745356i
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) −13.0000 −1.10265 −0.551323 0.834292i \(-0.685877\pi\)
−0.551323 + 0.834292i \(0.685877\pi\)
\(140\) 0 0
\(141\) −10.0000 −0.842152
\(142\) 0 0
\(143\) 14.0000 + 24.2487i 1.17074 + 2.02778i
\(144\) 0 0
\(145\) −1.00000 + 1.73205i −0.0830455 + 0.143839i
\(146\) 0 0
\(147\) 6.50000 + 2.59808i 0.536111 + 0.214286i
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) −7.00000 −0.562254
\(156\) 0 0
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) 0 0
\(159\) −4.00000 + 6.92820i −0.317221 + 0.549442i
\(160\) 0 0
\(161\) −1.00000 + 5.19615i −0.0788110 + 0.409514i
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 0 0
\(165\) 2.00000 + 3.46410i 0.155700 + 0.269680i
\(166\) 0 0
\(167\) 24.0000 1.85718 0.928588 0.371113i \(-0.121024\pi\)
0.928588 + 0.371113i \(0.121024\pi\)
\(168\) 0 0
\(169\) 36.0000 2.76923
\(170\) 0 0
\(171\) −1.50000 2.59808i −0.114708 0.198680i
\(172\) 0 0
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 0 0
\(175\) 2.00000 + 1.73205i 0.151186 + 0.130931i
\(176\) 0 0
\(177\) 5.00000 8.66025i 0.375823 0.650945i
\(178\) 0 0
\(179\) −7.00000 12.1244i −0.523205 0.906217i −0.999635 0.0270049i \(-0.991403\pi\)
0.476431 0.879212i \(-0.341930\pi\)
\(180\) 0 0
\(181\) −3.00000 −0.222988 −0.111494 0.993765i \(-0.535564\pi\)
−0.111494 + 0.993765i \(0.535564\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) −3.50000 6.06218i −0.257325 0.445700i
\(186\) 0 0
\(187\) −12.0000 + 20.7846i −0.877527 + 1.51992i
\(188\) 0 0
\(189\) 2.50000 0.866025i 0.181848 0.0629941i
\(190\) 0 0
\(191\) 9.00000 15.5885i 0.651217 1.12794i −0.331611 0.943416i \(-0.607592\pi\)
0.982828 0.184525i \(-0.0590746\pi\)
\(192\) 0 0
\(193\) 11.5000 + 19.9186i 0.827788 + 1.43377i 0.899770 + 0.436365i \(0.143734\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 7.00000 0.501280
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) 0 0
\(201\) 1.50000 2.59808i 0.105802 0.183254i
\(202\) 0 0
\(203\) 5.00000 1.73205i 0.350931 0.121566i
\(204\) 0 0
\(205\) −4.00000 + 6.92820i −0.279372 + 0.483887i
\(206\) 0 0
\(207\) 1.00000 + 1.73205i 0.0695048 + 0.120386i
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.50000 4.33013i 0.170499 0.295312i
\(216\) 0 0
\(217\) 14.0000 + 12.1244i 0.950382 + 0.823055i
\(218\) 0 0
\(219\) 7.50000 12.9904i 0.506803 0.877809i
\(220\) 0 0
\(221\) 21.0000 + 36.3731i 1.41261 + 2.44672i
\(222\) 0 0
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −4.00000 6.92820i −0.265489 0.459841i 0.702202 0.711977i \(-0.252200\pi\)
−0.967692 + 0.252136i \(0.918867\pi\)
\(228\) 0 0
\(229\) −8.50000 + 14.7224i −0.561696 + 0.972886i 0.435653 + 0.900115i \(0.356518\pi\)
−0.997349 + 0.0727709i \(0.976816\pi\)
\(230\) 0 0
\(231\) 2.00000 10.3923i 0.131590 0.683763i
\(232\) 0 0
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) 5.00000 + 8.66025i 0.326164 + 0.564933i
\(236\) 0 0
\(237\) −1.00000 −0.0649570
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 7.00000 + 12.1244i 0.450910 + 0.780998i 0.998443 0.0557856i \(-0.0177663\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) −1.00000 6.92820i −0.0638877 0.442627i
\(246\) 0 0
\(247\) −10.5000 + 18.1865i −0.668099 + 1.15718i
\(248\) 0 0
\(249\) 4.00000 + 6.92820i 0.253490 + 0.439057i
\(250\) 0 0
\(251\) 22.0000 1.38863 0.694314 0.719672i \(-0.255708\pi\)
0.694314 + 0.719672i \(0.255708\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) 3.00000 + 5.19615i 0.187867 + 0.325396i
\(256\) 0 0
\(257\) −8.00000 + 13.8564i −0.499026 + 0.864339i −0.999999 0.00112398i \(-0.999642\pi\)
0.500973 + 0.865463i \(0.332976\pi\)
\(258\) 0 0
\(259\) −3.50000 + 18.1865i −0.217479 + 1.13006i
\(260\) 0 0
\(261\) 1.00000 1.73205i 0.0618984 0.107211i
\(262\) 0 0
\(263\) −6.00000 10.3923i −0.369976 0.640817i 0.619586 0.784929i \(-0.287301\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) −2.00000 −0.122398
\(268\) 0 0
\(269\) 5.00000 + 8.66025i 0.304855 + 0.528025i 0.977229 0.212187i \(-0.0680585\pi\)
−0.672374 + 0.740212i \(0.734725\pi\)
\(270\) 0 0
\(271\) 8.00000 13.8564i 0.485965 0.841717i −0.513905 0.857847i \(-0.671801\pi\)
0.999870 + 0.0161307i \(0.00513477\pi\)
\(272\) 0 0
\(273\) −14.0000 12.1244i −0.847319 0.733799i
\(274\) 0 0
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) −11.5000 19.9186i −0.690968 1.19679i −0.971521 0.236953i \(-0.923851\pi\)
0.280553 0.959839i \(-0.409482\pi\)
\(278\) 0 0
\(279\) 7.00000 0.419079
\(280\) 0 0
\(281\) −16.0000 −0.954480 −0.477240 0.878773i \(-0.658363\pi\)
−0.477240 + 0.878773i \(0.658363\pi\)
\(282\) 0 0
\(283\) −12.5000 21.6506i −0.743048 1.28700i −0.951101 0.308879i \(-0.900046\pi\)
0.208053 0.978117i \(-0.433287\pi\)
\(284\) 0 0
\(285\) −1.50000 + 2.59808i −0.0888523 + 0.153897i
\(286\) 0 0
\(287\) 20.0000 6.92820i 1.18056 0.408959i
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) −5.00000 8.66025i −0.293105 0.507673i
\(292\) 0 0
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) −10.0000 −0.582223
\(296\) 0 0
\(297\) −2.00000 3.46410i −0.116052 0.201008i
\(298\) 0 0
\(299\) 7.00000 12.1244i 0.404820 0.701170i
\(300\) 0 0
\(301\) −12.5000 + 4.33013i −0.720488 + 0.249584i
\(302\) 0 0
\(303\) 6.00000 10.3923i 0.344691 0.597022i
\(304\) 0 0
\(305\) −3.00000 5.19615i −0.171780 0.297531i
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 0 0
\(309\) 7.00000 0.398216
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −10.5000 + 18.1865i −0.593495 + 1.02796i 0.400262 + 0.916401i \(0.368919\pi\)
−0.993757 + 0.111563i \(0.964414\pi\)
\(314\) 0 0
\(315\) −2.00000 1.73205i −0.112687 0.0975900i
\(316\) 0 0
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) 0 0
\(319\) −4.00000 6.92820i −0.223957 0.387905i
\(320\) 0 0
\(321\) −2.00000 −0.111629
\(322\) 0 0
\(323\) −18.0000 −1.00155
\(324\) 0 0
\(325\) −3.50000 6.06218i −0.194145 0.336269i
\(326\) 0 0
\(327\) −1.50000 + 2.59808i −0.0829502 + 0.143674i
\(328\) 0 0
\(329\) 5.00000 25.9808i 0.275659 1.43237i
\(330\) 0 0
\(331\) 3.50000 6.06218i 0.192377 0.333207i −0.753660 0.657264i \(-0.771714\pi\)
0.946038 + 0.324057i \(0.105047\pi\)
\(332\) 0 0
\(333\) 3.50000 + 6.06218i 0.191799 + 0.332205i
\(334\) 0 0
\(335\) −3.00000 −0.163908
\(336\) 0 0
\(337\) 15.0000 0.817102 0.408551 0.912735i \(-0.366034\pi\)
0.408551 + 0.912735i \(0.366034\pi\)
\(338\) 0 0
\(339\) 9.00000 + 15.5885i 0.488813 + 0.846649i
\(340\) 0 0
\(341\) 14.0000 24.2487i 0.758143 1.31314i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 1.00000 1.73205i 0.0538382 0.0932505i
\(346\) 0 0
\(347\) −4.00000 6.92820i −0.214731 0.371925i 0.738458 0.674299i \(-0.235554\pi\)
−0.953189 + 0.302374i \(0.902221\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) −7.00000 −0.373632
\(352\) 0 0
\(353\) 6.00000 + 10.3923i 0.319348 + 0.553127i 0.980352 0.197256i \(-0.0632029\pi\)
−0.661004 + 0.750382i \(0.729870\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.00000 15.5885i 0.158777 0.825029i
\(358\) 0 0
\(359\) 7.00000 12.1244i 0.369446 0.639899i −0.620033 0.784576i \(-0.712881\pi\)
0.989479 + 0.144677i \(0.0462142\pi\)
\(360\) 0 0
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) −15.0000 −0.785136
\(366\) 0 0
\(367\) 2.50000 + 4.33013i 0.130499 + 0.226031i 0.923869 0.382709i \(-0.125009\pi\)
−0.793370 + 0.608740i \(0.791675\pi\)
\(368\) 0 0
\(369\) 4.00000 6.92820i 0.208232 0.360668i
\(370\) 0 0
\(371\) −16.0000 13.8564i −0.830679 0.719389i
\(372\) 0 0
\(373\) −4.50000 + 7.79423i −0.233001 + 0.403570i −0.958690 0.284453i \(-0.908188\pi\)
0.725689 + 0.688023i \(0.241521\pi\)
\(374\) 0 0
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) 0 0
\(377\) −14.0000 −0.721037
\(378\) 0 0
\(379\) −7.00000 −0.359566 −0.179783 0.983706i \(-0.557540\pi\)
−0.179783 + 0.983706i \(0.557540\pi\)
\(380\) 0 0
\(381\) 6.50000 + 11.2583i 0.333005 + 0.576782i
\(382\) 0 0
\(383\) −4.00000 + 6.92820i −0.204390 + 0.354015i −0.949938 0.312437i \(-0.898855\pi\)
0.745548 + 0.666452i \(0.232188\pi\)
\(384\) 0 0
\(385\) −10.0000 + 3.46410i −0.509647 + 0.176547i
\(386\) 0 0
\(387\) −2.50000 + 4.33013i −0.127082 + 0.220113i
\(388\) 0 0
\(389\) −8.00000 13.8564i −0.405616 0.702548i 0.588777 0.808296i \(-0.299610\pi\)
−0.994393 + 0.105748i \(0.966276\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) −22.0000 −1.10975
\(394\) 0 0
\(395\) 0.500000 + 0.866025i 0.0251577 + 0.0435745i
\(396\) 0 0
\(397\) 9.50000 16.4545i 0.476791 0.825827i −0.522855 0.852422i \(-0.675133\pi\)
0.999646 + 0.0265948i \(0.00846640\pi\)
\(398\) 0 0
\(399\) 7.50000 2.59808i 0.375470 0.130066i
\(400\) 0 0
\(401\) 16.0000 27.7128i 0.799002 1.38391i −0.121265 0.992620i \(-0.538695\pi\)
0.920267 0.391292i \(-0.127972\pi\)
\(402\) 0 0
\(403\) −24.5000 42.4352i −1.22043 2.11385i
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 28.0000 1.38791
\(408\) 0 0
\(409\) 9.50000 + 16.4545i 0.469745 + 0.813622i 0.999402 0.0345902i \(-0.0110126\pi\)
−0.529657 + 0.848212i \(0.677679\pi\)
\(410\) 0 0
\(411\) 9.00000 15.5885i 0.443937 0.768922i
\(412\) 0 0
\(413\) 20.0000 + 17.3205i 0.984136 + 0.852286i
\(414\) 0 0
\(415\) 4.00000 6.92820i 0.196352 0.340092i
\(416\) 0 0
\(417\) −6.50000 11.2583i −0.318306 0.551323i
\(418\) 0 0
\(419\) −26.0000 −1.27018 −0.635092 0.772437i \(-0.719038\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(420\) 0 0
\(421\) 13.0000 0.633581 0.316791 0.948495i \(-0.397395\pi\)
0.316791 + 0.948495i \(0.397395\pi\)
\(422\) 0 0
\(423\) −5.00000 8.66025i −0.243108 0.421076i
\(424\) 0 0
\(425\) 3.00000 5.19615i 0.145521 0.252050i
\(426\) 0 0
\(427\) −3.00000 + 15.5885i −0.145180 + 0.754378i
\(428\) 0 0
\(429\) −14.0000 + 24.2487i −0.675926 + 1.17074i
\(430\) 0 0
\(431\) 15.0000 + 25.9808i 0.722525 + 1.25145i 0.959985 + 0.280052i \(0.0903517\pi\)
−0.237460 + 0.971397i \(0.576315\pi\)
\(432\) 0 0
\(433\) −23.0000 −1.10531 −0.552655 0.833410i \(-0.686385\pi\)
−0.552655 + 0.833410i \(0.686385\pi\)
\(434\) 0 0
\(435\) −2.00000 −0.0958927
\(436\) 0 0
\(437\) 3.00000 + 5.19615i 0.143509 + 0.248566i
\(438\) 0 0
\(439\) 14.0000 24.2487i 0.668184 1.15733i −0.310228 0.950662i \(-0.600405\pi\)
0.978412 0.206666i \(-0.0662612\pi\)
\(440\) 0 0
\(441\) 1.00000 + 6.92820i 0.0476190 + 0.329914i
\(442\) 0 0
\(443\) −2.00000 + 3.46410i −0.0950229 + 0.164584i −0.909618 0.415445i \(-0.863626\pi\)
0.814595 + 0.580030i \(0.196959\pi\)
\(444\) 0 0
\(445\) 1.00000 + 1.73205i 0.0474045 + 0.0821071i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −34.0000 −1.60456 −0.802280 0.596948i \(-0.796380\pi\)
−0.802280 + 0.596948i \(0.796380\pi\)
\(450\) 0 0
\(451\) −16.0000 27.7128i −0.753411 1.30495i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.50000 + 18.1865i −0.164083 + 0.852598i
\(456\) 0 0
\(457\) 4.50000 7.79423i 0.210501 0.364599i −0.741370 0.671096i \(-0.765824\pi\)
0.951871 + 0.306497i \(0.0991571\pi\)
\(458\) 0 0
\(459\) −3.00000 5.19615i −0.140028 0.242536i
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) −1.00000 −0.0464739 −0.0232370 0.999730i \(-0.507397\pi\)
−0.0232370 + 0.999730i \(0.507397\pi\)
\(464\) 0 0
\(465\) −3.50000 6.06218i −0.162309 0.281127i
\(466\) 0 0
\(467\) −9.00000 + 15.5885i −0.416470 + 0.721348i −0.995582 0.0939008i \(-0.970066\pi\)
0.579111 + 0.815249i \(0.303400\pi\)
\(468\) 0 0
\(469\) 6.00000 + 5.19615i 0.277054 + 0.239936i
\(470\) 0 0
\(471\) 7.00000 12.1244i 0.322543 0.558661i
\(472\) 0 0
\(473\) 10.0000 + 17.3205i 0.459800 + 0.796398i
\(474\) 0 0
\(475\) 3.00000 0.137649
\(476\) 0 0
\(477\) −8.00000 −0.366295
\(478\) 0 0
\(479\) −20.0000 34.6410i −0.913823 1.58279i −0.808615 0.588338i \(-0.799782\pi\)
−0.105208 0.994450i \(-0.533551\pi\)
\(480\) 0 0
\(481\) 24.5000 42.4352i 1.11710 1.93488i
\(482\) 0 0
\(483\) −5.00000 + 1.73205i −0.227508 + 0.0788110i
\(484\) 0 0
\(485\) −5.00000 + 8.66025i −0.227038 + 0.393242i
\(486\) 0 0
\(487\) −11.5000 19.9186i −0.521115 0.902597i −0.999698 0.0245553i \(-0.992183\pi\)
0.478584 0.878042i \(-0.341150\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −4.00000 −0.180517 −0.0902587 0.995918i \(-0.528769\pi\)
−0.0902587 + 0.995918i \(0.528769\pi\)
\(492\) 0 0
\(493\) −6.00000 10.3923i −0.270226 0.468046i
\(494\) 0 0
\(495\) −2.00000 + 3.46410i −0.0898933 + 0.155700i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.50000 + 6.06218i −0.156682 + 0.271380i −0.933670 0.358134i \(-0.883413\pi\)
0.776989 + 0.629515i \(0.216746\pi\)
\(500\) 0 0
\(501\) 12.0000 + 20.7846i 0.536120 + 0.928588i
\(502\) 0 0
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 18.0000 + 31.1769i 0.799408 + 1.38462i
\(508\) 0 0
\(509\) −7.00000 + 12.1244i −0.310270 + 0.537403i −0.978421 0.206623i \(-0.933753\pi\)
0.668151 + 0.744026i \(0.267086\pi\)
\(510\) 0 0
\(511\) 30.0000 + 25.9808i 1.32712 + 1.14932i
\(512\) 0 0
\(513\) 1.50000 2.59808i 0.0662266 0.114708i
\(514\) 0 0
\(515\) −3.50000 6.06218i −0.154228 0.267131i
\(516\) 0 0
\(517\) −40.0000 −1.75920
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) 0.500000 0.866025i 0.0218635 0.0378686i −0.854887 0.518815i \(-0.826373\pi\)
0.876750 + 0.480946i \(0.159707\pi\)
\(524\) 0 0
\(525\) −0.500000 + 2.59808i −0.0218218 + 0.113389i
\(526\) 0 0
\(527\) 21.0000 36.3731i 0.914774 1.58444i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) −56.0000 −2.42563
\(534\) 0 0
\(535\) 1.00000 + 1.73205i 0.0432338 + 0.0748831i
\(536\) 0 0
\(537\) 7.00000 12.1244i 0.302072 0.523205i
\(538\) 0 0
\(539\) 26.0000 + 10.3923i 1.11990 + 0.447628i
\(540\) 0 0
\(541\) −8.50000 + 14.7224i −0.365444 + 0.632967i −0.988847 0.148933i \(-0.952416\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) −1.50000 2.59808i −0.0643712 0.111494i
\(544\) 0 0
\(545\) 3.00000 0.128506
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) 0 0
\(549\) 3.00000 + 5.19615i 0.128037 + 0.221766i
\(550\) 0 0
\(551\) 3.00000 5.19615i 0.127804 0.221364i
\(552\) 0 0
\(553\) 0.500000 2.59808i 0.0212622 0.110481i
\(554\) 0 0
\(555\) 3.50000 6.06218i 0.148567 0.257325i
\(556\) 0 0
\(557\) 15.0000 + 25.9808i 0.635570 + 1.10084i 0.986394 + 0.164399i \(0.0525683\pi\)
−0.350824 + 0.936442i \(0.614098\pi\)
\(558\) 0 0
\(559\) 35.0000 1.48034
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) 0 0
\(563\) 7.00000 + 12.1244i 0.295015 + 0.510981i 0.974988 0.222256i \(-0.0713421\pi\)
−0.679974 + 0.733237i \(0.738009\pi\)
\(564\) 0 0
\(565\) 9.00000 15.5885i 0.378633 0.655811i
\(566\) 0 0
\(567\) 2.00000 + 1.73205i 0.0839921 + 0.0727393i
\(568\) 0 0
\(569\) −6.00000 + 10.3923i −0.251533 + 0.435668i −0.963948 0.266090i \(-0.914268\pi\)
0.712415 + 0.701758i \(0.247601\pi\)
\(570\) 0 0
\(571\) 20.5000 + 35.5070i 0.857898 + 1.48592i 0.873930 + 0.486052i \(0.161563\pi\)
−0.0160316 + 0.999871i \(0.505103\pi\)
\(572\) 0 0
\(573\) 18.0000 0.751961
\(574\) 0 0
\(575\) −2.00000 −0.0834058
\(576\) 0 0
\(577\) 17.5000 + 30.3109i 0.728535 + 1.26186i 0.957503 + 0.288425i \(0.0931316\pi\)
−0.228968 + 0.973434i \(0.573535\pi\)
\(578\) 0 0
\(579\) −11.5000 + 19.9186i −0.477924 + 0.827788i
\(580\) 0 0
\(581\) −20.0000 + 6.92820i −0.829740 + 0.287430i
\(582\) 0 0
\(583\) −16.0000 + 27.7128i −0.662652 + 1.14775i
\(584\) 0 0
\(585\) 3.50000 + 6.06218i 0.144707 + 0.250640i
\(586\) 0 0
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) 21.0000 0.865290
\(590\) 0 0
\(591\) 1.00000 + 1.73205i 0.0411345 + 0.0712470i
\(592\) 0 0
\(593\) 16.0000 27.7128i 0.657041 1.13803i −0.324337 0.945942i \(-0.605141\pi\)
0.981378 0.192087i \(-0.0615256\pi\)
\(594\) 0 0
\(595\) −15.0000 + 5.19615i −0.614940 + 0.213021i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.0000 17.3205i −0.408589 0.707697i 0.586143 0.810208i \(-0.300646\pi\)
−0.994732 + 0.102511i \(0.967312\pi\)
\(600\) 0 0
\(601\) −17.0000 −0.693444 −0.346722 0.937968i \(-0.612705\pi\)
−0.346722 + 0.937968i \(0.612705\pi\)
\(602\) 0 0
\(603\) 3.00000 0.122169
\(604\) 0 0
\(605\) 2.50000 + 4.33013i 0.101639 + 0.176045i
\(606\) 0 0
\(607\) 6.50000 11.2583i 0.263827 0.456962i −0.703429 0.710766i \(-0.748349\pi\)
0.967256 + 0.253804i \(0.0816819\pi\)
\(608\) 0 0
\(609\) 4.00000 + 3.46410i 0.162088 + 0.140372i
\(610\) 0 0
\(611\) −35.0000 + 60.6218i −1.41595 + 2.45249i
\(612\) 0 0
\(613\) −11.0000 19.0526i −0.444286 0.769526i 0.553716 0.832705i \(-0.313209\pi\)
−0.998002 + 0.0631797i \(0.979876\pi\)
\(614\) 0 0
\(615\) −8.00000 −0.322591
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) −14.5000 25.1147i −0.582804 1.00945i −0.995145 0.0984169i \(-0.968622\pi\)
0.412341 0.911030i \(-0.364711\pi\)
\(620\) 0 0
\(621\) −1.00000 + 1.73205i −0.0401286 + 0.0695048i
\(622\) 0 0
\(623\) 1.00000 5.19615i 0.0400642 0.208179i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −6.00000 10.3923i −0.239617 0.415029i
\(628\) 0 0
\(629\) 42.0000 1.67465
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) −2.00000 3.46410i −0.0794929 0.137686i
\(634\) 0 0
\(635\) 6.50000 11.2583i 0.257945 0.446773i
\(636\) 0 0
\(637\) 38.5000 30.3109i 1.52543 1.20096i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.00000 5.19615i −0.118493 0.205236i 0.800678 0.599095i \(-0.204473\pi\)
−0.919171 + 0.393860i \(0.871140\pi\)
\(642\) 0 0
\(643\) 5.00000 0.197181 0.0985904 0.995128i \(-0.468567\pi\)
0.0985904 + 0.995128i \(0.468567\pi\)
\(644\) 0 0
\(645\) 5.00000 0.196875
\(646\) 0 0
\(647\) 22.0000 + 38.1051i 0.864909 + 1.49807i 0.867137 + 0.498069i \(0.165957\pi\)
−0.00222801 + 0.999998i \(0.500709\pi\)
\(648\) 0 0
\(649\) 20.0000 34.6410i 0.785069 1.35978i
\(650\) 0 0
\(651\) −3.50000 + 18.1865i −0.137176 + 0.712786i
\(652\) 0 0
\(653\) −14.0000 + 24.2487i −0.547862 + 0.948925i 0.450558 + 0.892747i \(0.351225\pi\)
−0.998421 + 0.0561784i \(0.982108\pi\)
\(654\) 0 0
\(655\) 11.0000 + 19.0526i 0.429806 + 0.744445i
\(656\) 0 0
\(657\) 15.0000 0.585206
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −7.50000 12.9904i −0.291716 0.505267i 0.682499 0.730886i \(-0.260893\pi\)
−0.974216 + 0.225619i \(0.927560\pi\)
\(662\) 0 0
\(663\) −21.0000 + 36.3731i −0.815572 + 1.41261i
\(664\) 0 0
\(665\) −6.00000 5.19615i −0.232670 0.201498i
\(666\) 0 0
\(667\) −2.00000 + 3.46410i −0.0774403 + 0.134131i
\(668\) 0 0
\(669\) −6.00000 10.3923i −0.231973 0.401790i
\(670\) 0 0
\(671\) 24.0000 0.926510
\(672\) 0 0
\(673\) 37.0000 1.42625 0.713123 0.701039i \(-0.247280\pi\)
0.713123 + 0.701039i \(0.247280\pi\)
\(674\) 0 0
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 0 0
\(677\) −1.00000 + 1.73205i −0.0384331 + 0.0665681i −0.884602 0.466347i \(-0.845570\pi\)
0.846169 + 0.532915i \(0.178903\pi\)
\(678\) 0 0
\(679\) 25.0000 8.66025i 0.959412 0.332350i
\(680\) 0 0
\(681\) 4.00000 6.92820i 0.153280 0.265489i
\(682\) 0 0
\(683\) −5.00000 8.66025i −0.191320 0.331375i 0.754368 0.656452i \(-0.227943\pi\)
−0.945688 + 0.325076i \(0.894610\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) −17.0000 −0.648590
\(688\) 0 0
\(689\) 28.0000 + 48.4974i 1.06672 + 1.84760i
\(690\) 0 0
\(691\) 25.5000 44.1673i 0.970066 1.68020i 0.274725 0.961523i \(-0.411413\pi\)
0.695341 0.718680i \(-0.255253\pi\)
\(692\) 0 0
\(693\) 10.0000 3.46410i 0.379869 0.131590i
\(694\) 0 0
\(695\) −6.50000 + 11.2583i −0.246559 + 0.427053i
\(696\) 0 0
\(697\) −24.0000 41.5692i −0.909065 1.57455i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 10.5000 + 18.1865i 0.396015 + 0.685918i
\(704\) 0 0
\(705\) −5.00000 + 8.66025i −0.188311 + 0.326164i
\(706\) 0 0
\(707\) 24.0000 + 20.7846i 0.902613 + 0.781686i
\(708\) 0 0
\(709\) −7.00000 + 12.1244i −0.262891 + 0.455340i −0.967009 0.254743i \(-0.918009\pi\)
0.704118 + 0.710083i \(0.251342\pi\)
\(710\) 0 0
\(711\) −0.500000 0.866025i −0.0187515 0.0324785i
\(712\) 0 0
\(713\) −14.0000 −0.524304
\(714\) 0 0
\(715\) 28.0000 1.04714
\(716\) 0 0
\(717\) 3.00000 + 5.19615i 0.112037 + 0.194054i
\(718\) 0 0
\(719\) −25.0000 + 43.3013i −0.932343 + 1.61486i −0.153037 + 0.988220i \(0.548906\pi\)
−0.779305 + 0.626644i \(0.784428\pi\)
\(720\) 0 0
\(721\) −3.50000 + 18.1865i −0.130347 + 0.677302i
\(722\) 0 0
\(723\) −7.00000 + 12.1244i −0.260333 + 0.450910i
\(724\) 0 0
\(725\) 1.00000 + 1.73205i 0.0371391 + 0.0643268i
\(726\) 0 0
\(727\) 23.0000 0.853023 0.426511 0.904482i \(-0.359742\pi\)
0.426511 + 0.904482i \(0.359742\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 15.0000 + 25.9808i 0.554795 + 0.960933i
\(732\) 0 0
\(733\) 6.50000 11.2583i 0.240083 0.415836i −0.720655 0.693294i \(-0.756159\pi\)
0.960738 + 0.277458i \(0.0894920\pi\)
\(734\) 0 0
\(735\) 5.50000 4.33013i 0.202871 0.159719i
\(736\) 0 0
\(737\) 6.00000 10.3923i 0.221013 0.382805i
\(738\) 0 0
\(739\) 0.500000 + 0.866025i 0.0183928 + 0.0318573i 0.875075 0.483987i \(-0.160812\pi\)
−0.856683 + 0.515844i \(0.827478\pi\)
\(740\) 0 0
\(741\) −21.0000 −0.771454
\(742\) 0 0
\(743\) −44.0000 −1.61420 −0.807102 0.590412i \(-0.798965\pi\)
−0.807102 + 0.590412i \(0.798965\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.00000 + 6.92820i −0.146352 + 0.253490i
\(748\) 0 0
\(749\) 1.00000 5.19615i 0.0365392 0.189863i
\(750\) 0 0
\(751\) 12.5000 21.6506i 0.456131 0.790043i −0.542621 0.839978i \(-0.682568\pi\)
0.998752 + 0.0499348i \(0.0159013\pi\)
\(752\) 0 0
\(753\) 11.0000 + 19.0526i 0.400862 + 0.694314i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 4.00000 + 6.92820i 0.145191 + 0.251478i
\(760\) 0 0
\(761\) 15.0000 25.9808i 0.543750 0.941802i −0.454935 0.890525i \(-0.650337\pi\)
0.998684 0.0512772i \(-0.0163292\pi\)
\(762\) 0 0
\(763\) −6.00000 5.19615i −0.217215 0.188113i
\(764\) 0 0
\(765\) −3.00000 + 5.19615i −0.108465 + 0.187867i
\(766\) 0 0
\(767\) −35.0000 60.6218i −1.26378 2.18893i
\(768\) 0 0
\(769\) −29.0000 −1.04577 −0.522883 0.852404i \(-0.675144\pi\)
−0.522883 + 0.852404i \(0.675144\pi\)
\(770\) 0 0
\(771\) −16.0000 −0.576226
\(772\) 0 0
\(773\) 6.00000 + 10.3923i 0.215805 + 0.373785i 0.953521 0.301326i \(-0.0974291\pi\)
−0.737716 + 0.675111i \(0.764096\pi\)
\(774\) 0 0
\(775\) −3.50000 + 6.06218i −0.125724 + 0.217760i
\(776\) 0 0
\(777\) −17.5000 + 6.06218i −0.627809 + 0.217479i
\(778\) 0 0
\(779\) 12.0000 20.7846i 0.429945 0.744686i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 0 0
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 0 0
\(789\) 6.00000 10.3923i 0.213606 0.369976i
\(790\) 0 0
\(791\) −45.0000 + 15.5885i −1.60002 + 0.554262i
\(792\) 0 0
\(793\) 21.0000 36.3731i 0.745732 1.29165i
\(794\) 0 0
\(795\) 4.00000 + 6.92820i 0.141865 + 0.245718i
\(796\) 0 0
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 0 0
\(799\) −60.0000 −2.12265
\(800\) 0 0
\(801\) −1.00000 1.73205i −0.0353333 0.0611990i
\(802\) 0 0
\(803\) 30.0000 51.9615i 1.05868 1.83368i
\(804\) 0 0
\(805\) 4.00000 + 3.46410i 0.140981 + 0.122094i
\(806\) 0 0
\(807\) −5.00000 + 8.66025i −0.176008 + 0.304855i
\(808\) 0 0
\(809\) 3.00000 + 5.19615i 0.105474 + 0.182687i 0.913932 0.405868i \(-0.133031\pi\)
−0.808458 + 0.588555i \(0.799697\pi\)
\(810\) 0 0
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 2.00000 + 3.46410i 0.0700569 + 0.121342i
\(816\) 0 0
\(817\) −7.50000 + 12.9904i −0.262392 + 0.454476i
\(818\) 0 0
\(819\) 3.50000 18.1865i 0.122300 0.635489i
\(820\) 0 0
\(821\) 6.00000 10.3923i 0.209401 0.362694i −0.742125 0.670262i \(-0.766182\pi\)
0.951526 + 0.307568i \(0.0995151\pi\)
\(822\) 0 0
\(823\) 12.0000 + 20.7846i 0.418294 + 0.724506i 0.995768 0.0919029i \(-0.0292950\pi\)
−0.577474 + 0.816409i \(0.695962\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) −10.0000 −0.347734 −0.173867 0.984769i \(-0.555626\pi\)
−0.173867 + 0.984769i \(0.555626\pi\)
\(828\) 0 0
\(829\) −12.5000 21.6506i −0.434143 0.751958i 0.563082 0.826401i \(-0.309615\pi\)
−0.997225 + 0.0744432i \(0.976282\pi\)
\(830\) 0 0
\(831\) 11.5000 19.9186i 0.398931 0.690968i
\(832\) 0 0
\(833\) 39.0000 + 15.5885i 1.35127 + 0.540108i
\(834\) 0 0
\(835\) 12.0000 20.7846i 0.415277 0.719281i
\(836\) 0 0
\(837\) 3.50000 + 6.06218i 0.120978 + 0.209540i
\(838\) 0 0
\(839\) −22.0000 −0.759524 −0.379762 0.925084i \(-0.623994\pi\)
−0.379762 + 0.925084i \(0.623994\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −8.00000 13.8564i −0.275535 0.477240i
\(844\) 0 0
\(845\) 18.0000 31.1769i 0.619219 1.07252i
\(846\) 0 0
\(847\) 2.50000 12.9904i 0.0859010 0.446355i
\(848\) 0 0
\(849\) 12.5000 21.6506i 0.428999 0.743048i
\(850\) 0 0
\(851\) −7.00000 12.1244i −0.239957 0.415618i
\(852\) 0 0
\(853\) −23.0000 −0.787505 −0.393753 0.919216i \(-0.628823\pi\)
−0.393753 + 0.919216i \(0.628823\pi\)
\(854\) 0 0
\(855\) −3.00000 −0.102598
\(856\) 0 0
\(857\) −11.0000 19.0526i −0.375753 0.650823i 0.614687 0.788771i \(-0.289283\pi\)
−0.990439 + 0.137948i \(0.955949\pi\)
\(858\) 0 0
\(859\) −18.0000 + 31.1769i −0.614152 + 1.06374i 0.376381 + 0.926465i \(0.377169\pi\)
−0.990533 + 0.137277i \(0.956165\pi\)
\(860\) 0 0
\(861\) 16.0000 + 13.8564i 0.545279 + 0.472225i
\(862\) 0 0
\(863\) 1.00000 1.73205i 0.0340404 0.0589597i −0.848503 0.529190i \(-0.822496\pi\)
0.882544 + 0.470230i \(0.155829\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) −4.00000 −0.135691
\(870\) 0 0
\(871\) −10.5000 18.1865i −0.355779 0.616227i
\(872\) 0 0
\(873\) 5.00000 8.66025i 0.169224 0.293105i
\(874\) 0 0
\(875\) 2.50000 0.866025i 0.0845154 0.0292770i
\(876\) 0 0
\(877\) −25.0000 + 43.3013i −0.844190 + 1.46218i 0.0421327 + 0.999112i \(0.486585\pi\)
−0.886323 + 0.463068i \(0.846749\pi\)
\(878\) 0 0
\(879\) −6.00000 10.3923i −0.202375 0.350524i
\(880\) 0 0
\(881\) 4.00000 0.134763 0.0673817 0.997727i \(-0.478535\pi\)
0.0673817 + 0.997727i \(0.478535\pi\)
\(882\) 0 0
\(883\) 27.0000 0.908622 0.454311 0.890843i \(-0.349885\pi\)
0.454311 + 0.890843i \(0.349885\pi\)
\(884\) 0 0
\(885\) −5.00000 8.66025i −0.168073 0.291111i
\(886\) 0 0
\(887\) −16.0000 + 27.7128i −0.537227 + 0.930505i 0.461825 + 0.886971i \(0.347195\pi\)
−0.999052 + 0.0435339i \(0.986138\pi\)
\(888\) 0 0
\(889\) −32.5000 + 11.2583i −1.09002 + 0.377592i
\(890\) 0 0
\(891\) 2.00000 3.46410i 0.0670025 0.116052i
\(892\) 0 0
\(893\) −15.0000 25.9808i −0.501956 0.869413i
\(894\) 0 0
\(895\) −14.0000 −0.467968
\(896\) 0 0
\(897\) 14.0000 0.467446
\(898\) 0 0
\(899\) 7.00000 + 12.1244i 0.233463 + 0.404370i
\(900\) 0 0
\(901\) −24.0000 + 41.5692i −0.799556 + 1.38487i
\(902\) 0 0
\(903\) −10.0000 8.66025i −0.332779 0.288195i
\(904\) 0 0
\(905\) −1.50000 + 2.59808i −0.0498617 + 0.0863630i
\(906\) 0 0
\(907\) 18.5000 + 32.0429i 0.614282 + 1.06397i 0.990510 + 0.137441i \(0.0438878\pi\)
−0.376228 + 0.926527i \(0.622779\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) −50.0000 −1.65657 −0.828287 0.560304i \(-0.810684\pi\)
−0.828287 + 0.560304i \(0.810684\pi\)
\(912\) 0 0
\(913\) 16.0000 + 27.7128i 0.529523 + 0.917160i
\(914\) 0 0
\(915\) 3.00000 5.19615i 0.0991769 0.171780i
\(916\) 0 0
\(917\) 11.0000 57.1577i 0.363252 1.88751i
\(918\) 0 0
\(919\) 13.5000 23.3827i 0.445324 0.771324i −0.552751 0.833347i \(-0.686422\pi\)
0.998075 + 0.0620230i \(0.0197552\pi\)
\(920\) 0 0
\(921\) 5.50000 + 9.52628i 0.181231 + 0.313902i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −7.00000 −0.230159
\(926\) 0 0
\(927\) 3.50000 + 6.06218i 0.114955 + 0.199108i
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) 3.00000 + 20.7846i 0.0983210 + 0.681188i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.0000 + 20.7846i 0.392442 + 0.679729i
\(936\) 0 0
\(937\) 9.00000 0.294017 0.147009 0.989135i \(-0.453036\pi\)
0.147009 + 0.989135i \(0.453036\pi\)
\(938\) 0 0
\(939\) −21.0000 −0.685309
\(940\) 0 0
\(941\) −27.0000 46.7654i −0.880175 1.52451i −0.851146 0.524929i \(-0.824092\pi\)
−0.0290288 0.999579i \(-0.509241\pi\)
\(942\) 0 0
\(943\) −8.00000 + 13.8564i −0.260516 + 0.451227i
\(944\) 0 0
\(945\) 0.500000 2.59808i 0.0162650 0.0845154i
\(946\) 0 0
\(947\) −2.00000 + 3.46410i −0.0649913 + 0.112568i −0.896690 0.442659i \(-0.854035\pi\)
0.831699 + 0.555227i \(0.187369\pi\)
\(948\) 0 0
\(949\) −52.5000 90.9327i −1.70422 2.95180i
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) 16.0000 0.518291 0.259145 0.965838i \(-0.416559\pi\)
0.259145 + 0.965838i \(0.416559\pi\)
\(954\) 0 0
\(955\) −9.00000 15.5885i −0.291233 0.504431i
\(956\) 0 0
\(957\) 4.00000 6.92820i 0.129302 0.223957i
\(958\) 0 0
\(959\) 36.0000 + 31.1769i 1.16250 + 1.00676i
\(960\) 0 0
\(961\) −9.00000 + 15.5885i −0.290323 + 0.502853i
\(962\) 0 0
\(963\) −1.00000 1.73205i −0.0322245 0.0558146i
\(964\) 0 0
\(965\) 23.0000 0.740396
\(966\) 0 0
\(967\) −17.0000 −0.546683 −0.273342 0.961917i \(-0.588129\pi\)
−0.273342 + 0.961917i \(0.588129\pi\)
\(968\) 0 0
\(969\) −9.00000 15.5885i −0.289122 0.500773i
\(970\) 0 0
\(971\) −24.0000 + 41.5692i −0.770197 + 1.33402i 0.167258 + 0.985913i \(0.446509\pi\)
−0.937455 + 0.348107i \(0.886825\pi\)
\(972\) 0 0
\(973\) 32.5000 11.2583i 1.04190 0.360925i
\(974\) 0 0
\(975\) 3.50000 6.06218i 0.112090 0.194145i
\(976\) 0 0
\(977\) 12.0000 + 20.7846i 0.383914 + 0.664959i 0.991618 0.129205i \(-0.0412426\pi\)
−0.607704 + 0.794164i \(0.707909\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 0 0
\(981\) −3.00000 −0.0957826
\(982\) 0 0
\(983\) 7.00000 + 12.1244i 0.223265 + 0.386707i 0.955798 0.294025i \(-0.0949950\pi\)
−0.732532 + 0.680732i \(0.761662\pi\)
\(984\) 0 0
\(985\) 1.00000 1.73205i 0.0318626 0.0551877i
\(986\) 0 0
\(987\) 25.0000 8.66025i 0.795759 0.275659i
\(988\) 0 0
\(989\) 5.00000 8.66025i 0.158991 0.275380i
\(990\) 0 0
\(991\) −15.5000 26.8468i −0.492374 0.852816i 0.507588 0.861600i \(-0.330537\pi\)
−0.999961 + 0.00878379i \(0.997204\pi\)
\(992\) 0 0
\(993\) 7.00000 0.222138
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −8.50000 14.7224i −0.269198 0.466264i 0.699457 0.714675i \(-0.253425\pi\)
−0.968655 + 0.248410i \(0.920092\pi\)
\(998\) 0 0
\(999\) −3.50000 + 6.06218i −0.110735 + 0.191799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.q.b.121.1 2
3.2 odd 2 1260.2.s.a.541.1 2
4.3 odd 2 1680.2.bg.j.961.1 2
5.2 odd 4 2100.2.bc.d.1549.2 4
5.3 odd 4 2100.2.bc.d.1549.1 4
5.4 even 2 2100.2.q.d.1801.1 2
7.2 even 3 2940.2.a.b.1.1 1
7.3 odd 6 2940.2.q.c.361.1 2
7.4 even 3 inner 420.2.q.b.361.1 yes 2
7.5 odd 6 2940.2.a.k.1.1 1
7.6 odd 2 2940.2.q.c.961.1 2
21.2 odd 6 8820.2.a.bb.1.1 1
21.5 even 6 8820.2.a.l.1.1 1
21.11 odd 6 1260.2.s.a.361.1 2
28.11 odd 6 1680.2.bg.j.1201.1 2
35.4 even 6 2100.2.q.d.1201.1 2
35.18 odd 12 2100.2.bc.d.949.2 4
35.32 odd 12 2100.2.bc.d.949.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.q.b.121.1 2 1.1 even 1 trivial
420.2.q.b.361.1 yes 2 7.4 even 3 inner
1260.2.s.a.361.1 2 21.11 odd 6
1260.2.s.a.541.1 2 3.2 odd 2
1680.2.bg.j.961.1 2 4.3 odd 2
1680.2.bg.j.1201.1 2 28.11 odd 6
2100.2.q.d.1201.1 2 35.4 even 6
2100.2.q.d.1801.1 2 5.4 even 2
2100.2.bc.d.949.1 4 35.32 odd 12
2100.2.bc.d.949.2 4 35.18 odd 12
2100.2.bc.d.1549.1 4 5.3 odd 4
2100.2.bc.d.1549.2 4 5.2 odd 4
2940.2.a.b.1.1 1 7.2 even 3
2940.2.a.k.1.1 1 7.5 odd 6
2940.2.q.c.361.1 2 7.3 odd 6
2940.2.q.c.961.1 2 7.6 odd 2
8820.2.a.l.1.1 1 21.5 even 6
8820.2.a.bb.1.1 1 21.2 odd 6