Newspace parameters
Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 42.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.1099016226\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
Defining polynomial: |
\( x^{12} - 2 x^{11} + 6683 x^{10} + 105006 x^{9} + 34690411 x^{8} + 548172728 x^{7} + 69245553226 x^{6} + 2257669296800 x^{5} + 109555419264148 x^{4} + \cdots + 30\!\cdots\!24 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{24}\cdot 3^{6}\cdot 7^{4} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 2 x^{11} + 6683 x^{10} + 105006 x^{9} + 34690411 x^{8} + 548172728 x^{7} + 69245553226 x^{6} + 2257669296800 x^{5} + 109555419264148 x^{4} + \cdots + 30\!\cdots\!24 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 31\!\cdots\!86 \nu^{11} + \cdots + 48\!\cdots\!92 ) / 30\!\cdots\!40 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 17\!\cdots\!43 \nu^{11} + \cdots + 43\!\cdots\!24 ) / 38\!\cdots\!80 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 61\!\cdots\!37 \nu^{11} + \cdots + 68\!\cdots\!04 ) / 49\!\cdots\!60 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 30\!\cdots\!64 \nu^{11} + \cdots - 86\!\cdots\!68 ) / 21\!\cdots\!60 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 22\!\cdots\!12 \nu^{11} + \cdots + 22\!\cdots\!16 ) / 43\!\cdots\!92 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 11\!\cdots\!62 \nu^{11} + \cdots + 29\!\cdots\!16 ) / 19\!\cdots\!40 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 29\!\cdots\!52 \nu^{11} + \cdots - 24\!\cdots\!64 ) / 19\!\cdots\!40 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 31\!\cdots\!04 \nu^{11} + \cdots - 75\!\cdots\!52 ) / 19\!\cdots\!40 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 19\!\cdots\!07 \nu^{11} + \cdots - 53\!\cdots\!44 ) / 98\!\cdots\!20 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 39\!\cdots\!86 \nu^{11} + \cdots - 22\!\cdots\!52 ) / 19\!\cdots\!40 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 10\!\cdots\!94 \nu^{11} + \cdots + 72\!\cdots\!28 ) / 19\!\cdots\!40 \)
|
\(\nu\) | \(=\) |
\( ( 5 \beta_{11} + 5 \beta_{10} + 10 \beta_{9} - 2 \beta_{8} + 2 \beta_{7} - 15 \beta_{6} - 6 \beta_{5} - 20 \beta_{4} - 8 \beta_{2} - 225 \beta _1 + 2 ) / 672 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 74 \beta_{11} - 31 \beta_{10} + 31 \beta_{9} - 37 \beta_{8} - 77 \beta_{7} - 3 \beta_{6} + 400 \beta_{5} - 237 \beta_{4} - 15592 \beta_{3} - 40 \beta_{2} - 499011 \beta _1 - 499319 ) / 224 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 23491 \beta_{11} - 46882 \beta_{10} - 23441 \beta_{9} - 23681 \beta_{8} - 46817 \beta_{7} + 190 \beta_{6} - 46114 \beta_{5} + 115569 \beta_{4} + 23516 \beta_{3} + 634974 \beta_{2} + \cdots - 19793895 ) / 672 \)
|
\(\nu^{4}\) | \(=\) |
\( ( - 543303 \beta_{11} - 169655 \beta_{10} - 339310 \beta_{9} - 380554 \beta_{8} + 380554 \beta_{7} + 322045 \beta_{6} - 768094 \beta_{5} - 442596 \beta_{4} + 103810108 \beta_{3} + \cdots + 380554 ) / 224 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 22413082 \beta_{11} + 109373171 \beta_{10} - 109373171 \beta_{9} + 92331913 \beta_{8} + 176143197 \beta_{7} + 153730115 \beta_{6} + 433650592 \beta_{5} + \cdots + 96506987983 ) / 672 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 670559331 \beta_{11} + 1842895410 \beta_{10} + 921447705 \beta_{9} + 2638131273 \beta_{8} - 751897467 \beta_{7} - 1967571942 \beta_{6} - 3154371342 \beta_{5} + \cdots + 7896264848363 ) / 224 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 553888077125 \beta_{11} + 507375414005 \beta_{10} + 1014750828010 \beta_{9} + 168033488614 \beta_{8} - 168033488614 \beta_{7} - 710948764275 \beta_{6} + \cdots - 168033488614 ) / 672 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 9802335487634 \beta_{11} - 4894242561043 \beta_{10} + 4894242561043 \beta_{9} - 2938413657937 \beta_{8} - 4898912864321 \beta_{7} + \cdots - 34\!\cdots\!83 ) / 224 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 16\!\cdots\!57 \beta_{11} + \cdots - 22\!\cdots\!77 ) / 672 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 61\!\cdots\!93 \beta_{11} + \cdots + 47\!\cdots\!38 ) / 224 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 54\!\cdots\!78 \beta_{11} + \cdots + 11\!\cdots\!49 ) / 672 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(31\) |
\(\chi(n)\) | \(1\) | \(-\beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−5.65685 | + | 9.79796i | −40.5000 | + | 23.3827i | −64.0000 | − | 110.851i | −1036.40 | − | 598.368i | − | 529.090i | −2203.25 | + | 954.186i | 1448.15 | 1093.50 | − | 1894.00i | 11725.6 | − | 6769.76i | |||||||||||||||||||||||||||||||||||||||
19.2 | −5.65685 | + | 9.79796i | −40.5000 | + | 23.3827i | −64.0000 | − | 110.851i | 124.890 | + | 72.1052i | − | 529.090i | 1980.48 | + | 1357.39i | 1448.15 | 1093.50 | − | 1894.00i | −1412.97 | + | 815.777i | ||||||||||||||||||||||||||||||||||||||||
19.3 | −5.65685 | + | 9.79796i | −40.5000 | + | 23.3827i | −64.0000 | − | 110.851i | 537.676 | + | 310.427i | − | 529.090i | −2285.79 | − | 734.809i | 1448.15 | 1093.50 | − | 1894.00i | −6083.11 | + | 3512.08i | ||||||||||||||||||||||||||||||||||||||||
19.4 | 5.65685 | − | 9.79796i | −40.5000 | + | 23.3827i | −64.0000 | − | 110.851i | −666.879 | − | 385.023i | 529.090i | 1263.93 | − | 2041.39i | −1448.15 | 1093.50 | − | 1894.00i | −7544.87 | + | 4356.03i | |||||||||||||||||||||||||||||||||||||||||
19.5 | 5.65685 | − | 9.79796i | −40.5000 | + | 23.3827i | −64.0000 | − | 110.851i | −127.532 | − | 73.6307i | 529.090i | 1148.13 | + | 2108.70i | −1448.15 | 1093.50 | − | 1894.00i | −1442.86 | + | 833.036i | |||||||||||||||||||||||||||||||||||||||||
19.6 | 5.65685 | − | 9.79796i | −40.5000 | + | 23.3827i | −64.0000 | − | 110.851i | 607.249 | + | 350.595i | 529.090i | −2120.49 | − | 1126.19i | −1448.15 | 1093.50 | − | 1894.00i | 6870.24 | − | 3966.53i | |||||||||||||||||||||||||||||||||||||||||
31.1 | −5.65685 | − | 9.79796i | −40.5000 | − | 23.3827i | −64.0000 | + | 110.851i | −1036.40 | + | 598.368i | 529.090i | −2203.25 | − | 954.186i | 1448.15 | 1093.50 | + | 1894.00i | 11725.6 | + | 6769.76i | |||||||||||||||||||||||||||||||||||||||||
31.2 | −5.65685 | − | 9.79796i | −40.5000 | − | 23.3827i | −64.0000 | + | 110.851i | 124.890 | − | 72.1052i | 529.090i | 1980.48 | − | 1357.39i | 1448.15 | 1093.50 | + | 1894.00i | −1412.97 | − | 815.777i | |||||||||||||||||||||||||||||||||||||||||
31.3 | −5.65685 | − | 9.79796i | −40.5000 | − | 23.3827i | −64.0000 | + | 110.851i | 537.676 | − | 310.427i | 529.090i | −2285.79 | + | 734.809i | 1448.15 | 1093.50 | + | 1894.00i | −6083.11 | − | 3512.08i | |||||||||||||||||||||||||||||||||||||||||
31.4 | 5.65685 | + | 9.79796i | −40.5000 | − | 23.3827i | −64.0000 | + | 110.851i | −666.879 | + | 385.023i | − | 529.090i | 1263.93 | + | 2041.39i | −1448.15 | 1093.50 | + | 1894.00i | −7544.87 | − | 4356.03i | ||||||||||||||||||||||||||||||||||||||||
31.5 | 5.65685 | + | 9.79796i | −40.5000 | − | 23.3827i | −64.0000 | + | 110.851i | −127.532 | + | 73.6307i | − | 529.090i | 1148.13 | − | 2108.70i | −1448.15 | 1093.50 | + | 1894.00i | −1442.86 | − | 833.036i | ||||||||||||||||||||||||||||||||||||||||
31.6 | 5.65685 | + | 9.79796i | −40.5000 | − | 23.3827i | −64.0000 | + | 110.851i | 607.249 | − | 350.595i | − | 529.090i | −2120.49 | + | 1126.19i | −1448.15 | 1093.50 | + | 1894.00i | 6870.24 | + | 3966.53i | ||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 42.9.g.b | ✓ | 12 |
3.b | odd | 2 | 1 | 126.9.n.c | 12 | ||
7.c | even | 3 | 1 | 294.9.c.b | 12 | ||
7.d | odd | 6 | 1 | inner | 42.9.g.b | ✓ | 12 |
7.d | odd | 6 | 1 | 294.9.c.b | 12 | ||
21.g | even | 6 | 1 | 126.9.n.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.9.g.b | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
42.9.g.b | ✓ | 12 | 7.d | odd | 6 | 1 | inner |
126.9.n.c | 12 | 3.b | odd | 2 | 1 | ||
126.9.n.c | 12 | 21.g | even | 6 | 1 | ||
294.9.c.b | 12 | 7.c | even | 3 | 1 | ||
294.9.c.b | 12 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{12} + 1122 T_{5}^{11} - 842937 T_{5}^{10} - 1416597930 T_{5}^{9} + 921696727761 T_{5}^{8} + 814659406013160 T_{5}^{7} + \cdots + 72\!\cdots\!00 \)
acting on \(S_{9}^{\mathrm{new}}(42, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} + 128 T^{2} + 16384)^{3} \)
$3$
\( (T^{2} + 81 T + 2187)^{6} \)
$5$
\( T^{12} + 1122 T^{11} + \cdots + 72\!\cdots\!00 \)
$7$
\( T^{12} + 4434 T^{11} + \cdots + 36\!\cdots\!01 \)
$11$
\( T^{12} - 9606 T^{11} + \cdots + 45\!\cdots\!36 \)
$13$
\( T^{12} + 6646642092 T^{10} + \cdots + 17\!\cdots\!84 \)
$17$
\( T^{12} + 227388 T^{11} + \cdots + 47\!\cdots\!24 \)
$19$
\( T^{12} - 315408 T^{11} + \cdots + 13\!\cdots\!44 \)
$23$
\( T^{12} + 663480 T^{11} + \cdots + 46\!\cdots\!16 \)
$29$
\( (T^{6} - 2972442 T^{5} + \cdots - 30\!\cdots\!92)^{2} \)
$31$
\( T^{12} + 3214278 T^{11} + \cdots + 11\!\cdots\!81 \)
$37$
\( T^{12} - 1607760 T^{11} + \cdots + 12\!\cdots\!36 \)
$41$
\( T^{12} + 61465893903048 T^{10} + \cdots + 13\!\cdots\!84 \)
$43$
\( (T^{6} - 6313824 T^{5} + \cdots + 34\!\cdots\!64)^{2} \)
$47$
\( T^{12} + 7830240 T^{11} + \cdots + 26\!\cdots\!64 \)
$53$
\( T^{12} + 33200358 T^{11} + \cdots + 94\!\cdots\!04 \)
$59$
\( T^{12} + 29657382 T^{11} + \cdots + 79\!\cdots\!24 \)
$61$
\( T^{12} - 58344096 T^{11} + \cdots + 25\!\cdots\!84 \)
$67$
\( T^{12} - 7977444 T^{11} + \cdots + 15\!\cdots\!44 \)
$71$
\( (T^{6} - 58606632 T^{5} + \cdots - 45\!\cdots\!08)^{2} \)
$73$
\( T^{12} + 170286636 T^{11} + \cdots + 82\!\cdots\!84 \)
$79$
\( T^{12} - 35420490 T^{11} + \cdots + 23\!\cdots\!69 \)
$83$
\( T^{12} + \cdots + 40\!\cdots\!96 \)
$89$
\( T^{12} - 78064092 T^{11} + \cdots + 72\!\cdots\!96 \)
$97$
\( T^{12} + \cdots + 73\!\cdots\!36 \)
show more
show less