Properties

Label 42.8.e.c
Level $42$
Weight $8$
Character orbit 42.e
Analytic conductor $13.120$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42,8,Mod(25,42)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42.25"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 42.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-16,54,-128,-309] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.1201710703\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{2881})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 721x^{2} + 720x + 518400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 8 \beta_1 q^{2} + ( - 27 \beta_1 + 27) q^{3} + (64 \beta_1 - 64) q^{4} + (3 \beta_{3} - 3 \beta_{2} - 153 \beta_1) q^{5} - 216 q^{6} + (14 \beta_{3} + 21 \beta_{2} + \cdots + 91) q^{7} + 512 q^{8}+ \cdots + ( - 27702 \beta_{3} - 13851 \beta_{2} + \cdots - 2438505) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} + 54 q^{3} - 128 q^{4} - 309 q^{5} - 864 q^{6} + 868 q^{7} + 2048 q^{8} - 1458 q^{9} - 2472 q^{10} + 6747 q^{11} + 3456 q^{12} - 14278 q^{13} + 1736 q^{14} - 16686 q^{15} - 8192 q^{16} - 27456 q^{17}+ \cdots - 9837126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 721x^{2} + 720x + 518400 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 721\nu^{2} - 721\nu + 518400 ) / 519120 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - \nu^{2} + 1441\nu + 720 ) / 720 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 721\nu + 1441 ) / 721 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 2162\beta _1 - 2163 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1442\beta_{3} + 721\beta_{2} + 721\beta _1 - 4323 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(1\) \(-\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
13.6687 + 23.6749i
−13.1687 22.8089i
13.6687 23.6749i
−13.1687 + 22.8089i
−4.00000 6.92820i 13.5000 23.3827i −32.0000 + 55.4256i −198.019 342.978i −216.000 −346.587 + 838.702i 512.000 −364.500 631.333i −1584.15 + 2743.83i
25.2 −4.00000 6.92820i 13.5000 23.3827i −32.0000 + 55.4256i 43.5186 + 75.3765i −216.000 780.587 462.847i 512.000 −364.500 631.333i 348.149 603.012i
37.1 −4.00000 + 6.92820i 13.5000 + 23.3827i −32.0000 55.4256i −198.019 + 342.978i −216.000 −346.587 838.702i 512.000 −364.500 + 631.333i −1584.15 2743.83i
37.2 −4.00000 + 6.92820i 13.5000 + 23.3827i −32.0000 55.4256i 43.5186 75.3765i −216.000 780.587 + 462.847i 512.000 −364.500 + 631.333i 348.149 + 603.012i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.8.e.c 4
3.b odd 2 1 126.8.g.f 4
7.b odd 2 1 294.8.e.t 4
7.c even 3 1 inner 42.8.e.c 4
7.c even 3 1 294.8.a.s 2
7.d odd 6 1 294.8.a.t 2
7.d odd 6 1 294.8.e.t 4
21.h odd 6 1 126.8.g.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.e.c 4 1.a even 1 1 trivial
42.8.e.c 4 7.c even 3 1 inner
126.8.g.f 4 3.b odd 2 1
126.8.g.f 4 21.h odd 6 1
294.8.a.s 2 7.c even 3 1
294.8.a.t 2 7.d odd 6 1
294.8.e.t 4 7.b odd 2 1
294.8.e.t 4 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 309T_{5}^{3} + 129951T_{5}^{2} - 10651230T_{5} + 1188180900 \) acting on \(S_{8}^{\mathrm{new}}(42, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 27 T + 729)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 1188180900 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 678223072849 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 81729012968100 \) Copy content Toggle raw display
$13$ \( (T^{2} + 7139 T - 6867476)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 83\!\cdots\!84 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 57\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} + 394359 T + 38382378660)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 82\!\cdots\!21 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{2} - 567006 T + 80065888560)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 265505 T - 568015812050)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 19\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 61\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 39\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{2} + \cdots + 8314342748532)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 47\!\cdots\!61 \) Copy content Toggle raw display
$83$ \( (T^{2} + \cdots - 13321578284910)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 68727373321558)^{2} \) Copy content Toggle raw display
show more
show less