Newspace parameters
Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 42.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(17.1099016226\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
Defining polynomial: |
\( x^{8} - 2x^{7} + 243x^{6} - 2x^{5} + 49033x^{4} - 23088x^{3} + 2105352x^{2} + 2056320x + 73410624 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{10}\cdot 3^{2}\cdot 7^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + 243x^{6} - 2x^{5} + 49033x^{4} - 23088x^{3} + 2105352x^{2} + 2056320x + 73410624 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 6934582 \nu^{7} - 213073991 \nu^{6} + 1776935352 \nu^{5} - 40879197461 \nu^{4} + 277529721052 \nu^{3} + \cdots - 413175598845912 ) / 362820220623000 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 239 \nu^{7} + 16582 \nu^{6} - 49029 \nu^{5} - 74978 \nu^{4} + 91321 \nu^{3} - 6267024 \nu^{2} - 77523264 \nu - 63227678976 ) / 5451279750 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 87595352 \nu^{7} - 3004572376 \nu^{6} + 25056699072 \nu^{5} - 833613645796 \nu^{4} + 3913467474272 \nu^{3} + \cdots - 58\!\cdots\!32 ) / 408172748200875 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 5452777121 \nu^{7} + 23659464973 \nu^{6} - 2162183841681 \nu^{5} + 4145347854883 \nu^{4} - 387341147347031 \nu^{3} + \cdots + 10\!\cdots\!36 ) / 16\!\cdots\!00 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - 2668426 \nu^{7} + 5906063 \nu^{6} - 783660036 \nu^{5} + 409326773 \nu^{4} - 158695101136 \nu^{3} + 89328125259 \nu^{2} + \cdots - 967483677384 ) / 370687023000 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 2720810176 \nu^{7} + 1044395813 \nu^{6} - 445348695786 \nu^{5} - 1121515139977 \nu^{4} - 80588018609386 \nu^{3} + \cdots - 58\!\cdots\!84 ) / 362820220623000 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 9283131394 \nu^{7} - 5722683347 \nu^{6} + 1651704201984 \nu^{5} + 3375232761163 \nu^{4} + 336750861568384 \nu^{3} + \cdots + 31\!\cdots\!46 ) / 816345496401750 \)
|
\(\nu\) | \(=\) |
\( ( -4\beta_{7} - 4\beta_{6} - 4\beta_{5} + 4\beta_{4} + 3\beta_{3} - 4\beta_{2} - 40\beta _1 + 4 ) / 84 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{7} + 2\beta_{6} - 4\beta_{5} + 4\beta_{4} + 285\beta_{3} - 283\beta_{2} - 5062\beta _1 - 5060 ) / 42 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 1184\beta_{7} + 1940\beta_{6} - 592\beta_{5} + 970\beta_{4} + 378\beta_{3} + 173\beta_{2} - 592\beta _1 - 15458 ) / 84 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 295 \beta_{7} + 484 \beta_{6} + 295 \beta_{5} - 484 \beta_{4} - 34572 \beta_{3} + 295 \beta_{2} + 429775 \beta _1 - 295 ) / 21 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 108616 \beta_{7} - 200470 \beta_{6} + 217232 \beta_{5} - 400940 \beta_{4} - 537897 \beta_{3} + 245573 \beta_{2} + 4328270 \beta _1 + 4219654 ) / 84 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 322900 \beta_{7} - 596572 \beta_{6} + 161450 \beta_{5} - 298286 \beta_{4} - 136836 \beta_{3} + 13903163 \beta_{2} + 161450 \beta _1 + 164675554 ) / 42 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 21249568 \beta_{7} - 40329874 \beta_{6} - 21249568 \beta_{5} + 40329874 \beta_{4} + 118965801 \beta_{3} - 21249568 \beta_{2} - 1126597834 \beta _1 + 21249568 ) / 84 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(31\) |
\(\chi(n)\) | \(1\) | \(1 + \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 |
|
−5.65685 | + | 9.79796i | 40.5000 | − | 23.3827i | −64.0000 | − | 110.851i | −271.195 | − | 156.575i | 529.090i | 746.403 | + | 2282.04i | 1448.15 | 1093.50 | − | 1894.00i | 3068.22 | − | 1771.44i | ||||||||||||||||||||||||||||
19.2 | −5.65685 | + | 9.79796i | 40.5000 | − | 23.3827i | −64.0000 | − | 110.851i | 198.356 | + | 114.521i | 529.090i | −2266.33 | − | 792.819i | 1448.15 | 1093.50 | − | 1894.00i | −2244.14 | + | 1295.66i | |||||||||||||||||||||||||||||
19.3 | 5.65685 | − | 9.79796i | 40.5000 | − | 23.3827i | −64.0000 | − | 110.851i | −974.971 | − | 562.900i | − | 529.090i | −797.874 | + | 2264.55i | −1448.15 | 1093.50 | − | 1894.00i | −11030.5 | + | 6368.49i | ||||||||||||||||||||||||||||
19.4 | 5.65685 | − | 9.79796i | 40.5000 | − | 23.3827i | −64.0000 | − | 110.851i | −65.1898 | − | 37.6374i | − | 529.090i | 2247.80 | − | 843.923i | −1448.15 | 1093.50 | − | 1894.00i | −737.539 | + | 425.818i | ||||||||||||||||||||||||||||
31.1 | −5.65685 | − | 9.79796i | 40.5000 | + | 23.3827i | −64.0000 | + | 110.851i | −271.195 | + | 156.575i | − | 529.090i | 746.403 | − | 2282.04i | 1448.15 | 1093.50 | + | 1894.00i | 3068.22 | + | 1771.44i | ||||||||||||||||||||||||||||
31.2 | −5.65685 | − | 9.79796i | 40.5000 | + | 23.3827i | −64.0000 | + | 110.851i | 198.356 | − | 114.521i | − | 529.090i | −2266.33 | + | 792.819i | 1448.15 | 1093.50 | + | 1894.00i | −2244.14 | − | 1295.66i | ||||||||||||||||||||||||||||
31.3 | 5.65685 | + | 9.79796i | 40.5000 | + | 23.3827i | −64.0000 | + | 110.851i | −974.971 | + | 562.900i | 529.090i | −797.874 | − | 2264.55i | −1448.15 | 1093.50 | + | 1894.00i | −11030.5 | − | 6368.49i | |||||||||||||||||||||||||||||
31.4 | 5.65685 | + | 9.79796i | 40.5000 | + | 23.3827i | −64.0000 | + | 110.851i | −65.1898 | + | 37.6374i | 529.090i | 2247.80 | + | 843.923i | −1448.15 | 1093.50 | + | 1894.00i | −737.539 | − | 425.818i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 42.9.g.a | ✓ | 8 |
3.b | odd | 2 | 1 | 126.9.n.a | 8 | ||
7.c | even | 3 | 1 | 294.9.c.a | 8 | ||
7.d | odd | 6 | 1 | inner | 42.9.g.a | ✓ | 8 |
7.d | odd | 6 | 1 | 294.9.c.a | 8 | ||
21.g | even | 6 | 1 | 126.9.n.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.9.g.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
42.9.g.a | ✓ | 8 | 7.d | odd | 6 | 1 | inner |
126.9.n.a | 8 | 3.b | odd | 2 | 1 | ||
126.9.n.a | 8 | 21.g | even | 6 | 1 | ||
294.9.c.a | 8 | 7.c | even | 3 | 1 | ||
294.9.c.a | 8 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 2226 T_{5}^{7} + 1765731 T_{5}^{6} + 253850814 T_{5}^{5} - 82470162699 T_{5}^{4} - 15607863346140 T_{5}^{3} + \cdots + 36\!\cdots\!00 \)
acting on \(S_{9}^{\mathrm{new}}(42, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} + 128 T^{2} + 16384)^{2} \)
$3$
\( (T^{2} - 81 T + 2187)^{4} \)
$5$
\( T^{8} + 2226 T^{7} + \cdots + 36\!\cdots\!00 \)
$7$
\( T^{8} + 140 T^{7} + \cdots + 11\!\cdots\!01 \)
$11$
\( T^{8} + 7434 T^{7} + \cdots + 51\!\cdots\!64 \)
$13$
\( T^{8} + 3917293830 T^{6} + \cdots + 37\!\cdots\!96 \)
$17$
\( T^{8} - 7932 T^{7} + \cdots + 44\!\cdots\!64 \)
$19$
\( T^{8} + 773082 T^{7} + \cdots + 59\!\cdots\!24 \)
$23$
\( T^{8} - 391200 T^{7} + \cdots + 96\!\cdots\!24 \)
$29$
\( (T^{4} + 1159098 T^{3} + \cdots - 32\!\cdots\!76)^{2} \)
$31$
\( T^{8} + 3212544 T^{7} + \cdots + 25\!\cdots\!89 \)
$37$
\( T^{8} - 544802 T^{7} + \cdots + 30\!\cdots\!96 \)
$41$
\( T^{8} + 9884157950064 T^{6} + \cdots + 46\!\cdots\!24 \)
$43$
\( (T^{4} - 276142 T^{3} + \cdots + 26\!\cdots\!72)^{2} \)
$47$
\( T^{8} + 15735252 T^{7} + \cdots + 87\!\cdots\!36 \)
$53$
\( T^{8} - 10935222 T^{7} + \cdots + 65\!\cdots\!16 \)
$59$
\( T^{8} - 63840318 T^{7} + \cdots + 33\!\cdots\!04 \)
$61$
\( T^{8} - 43108176 T^{7} + \cdots + 32\!\cdots\!96 \)
$67$
\( T^{8} - 48827290 T^{7} + \cdots + 21\!\cdots\!96 \)
$71$
\( (T^{4} + 82263372 T^{3} + \cdots + 15\!\cdots\!84)^{2} \)
$73$
\( T^{8} - 150530022 T^{7} + \cdots + 18\!\cdots\!76 \)
$79$
\( T^{8} + 18689696 T^{7} + \cdots + 58\!\cdots\!29 \)
$83$
\( T^{8} + \cdots + 13\!\cdots\!04 \)
$89$
\( T^{8} + 191605284 T^{7} + \cdots + 46\!\cdots\!16 \)
$97$
\( T^{8} + \cdots + 91\!\cdots\!24 \)
show more
show less