Newspace parameters
Level: | \( N \) | \(=\) | \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 420.bh (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.35371688489\) |
Analytic rank: | \(0\) |
Dimension: | \(10\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 10.0.29471584693248.1 |
Defining polynomial: |
\( x^{10} - 2x^{9} + 2x^{8} - 4x^{7} + 13x^{6} - 36x^{5} + 39x^{4} - 36x^{3} + 54x^{2} - 162x + 243 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{10} - 2x^{9} + 2x^{8} - 4x^{7} + 13x^{6} - 36x^{5} + 39x^{4} - 36x^{3} + 54x^{2} - 162x + 243 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{7} + 2\nu^{6} - 2\nu^{5} + 4\nu^{4} - 4\nu^{3} + 18\nu^{2} - 21\nu + 18 ) / 18 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{9} - \nu^{8} - 9\nu^{7} + 7\nu^{6} - 18\nu^{5} + 22\nu^{4} - 51\nu^{3} + 21\nu^{2} - 171\nu + 135 ) / 216 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 5\nu^{9} - 4\nu^{8} + 7\nu^{7} + 28\nu^{6} + 32\nu^{5} - 30\nu^{4} + 123\nu^{3} - 216\nu^{2} - 243\nu - 486 ) / 648 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 3\nu^{9} + 2\nu^{8} - \nu^{7} + 4\nu^{6} + 16\nu^{5} - 58\nu^{4} + 9\nu^{3} + 6\nu^{2} + 9\nu - 486 ) / 216 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{9} - \nu^{7} + 6\nu^{6} - 20\nu^{5} + 22\nu^{4} - 15\nu^{3} + 48\nu^{2} - 63\nu + 216 ) / 72 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 8\nu^{9} - 7\nu^{8} + 16\nu^{7} - 23\nu^{6} + 50\nu^{5} - 108\nu^{4} + 114\nu^{3} - 153\nu^{2} - 729 ) / 648 \)
|
\(\beta_{8}\) | \(=\) |
\( ( \nu^{9} - 2\nu^{8} + 2\nu^{7} - 4\nu^{6} + 13\nu^{5} - 36\nu^{4} + 39\nu^{3} - 36\nu^{2} + 54\nu - 162 ) / 81 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 13 \nu^{9} + 5 \nu^{8} + 25 \nu^{7} - 35 \nu^{6} - 94 \nu^{5} + 186 \nu^{4} + 231 \nu^{3} - 297 \nu^{2} + 243 \nu + 1701 ) / 648 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{7} - \beta_{4} - \beta_{3} + \beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{9} + \beta_{8} - \beta_{6} + \beta_{5} + 2\beta_{2} \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{9} - 2\beta_{8} + 3\beta_{7} - 2\beta_{6} - 2\beta_{5} + \beta_{4} + 2\beta_{2} + 2\beta _1 - 3 \)
|
\(\nu^{5}\) | \(=\) |
\( -2\beta_{9} - \beta_{8} - 2\beta_{7} - 4\beta_{6} - 4\beta_{5} + 2\beta_{4} - 4\beta_{3} + 2\beta_{2} - 2\beta _1 + 6 \)
|
\(\nu^{6}\) | \(=\) |
\( -4\beta_{9} - 8\beta_{7} + 4\beta_{6} + 12\beta_{4} - 4\beta_{3} - 2\beta_{2} + 4\beta _1 + 3 \)
|
\(\nu^{7}\) | \(=\) |
\( -8\beta_{9} - 10\beta_{8} + 18\beta_{7} + 12\beta_{6} - 4\beta_{5} + 6\beta_{4} - 18\beta_{3} - 8\beta_{2} - \beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 16 \beta_{9} - 16 \beta_{8} - 7 \beta_{7} - 10 \beta_{6} + 38 \beta_{5} - 5 \beta_{4} - 5 \beta_{3} + 3 \beta_{2} - 8 \beta _1 + 30 \)
|
\(\nu^{9}\) | \(=\) |
\( 16\beta_{9} - 29\beta_{8} + 88\beta_{7} - 9\beta_{6} + 25\beta_{5} + 26\beta_{3} + 18\beta_{2} + 46\beta _1 + 48 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).
\(n\) | \(211\) | \(241\) | \(281\) | \(337\) |
\(\chi(n)\) | \(1\) | \(1 + \beta_{7}\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 |
|
0 | −1.63319 | + | 0.576792i | 0 | 0.500000 | + | 0.866025i | 0 | −1.73439 | − | 1.99797i | 0 | 2.33462 | − | 1.88402i | 0 | ||||||||||||||||||||||||||||||||||||||||
101.2 | 0 | −1.16526 | − | 1.28147i | 0 | 0.500000 | + | 0.866025i | 0 | −1.80025 | + | 1.93884i | 0 | −0.284326 | + | 2.98650i | 0 | |||||||||||||||||||||||||||||||||||||||||
101.3 | 0 | 0.622752 | + | 1.61622i | 0 | 0.500000 | + | 0.866025i | 0 | 2.57325 | − | 0.615143i | 0 | −2.22436 | + | 2.01301i | 0 | |||||||||||||||||||||||||||||||||||||||||
101.4 | 0 | 0.979142 | − | 1.42873i | 0 | 0.500000 | + | 0.866025i | 0 | −0.456468 | − | 2.60608i | 0 | −1.08256 | − | 2.79787i | 0 | |||||||||||||||||||||||||||||||||||||||||
101.5 | 0 | 1.69656 | − | 0.348838i | 0 | 0.500000 | + | 0.866025i | 0 | −1.08214 | + | 2.41433i | 0 | 2.75662 | − | 1.18365i | 0 | |||||||||||||||||||||||||||||||||||||||||
341.1 | 0 | −1.63319 | − | 0.576792i | 0 | 0.500000 | − | 0.866025i | 0 | −1.73439 | + | 1.99797i | 0 | 2.33462 | + | 1.88402i | 0 | |||||||||||||||||||||||||||||||||||||||||
341.2 | 0 | −1.16526 | + | 1.28147i | 0 | 0.500000 | − | 0.866025i | 0 | −1.80025 | − | 1.93884i | 0 | −0.284326 | − | 2.98650i | 0 | |||||||||||||||||||||||||||||||||||||||||
341.3 | 0 | 0.622752 | − | 1.61622i | 0 | 0.500000 | − | 0.866025i | 0 | 2.57325 | + | 0.615143i | 0 | −2.22436 | − | 2.01301i | 0 | |||||||||||||||||||||||||||||||||||||||||
341.4 | 0 | 0.979142 | + | 1.42873i | 0 | 0.500000 | − | 0.866025i | 0 | −0.456468 | + | 2.60608i | 0 | −1.08256 | + | 2.79787i | 0 | |||||||||||||||||||||||||||||||||||||||||
341.5 | 0 | 1.69656 | + | 0.348838i | 0 | 0.500000 | − | 0.866025i | 0 | −1.08214 | − | 2.41433i | 0 | 2.75662 | + | 1.18365i | 0 | |||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
21.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 420.2.bh.b | yes | 10 |
3.b | odd | 2 | 1 | 420.2.bh.a | ✓ | 10 | |
5.b | even | 2 | 1 | 2100.2.bi.j | 10 | ||
5.c | odd | 4 | 2 | 2100.2.bo.g | 20 | ||
7.c | even | 3 | 1 | 2940.2.d.a | 10 | ||
7.d | odd | 6 | 1 | 420.2.bh.a | ✓ | 10 | |
7.d | odd | 6 | 1 | 2940.2.d.b | 10 | ||
15.d | odd | 2 | 1 | 2100.2.bi.k | 10 | ||
15.e | even | 4 | 2 | 2100.2.bo.h | 20 | ||
21.g | even | 6 | 1 | inner | 420.2.bh.b | yes | 10 |
21.g | even | 6 | 1 | 2940.2.d.a | 10 | ||
21.h | odd | 6 | 1 | 2940.2.d.b | 10 | ||
35.i | odd | 6 | 1 | 2100.2.bi.k | 10 | ||
35.k | even | 12 | 2 | 2100.2.bo.h | 20 | ||
105.p | even | 6 | 1 | 2100.2.bi.j | 10 | ||
105.w | odd | 12 | 2 | 2100.2.bo.g | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
420.2.bh.a | ✓ | 10 | 3.b | odd | 2 | 1 | |
420.2.bh.a | ✓ | 10 | 7.d | odd | 6 | 1 | |
420.2.bh.b | yes | 10 | 1.a | even | 1 | 1 | trivial |
420.2.bh.b | yes | 10 | 21.g | even | 6 | 1 | inner |
2100.2.bi.j | 10 | 5.b | even | 2 | 1 | ||
2100.2.bi.j | 10 | 105.p | even | 6 | 1 | ||
2100.2.bi.k | 10 | 15.d | odd | 2 | 1 | ||
2100.2.bi.k | 10 | 35.i | odd | 6 | 1 | ||
2100.2.bo.g | 20 | 5.c | odd | 4 | 2 | ||
2100.2.bo.g | 20 | 105.w | odd | 12 | 2 | ||
2100.2.bo.h | 20 | 15.e | even | 4 | 2 | ||
2100.2.bo.h | 20 | 35.k | even | 12 | 2 | ||
2940.2.d.a | 10 | 7.c | even | 3 | 1 | ||
2940.2.d.a | 10 | 21.g | even | 6 | 1 | ||
2940.2.d.b | 10 | 7.d | odd | 6 | 1 | ||
2940.2.d.b | 10 | 21.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{11}^{10} - 6 T_{11}^{9} - 4 T_{11}^{8} + 96 T_{11}^{7} + 84 T_{11}^{6} - 2280 T_{11}^{5} + 8156 T_{11}^{4} - 14352 T_{11}^{3} + 14128 T_{11}^{2} - 7488 T_{11} + 1728 \)
acting on \(S_{2}^{\mathrm{new}}(420, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{10} \)
$3$
\( T^{10} - T^{9} - T^{8} + 4 T^{7} + T^{6} + \cdots + 243 \)
$5$
\( (T^{2} - T + 1)^{5} \)
$7$
\( T^{10} + 5 T^{9} + 19 T^{8} + \cdots + 16807 \)
$11$
\( T^{10} - 6 T^{9} - 4 T^{8} + 96 T^{7} + \cdots + 1728 \)
$13$
\( T^{10} + 81 T^{8} + 2183 T^{6} + \cdots + 3888 \)
$17$
\( T^{10} + 6 T^{9} + 70 T^{8} + \cdots + 69696 \)
$19$
\( T^{10} - 3 T^{9} - 12 T^{8} + 45 T^{7} + \cdots + 192 \)
$23$
\( T^{10} + 24 T^{9} + 223 T^{8} + \cdots + 2462508 \)
$29$
\( T^{10} + 142 T^{8} + 6537 T^{6} + \cdots + 8748 \)
$31$
\( T^{10} - 15 T^{9} + 12 T^{8} + \cdots + 1978032 \)
$37$
\( T^{10} + T^{9} + 68 T^{8} - 65 T^{7} + \cdots + 12544 \)
$41$
\( (T^{5} - 4 T^{4} - 115 T^{3} + 64 T^{2} + \cdots - 1338)^{2} \)
$43$
\( (T^{5} + 13 T^{4} - 42 T^{3} - 568 T^{2} + \cdots + 1559)^{2} \)
$47$
\( T^{10} + 14 T^{9} + \cdots + 295289856 \)
$53$
\( T^{10} - 24 T^{9} + \cdots + 113246208 \)
$59$
\( T^{10} + 160 T^{8} + \cdots + 125081856 \)
$61$
\( T^{10} - 42 T^{9} + 807 T^{8} + \cdots + 1338672 \)
$67$
\( T^{10} - 7 T^{9} + 241 T^{8} + \cdots + 45684081 \)
$71$
\( T^{10} + 288 T^{8} + \cdots + 88259328 \)
$73$
\( T^{10} + 3 T^{9} - 250 T^{8} + \cdots + 1572528 \)
$79$
\( T^{10} - T^{9} + 194 T^{8} + \cdots + 138485824 \)
$83$
\( (T^{5} - 4 T^{4} - 379 T^{3} + 1024 T^{2} + \cdots + 28794)^{2} \)
$89$
\( T^{10} + 28 T^{9} + 563 T^{8} + \cdots + 272484 \)
$97$
\( T^{10} + 212 T^{8} + 11040 T^{6} + \cdots + 1051392 \)
show more
show less